51
|
Ducret V, Perron K, Valentini M. Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:371-395. [PMID: 36258080 DOI: 10.1007/978-3-031-08491-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-component systems (TCS) are the largest family of signaling systems in the bacterial kingdom. They enable bacteria to cope with a wide range of environmental conditions via the sensing of stimuli and the transduction of the signal into an appropriate cellular adaptation response. Pseudomonas aeruginosa possesses one of the richest arrays of TCSs in bacteria and they have been the subject of intense investigation for more than 20 years. Most of the P. aeruginosa TCSs characterized to date affect its pathogenesis, via the regulation of virulence factors expression, modulation of the synthesis of antibiotic/antimicrobial resistance mechanisms, and/or via linking virulence to energy metabolism. Here, we give an overview of the current knowledge on P. aeruginosa TCSs, citing key examples for each of the above-mentioned regulatory actions. We then conclude by mentioning few small molecule inhibitors of P. aeruginosa TCSs that have shown an antimicrobial action in vitro.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
52
|
Ramsay KA, McTavish SM, Wardell SJT, Lamont IL. The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa: Reduced Susceptibility Due to Mutations. Front Microbiol 2021; 12:789550. [PMID: 34987489 PMCID: PMC8721600 DOI: 10.3389/fmicb.2021.789550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa chronically infects in the lungs of people with cystic fibrosis and other forms of lung disease. Infections are treated with antibiotics, but over time, the bacteria acquire mutations that reduce their antibiotic susceptibility. The effects of inhibitory amounts of antibiotics in selecting for antibiotic-resistant mutants have been well studied. However, the concentrations of antibiotics that reach infecting bacteria can be sub-inhibitory and but may nonetheless promote emergence of antibiotic-resistant bacteria. Therefore, the aim of this research was to investigate the effects of sub-inhibitory concentrations of antibiotics on the antibiotic susceptibility of P. aeruginosa. Two P. aeruginosa reference strains, PAO1 and PA14, and six isolates from individuals with cystic fibrosis were studied. The bacteria were passaged in the presence of antibiotics (ceftazidime, ciprofloxacin, meropenem or tobramycin) at sub-inhibitory amounts. Fifteen populations of bacteria (up to five per strain) were exposed to each of the four antibiotics. Antibiotic susceptibility was determined following 10 passages on agar supplemented with antibiotic and compared with susceptibility prior to antibiotic exposure. Antibiotic exposure resulted in susceptibility being significantly (>2-fold) reduced for 13 of the 60 populations. Seven samples had reduced susceptibility to ciprofloxacin, three to tobramycin, two to ceftazidime and one to meropenem. Whole-genome sequencing revealed the mutations arising following antibiotic exposure. Mutants with reduced antibiotic susceptibility had mutations in genes known to affect antibiotic resistance, including regulators of efflux pumps (mexR, mexS, mexZ and nalC) and the fusA1 gene that is associated with aminoglycoside resistance. Genes not previously associated with resistance, including gacS, sigX and crfX and two genes with no known function, were also mutated in some isolates with reduced antibiotic susceptibility. Our results show that exposure to sub-inhibitory amounts of antibiotics can select for mutations that reduce the susceptibility of P. aeruginosa to antibiotics and that the profile of mutations is different from that arising during selection with inhibitory antibiotic concentrations. It is likely that exposure to sub-inhibitory amounts of antibiotics during infection contributes to P. aeruginosa becoming antibiotic-resistant.
Collapse
Affiliation(s)
| | | | | | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
53
|
Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function. NPJ Biofilms Microbiomes 2021; 7:87. [PMID: 34880222 PMCID: PMC8655052 DOI: 10.1038/s41522-021-00257-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial biofilms represent a challenge to the healthcare system because of their resilience against antimicrobials and immune attack. Biofilms consist of bacterial aggregates embedded in an extracellular polymeric substance (EPS) composed of polysaccharides, nucleic acids and proteins. We hypothesised that carbohydrates could contribute to immune recognition of Pseudomonas aeruginosa biofilms by engaging C-type lectins. Here we show binding of Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209), mannose receptor (MR, CD206) and Dectin-2 to P. aeruginosa biofilms. We also demonstrate that DC-SIGN, unlike MR and Dectin-2, recognises planktonic P. aeruginosa cultures and this interaction depends on the presence of the common polysaccharide antigen. Within biofilms DC-SIGN, Dectin-2 and MR ligands appear as discrete clusters with dispersed DC-SIGN ligands also found among bacterial aggregates. DC-SIGN, MR and Dectin-2 bind to carbohydrates purified from P. aeruginosa biofilms, particularly the high molecular weight fraction (HMW; >132,000 Da), with KDs in the nM range. These HMW carbohydrates contain 74.9–80.9% mannose, display α-mannan segments, interfere with the endocytic activity of cell-associated DC-SIGN and MR and inhibit Dectin-2-mediated cellular activation. In addition, biofilm carbohydrates reduce the association of the DC-SIGN ligand Lewisx, but not fucose, to human monocyte-derived dendritic cells (moDCs), and alter moDC morphology without affecting early cytokine production in response to lipopolysaccharide or P. aeruginosa cultures. This work identifies the presence of ligands for three important C-type lectins within P. aeruginosa biofilm structures and purified biofilm carbohydrates and highlights the potential for these receptors to impact immunity to P. aeruginosa infection.
Collapse
|
54
|
Dadashi M, Chen L, Nasimian A, Ghavami S, Duan K. Putative RNA Ligase RtcB Affects the Switch between T6SS and T3SS in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:12561. [PMID: 34830443 PMCID: PMC8619066 DOI: 10.3390/ijms222212561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/22/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is a significant cause of infection in immunocompromised individuals, cystic fibrosis patients, and burn victims. To benefit its survival, the bacterium adapt to either a motile or sessile lifestyle when infecting the host. The motile bacterium has an often activated type III secretion system (T3SS), which is virulent to the host, whereas the sessile bacterium harbors an active T6SS and lives in biofilms. Regulatory pathways involving Gac-Rsm or secondary messengers such as c-di-GMP determine which lifestyle is favorable for P. aeruginosa. Here, we introduce the RNA binding protein RtcB as a modulator of the switch between motile and sessile bacterial lifestyles. Using the wild-type P. aeruginosa PAO1, and a retS mutant PAO1(∆retS) in which T3SS is repressed and T6SS active, we show that deleting rtcB led to simultaneous expression of T3SS and T6SS in both PAO1(∆rtcB) and PAO1(∆rtcB∆retS). The deletion of rtcB also increased biofilm formation in PAO1(∆rtcB) and restored the motility of PAO1(∆rtcB∆retS). RNA-sequencing data suggested RtcB as a global modulator affecting multiple virulence factors, including bacterial secretion systems. Competitive killing and infection assays showed that the three T6SS systems (H1, H2, and H3) in PAO1(∆rtcB) were activated into a functional syringe, and could compete with Escherichia coli and effectively infect lettuce. Western blotting and RT-PCR results showed that RtcB probably exerted its function through RsmA in PAO1(∆rtcB∆retS). Quantification of c-di-GMP showed an elevated intracellular levels in PAO1(∆rtcB), which likely drove the switch between T6SS and T3SS, and contributed to the altered phenotypes and characteristics observed. Our data demonstrate a pivotal role of RtcB in the virulence of P. aeruginosa by controlling multiple virulence determinants, such as biofilm formation, motility, pyocyanin production, T3SS, and T6SS secretion systems towards eukaryotic and prokaryotic cells. These findings suggest RtcB as a potential target for controlling P. aeruginosa colonization, establishment, and pathogenicity.
Collapse
Affiliation(s)
- Maryam Dadashi
- Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
| | - Lin Chen
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Ahmad Nasimian
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; (A.N.); (S.G.)
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; (A.N.); (S.G.)
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
- Department of Medical Microbiology and Infectious Disease, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
55
|
Martínez-Alcantar L, Orozco G, Díaz-Pérez AL, Villegas J, Reyes-De la Cruz H, García-Pineda E, Campos-García J. Participation of Acyl-Coenzyme A Synthetase FadD4 of Pseudomonas aeruginosa PAO1 in Acyclic Terpene/Fatty Acid Assimilation and Virulence by Lipid A Modification. Front Microbiol 2021; 12:785112. [PMID: 34867927 PMCID: PMC8637051 DOI: 10.3389/fmicb.2021.785112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa possesses high metabolic versatility, with its effectiveness to cause infections likely due to its well-regulated genetic content. P. aeruginosa PAO1 has at least six fadD paralogous genes, which have been implicated in fatty acid (FA) degradation and pathogenicity. In this study, we used mutagenesis and a functional approach in P. aeruginosa PAO1 to determine the roles of the fadD4 gene in acyclic terpene (AT) and FA assimilation and on pathogenicity. The results indicate that fadD4 encodes a terpenoyl-CoA synthetase utilized for AT and FA assimilation. Additionally, mutations in fadD paralogs led to the modification of the quorum-sensing las/rhl systems, as well as the content of virulence factors pyocyanin, biofilm, rhamnolipids, lipopolysaccharides (LPS), and polyhydroxyalkanoates. In a Caenorhabditis elegans in vivo pathogenicity model, culture supernatants from the 24-h-grown fadD4 single mutant increased lethality compared to the PAO1 wild-type (WT) strain; however, the double mutants fadD1/fadD2, fadD1/fadD4, and fadD2/fadD4 and single mutant fadD2 increased worm survival. A correlation analysis indicated an interaction between worm death by the PAO1 strain, the fadD4 mutation, and the virulence factor LPS. Fatty acid methyl ester (FAME) analysis of LPS revealed that a proportion of the LPS and FA on lipid A were modified by the fadD4 mutation, suggesting that FadD4 is also involved in the synthesis/degradation and modification of the lipid A component of LPS. LPS isolated from the fadD4 mutant and double mutants fadD1/fadD4 and fadD2/fadD4 showed a differential behavior to induce an increase in body temperature in rats injected with LPS compared to the WT strain or from the fadD1 and fadD2 mutants. In agreement, LPS isolated from the fadD4 mutant and double mutants fadD1/fadD2 and fadD2/fadD4 increased the induction of IL-8 in rat sera, but IL1-β cytokine levels decreased in the double mutants fadD1/fadD2 and fadD1/fadD4. The results indicate that the fadD genes are implicated in the degree of pathogenicity of P. aeruginosa PAO1 induced by LPS-lipid A, suggesting that FadD4 contributes to the removal of acyl-linked FA from LPS, rendering modification in its immunogenic response associated to Toll-like receptor TLR4. The genetic redundancy of fadD is important for bacterial adaptability and pathogenicity over the host.
Collapse
Affiliation(s)
- Lorena Martínez-Alcantar
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gabriela Orozco
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alma Laura Díaz-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Javier Villegas
- Laboratorio de Interacción Suelo, Planta, Microorganismo, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Homero Reyes-De la Cruz
- Laboratorio de Control Traduccional, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ernesto García-Pineda
- Laboratorio de Bioquímica y Biología Molecular, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
56
|
Brinkman FSL, Winsor GL, Done RE, Filloux A, Francis VI, Goldberg JB, Greenberg EP, Han K, Hancock REW, Haney CH, Häußler S, Klockgether J, Lamont IL, Levesque RC, Lory S, Nikel PI, Porter SL, Scurlock MW, Schweizer HP, Tümmler B, Wang M, Welch M. The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Adv Microb Physiol 2021; 79:25-88. [PMID: 34836612 DOI: 10.1016/bs.ampbs.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toward the end of August 2000, the 6.3 Mbp whole genome sequence of Pseudomonas aeruginosa strain PAO1 was published. With 5570 open reading frames (ORFs), PAO1 had the largest microbial genome sequenced up to that point in time-including a large proportion of metabolic, transport and antimicrobial resistance genes supporting its ability to colonize diverse environments. A remarkable 9% of its ORFs were predicted to encode proteins with regulatory functions, providing new insight into bacterial network complexity as a function of network size. In this celebratory article, we fast forward 20 years, and examine how access to this resource has transformed our understanding of P. aeruginosa. What follows is more than a simple review or commentary; we have specifically asked some of the leaders in the field to provide personal reflections on how the PAO1 genome sequence, along with the Pseudomonas Community Annotation Project (PseudoCAP) and Pseudomonas Genome Database (pseudomonas.com), have contributed to the many exciting discoveries in this field. In addition to bringing us all up to date with the latest developments, we also ask our contributors to speculate on how the next 20 years of Pseudomonas research might pan out.
Collapse
Affiliation(s)
- Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Rachel E Done
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Vanessa I Francis
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | | | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Susanne Häußler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Klockgether
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Pavillon Charles-Eugène Marchand, Faculté of Médicine, Université Laval, Québec City, QC, Canada
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Steven L Porter
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | | | - Herbert P Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Burkhard Tümmler
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Meng Wang
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
57
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
58
|
Saqr AA, Aldawsari MF, Khafagy ES, Shaldam MA, Hegazy WAH, Abbas HA. A Novel Use of Allopurinol as A Quorum-Sensing Inhibitor in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111385. [PMID: 34827323 PMCID: PMC8615079 DOI: 10.3390/antibiotics10111385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa can cause a variety of healthcare-associated infections by its arsenal of virulence factors. Virulence factor production is largely controlled by the cell-to-cell communication system termed quorum sensing (QS). Targeting QS may be a good approach to inhibit the production of virulence factors and attenuate pathogenicity without exerting selective stress on bacterial growth. This will greatly reduce the emergence of resistant mutants. In this work, we investigated the anti-virulence and anti-QS activities of the FDA-approved drug allopurinol against the P. aeruginosa PAO1 strain. Allopurinol at 200 µg/mL (1/10 MIC) significantly decreased the production of the QS-controlled Chromobacterium violaceum CV026 violet pigment violacein and other P. aeruginosa QS-controlled virulence factors phenotypically. Furthermore, allopurinol reduced the infiltration of P. aeruginosa and leucocytes and diminished the congestion in the liver and kidney tissues of infected mice. In silico study showed that allopurinol could compete with the autoinducers on binding to the receptors LasR and RhlR by hydrogen bonding. On the molecular level, qRT-PCR proved that allopurinol showed a significant downregulating effect on all tested QS-encoding genes that regulate virulence factor production. In summary, allopurinol is a promising QS inhibitor that may be useful in the future treatment of P. aeruginosa infection.
Collapse
Affiliation(s)
- Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33511, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
59
|
Kalgudi R, Tamimi R, Kyazze G, Keshavarz T. Quorum quenchers affect the virulence regulation of non-mucoid, mucoid and heavily mucoid biofilms co-cultured on cell lines. Appl Microbiol Biotechnol 2021; 105:8853-8868. [PMID: 34716788 PMCID: PMC8590680 DOI: 10.1007/s00253-021-11638-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022]
Abstract
Biofilm formation conferring pathogenicity is a survival strategy for Pseudomonas aeruginosa. P. aeruginosa’s virulence may differ due to differences in host-microbe interactions and the growth environment. The epithelial cell line within the respiratory system and the keratinocytes on the skin form the first physical barrier of defence. P. aeruginosa spp. biofilm formation and virulence factor secretion with and without quorum quenching (QQ) treatment was studied in co-culture using A549 and HaCaT cell lines; pyocyanin and rhamnolipid productions and elastolytic activity as virulence factors were quantified by independent assays. Biofilm formation was evaluated under dynamic conditions by quantifying total carbohydrates, alginate, proteins and eDNA. A sandwich ELISA was performed to study IL-8 secretion by the epithelial cells. The difference in gene expression of the quorum sensing (QS) and virulence factors between strains during individual and combination treatments was analysed by qPCR. Combination treatment by farnesol and tyrosol was more effective against P. aeruginosa biofilms when grown in co-cultures. The strain RBHi was found to be 3 to 4 times more virulent compared to PAO1 and NCTC 10,662, respectively, and combination treatment was more effective against RBHi strain when grown in co-culture with A549 cell line. The addition of quorum quenchers (QQs) individually and in combination reduced IL-8 secretion by A549 cells. Relative mRNA expression showed upregulation of the QS genes and virulence factors. Co-culture of P. aeruginosa and HaCaT cell line showed a general decrease in gene expression, especially in the case of P. aeruginosa RBHi when treated with farnesol and tyrosol combination. Key points • Differentiating the interactions of biofilm formed by different phenotypes of P. aeruginosa, NCTC 10,662 (non-mucoid), PAO1 (semi mucoid) and RBHi (heavily mucoid). • Biofilm formed by these P. aeruginosa strains on two commonly afflicted tissues represented by A549 (lung) and HaCaT (skin) cell lines. • Anti-biofilm/anti-virulence roles of quorum quenchers, tyrosol and farnesol in co-cultures.
Collapse
Affiliation(s)
- Rachith Kalgudi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK.
| | - Roya Tamimi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Godfrey Kyazze
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Tajalli Keshavarz
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| |
Collapse
|
60
|
Laborda P, Sanz-García F, Hernando-Amado S, Martínez JL. Pseudomonas aeruginosa: an antibiotic resilient pathogen with environmental origin. Curr Opin Microbiol 2021; 64:125-132. [PMID: 34710741 DOI: 10.1016/j.mib.2021.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa, a bacterium characterized for its low antibiotics' susceptibility, is one of the most relevant opportunistic pathogens, causing infections at hospitals and in cystic fibrosis patients. Besides its relevance for human health, P. aeruginosa colonizes environmental ecosystems; therefore the elements driving its infectivity and antibiotic resistance must be analyzed from a One-Health perspective. Although some epidemic clones have been described, there are not specific lineages linked to infections, suggesting that P. aeruginosa virulence and antibiotic resistance determinants evolved in nature to play functions other than infecting the human host and avoiding antimicrobial treatment. Herein, we review current information on the population structure of P. aeruginosa and on the functional role that its resistance and virulence determinants have in non-clinical ecosystems.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
61
|
Mohy El Dine T, Jimmidi R, Diaconu A, Fransolet M, Michiels C, De Winter J, Gillon E, Imberty A, Coenye T, Vincent SP. Pillar[5]arene-Based Polycationic Glyco[2]rotaxanes Designed as Pseudomonas aeruginosa Antibiofilm Agents. J Med Chem 2021; 64:14728-14744. [PMID: 34542288 DOI: 10.1021/acs.jmedchem.1c01241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa (P.A.) is a human pathogen belonging to the top priorities for the discovery of new therapeutic solutions. Its propensity to generate biofilms strongly complicates the treatments required to cure P.A. infections. Herein, we describe the synthesis of a series of novel rotaxanes composed of a central galactosylated pillar[5]arene, a tetrafucosylated dendron, and a tetraguanidinium subunit. Besides the high affinity of the final glycorotaxanes for the two P.A. lectins LecA and LecB, potent inhibition levels of biofilm growth were evidenced, showing that their three subunits work synergistically. An antibiofilm assay using a double ΔlecAΔlecB mutant compared to the wild type demonstrated that the antibiofilm activity of the best glycorotaxane is lectin-mediated. Such antibiofilm potency had rarely been reached in the literature. Importantly, none of the final rotaxanes was bactericidal, showing that their antibiofilm activity does not depend on bacteria killing, which is a rare feature for antibiofilm agents.
Collapse
Affiliation(s)
- Tharwat Mohy El Dine
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Ravikumar Jimmidi
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Andrei Diaconu
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium.,Center of Advanced Research in Bionanoconjugates and Biopolymers "Petru Poni", Institute of Macromolecular Chemistry of Romanian Academy, 41A, Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Maude Fransolet
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Carine Michiels
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Julien De Winter
- Department of Chemistry, Laboratory of Organic Synthesis and Mass Spectrometry, University of Mons (Umons), 20 place du parc, 7000 Mons, Belgium
| | - Emilie Gillon
- Centre de recherches sur les macromolécules végétales (CERMAV), University of Genoble Alpes, CNRS, 601 rue de la chimie, 38000 Grenoble, France
| | - Anne Imberty
- Centre de recherches sur les macromolécules végétales (CERMAV), University of Genoble Alpes, CNRS, 601 rue de la chimie, 38000 Grenoble, France
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, University of Ghent (UGent), Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
62
|
Use of Alternative Gelling Agents Reveals the Role of Rhamnolipids in Pseudomonas aeruginosa Surface Motility. Biomolecules 2021; 11:biom11101468. [PMID: 34680106 PMCID: PMC8533327 DOI: 10.3390/biom11101468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is a motile bacterium able to exhibit a social surface behaviour known as swarming motility. Swarming requires the polar flagellum of P. aeruginosa as well as the secretion of wetting agents to ease the spread across the surface. However, our knowledge on swarming is limited to observed phenotypes on agar-solidified media. To study the surface behaviour and the impact of wetting agents of P. aeruginosa on other surfaces, we assessed surface motility capabilities of the prototypical strain PA14 on semi-solid media solidified with alternative gelling agents, gellan gum and carrageenan. We found that, on these alternative surfaces, the characteristic dendritic spreading pattern of P. aeruginosa is drastically altered. One striking feature is the loss of dependence on rhamnolipids to spread effectively on plates solidified with these alternative gelling agents. Indeed, a rhlA-null mutant unable to produce its wetting agents still spreads effectively, albeit in a circular shape on both the gellan gum- and carrageenan-based media. Our data indicate that rhamnolipids do not have such a crucial role in achieving surface colonization of non-agar plates, suggesting a strong dependence on the physical properties of the tested surface. The use of alternative gelling agent provides new means to reveal unknown features of bacterial surface behaviour.
Collapse
|
63
|
Striednig B, Hilbi H. Bacterial quorum sensing and phenotypic heterogeneity: how the collective shapes the individual. Trends Microbiol 2021; 30:379-389. [PMID: 34598862 DOI: 10.1016/j.tim.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2021] [Accepted: 09/06/2021] [Indexed: 01/09/2023]
Abstract
Bacteria communicate with each other through a plethora of small, diffusible organic molecules called autoinducers. This cell-density-dependent regulatory principle is termed quorum sensing, and in many cases the process indeed coordinates group behavior of bacterial populations. Yet, even clonal bacterial populations are not uniform entities; rather, they adopt phenotypic heterogeneity to cope with consecutive, rapid, and frequent environmental fluctuations (bet-hedging) or to concurrently interact with each other by exerting different, often complementary, functions (division of labor). Quorum sensing is mainly regarded as a coordinator of bacterial collective behavior. However, it can also be a driver or a target of individual phenotypic heterogeneity. Hence, quorum sensing increases the overall fitness of a bacterial community by orchestrating group behavior as well as individual traits.
Collapse
Affiliation(s)
- Bianca Striednig
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland.
| |
Collapse
|
64
|
Bourigault Y, Rodrigues S, Crépin A, Chane A, Taupin L, Bouteiller M, Dupont C, Merieau A, Konto-Ghiorghi Y, Boukerb AM, Turner M, Hamon C, Dufour A, Barbey C, Latour X. Biocontrol of Biofilm Formation: Jamming of Sessile-Associated Rhizobial Communication by Rhodococcal Quorum-Quenching. Int J Mol Sci 2021; 22:ijms22158241. [PMID: 34361010 PMCID: PMC8347015 DOI: 10.3390/ijms22158241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilms are complex structures formed by a community of microbes adhering to a surface and/or to each other through the secretion of an adhesive and protective matrix. The establishment of these structures requires a coordination of action between microorganisms through powerful communication systems such as quorum-sensing. Therefore, auxiliary bacteria capable of interfering with these means of communication could be used to prevent biofilm formation and development. The phytopathogen Rhizobium rhizogenes, which causes hairy root disease and forms large biofilms in hydroponic crops, and the biocontrol agent Rhodococcus erythropolis R138 were used for this study. Changes in biofilm biovolume and structure, as well as interactions between rhizobia and rhodococci, were monitored by confocal laser scanning microscopy with appropriate fluorescent biosensors. We obtained direct visual evidence of an exchange of signals between rhizobia and the jamming of this communication by Rhodococcus within the biofilm. Signaling molecules were characterized as long chain (C14) N-acyl-homoserine lactones. The role of the Qsd quorum-quenching pathway in biofilm alteration was confirmed with an R. erythropolis mutant unable to produce the QsdA lactonase, and by expression of the qsdA gene in a heterologous host, Escherichia coli. Finally, Rhizobium biofilm formation was similarly inhibited by a purified extract of QsdA enzyme.
Collapse
Affiliation(s)
- Yvann Bourigault
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Alexandre Crépin
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, F-86073 Poitiers, France;
| | - Andrea Chane
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Mathilde Bouteiller
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Charly Dupont
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Amine M. Boukerb
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Marie Turner
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
- Biocontrol Consortium, F-75007 Paris, France
| | - Céline Hamon
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Corinne Barbey
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
- Biocontrol Consortium, F-75007 Paris, France
- Correspondence: ; +33-235-146-000
| |
Collapse
|
65
|
Xu Q, Hu X, Wang Y. Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Mol Biotechnol 2021; 63:1103-1124. [PMID: 34309796 DOI: 10.1007/s12033-021-00371-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Antibiotics have been denoted as the orthodox therapeutic agents for fighting bacteria-related infections in clinical practices for decades. Nevertheless, overuse of antibiotics has led to the upsurge of species with antimicrobial resistance (AMR) or multi-drug resistance. Bacteria can also grow into the biofilm, which accounts for at least two-thirds of infections. Distinct gene expression and self-produced heterogeneous hydrated extracellular polymeric substance matrix architecture of biofilm contribute to their tolerance and externally manifest as antibiotic resistance. In this review, the difficulties in combating biofilm formation and AMR are introduced, and novel alternatives to antibiotics such as metal nanoparticles and quaternary ammonium compounds, chitosan and its derivatives, antimicrobial peptides, stimuli-responsive materials, phage therapy and other therapeutic strategies, from compounds to hydrogel, from inorganic to biological, are discussed. We expect to provide useful information for the readers who are seeking for solutions to the problem of AMR and biofilm-related infections.
Collapse
Affiliation(s)
- Qian Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
66
|
Paul G, Meißner A, Neuneier J, Neuschmelting V, Grau S, Yagdiran A, Scheyerer MJ, Malin JJ, Suárez I, Lehmann C, Exner M, Wiesmüller GA, Higgins PG, Seifert H, Fätkenheuer G, Zweigner J, Jung N. Outbreak of Pseudomonas aeruginosa infections after CT-guided spinal injections. J Hosp Infect 2021; 116:1-9. [PMID: 34298033 DOI: 10.1016/j.jhin.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Meningitis and spinal infections with Gram-negative bacteria after local injections for treatment of chronic back pain are rare. This study investigated an outbreak of Pseudomonas aeruginosa infections following computed tomography (CT)-guided spinal injections (SI). METHODS A case was defined as a spinal infection or meningitis with P. aeruginosa after SI between 10th January and 1st March 2019 in the same outpatient clinic. Patients without microbiological evidence of P. aeruginosa but with a favourable response to antimicrobial therapy active against P. aeruginosa were defined as probable cases. FINDINGS Twenty-eight of 297 patients receiving CT-guided SI during the study period developed meningitis or spinal infections. Medical records were available for 19 patients. In 15 patients, there was microbiological evidence of P. aeruginosa, and four patients were defined as probable cases. Two of 19 patients developed meningitis, while the remaining 17 patients developed spinal infections. The median time from SI to hospital admission was 8 days (interquartile range 2-23 days). Patients mainly presented with back pain (N=18; 95%), and rarely developed fever (N=3; 16%). Most patients required surgery (N=16; 84%). Seven patients (37%) relapsed and one patient died. Although the source of infection was not identified microbiologically, documented failures in asepsis when performing SI probably contributed to these infections. CONCLUSIONS SI is generally considered safe, but non-adherence to asepsis can lead to deleterious effects. Spinal infections caused by P. aeruginosa are difficult to treat and have a high relapse rate.
Collapse
Affiliation(s)
- G Paul
- Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Gastroenterology, Hepatology, Pneumology and Infectious Diseases, Katharinenhospital, Klinikum Stuttgart, Stuttgart, Germany.
| | - A Meißner
- Department of Hospital Hygiene and Infection Control, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - J Neuneier
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - V Neuschmelting
- Centre for Neurosurgery, Department of General Neurosurgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - S Grau
- Centre for Neurosurgery, Department of General Neurosurgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - A Yagdiran
- Department of Orthopaedics and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - M J Scheyerer
- Department of Orthopaedics and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - J J Malin
- Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; German Centre for Infection Research, Partner Site Cologne-Bonn, Cologne, Germany
| | - I Suárez
- Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; German Centre for Infection Research, Partner Site Cologne-Bonn, Cologne, Germany
| | - C Lehmann
- Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; German Centre for Infection Research, Partner Site Cologne-Bonn, Cologne, Germany
| | - M Exner
- Institute of Hygiene and Public Health, Bonn University, Bonn, Germany
| | - G A Wiesmüller
- Abteilung Infektions- and Umwelthygiene, Gesundheitsamt der Stadt Köln, Germany
| | - P G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; German Centre for Infection Research, Partner Site Cologne-Bonn, Cologne, Germany
| | - H Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; German Centre for Infection Research, Partner Site Cologne-Bonn, Cologne, Germany
| | - G Fätkenheuer
- Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; German Centre for Infection Research, Partner Site Cologne-Bonn, Cologne, Germany
| | - J Zweigner
- Department of Hospital Hygiene and Infection Control, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - N Jung
- Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
67
|
O’Malley MR, Anderson JC. Regulation of the Pseudomonas syringae Type III Secretion System by Host Environment Signals. Microorganisms 2021; 9:microorganisms9061227. [PMID: 34198761 PMCID: PMC8228185 DOI: 10.3390/microorganisms9061227] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas syringae are Gram-negative, plant pathogenic bacteria that use a type III secretion system (T3SS) to disarm host immune responses and promote bacterial growth within plant tissues. Despite the critical role for type III secretion in promoting virulence, T3SS-encoding genes are not constitutively expressed by P. syringae and must instead be induced during infection. While it has been known for many years that culturing P. syringae in synthetic minimal media can induce the T3SS, relatively little is known about host signals that regulate the deployment of the T3SS during infection. The recent identification of specific plant-derived amino acids and organic acids that induce T3SS-inducing genes in P. syringae has provided new insights into host sensing mechanisms. This review summarizes current knowledge of the regulatory machinery governing T3SS deployment in P. syringae, including master regulators HrpRS and HrpL encoded within the T3SS pathogenicity island, and the environmental factors that modulate the abundance and/or activity of these key regulators. We highlight putative receptors and regulatory networks involved in linking the perception of host signals to the regulation of the core HrpRS–HrpL pathway. Positive and negative regulation of T3SS deployment is also discussed within the context of P. syringae infection, where contributions from distinct host signals and regulatory networks likely enable the fine-tuning of T3SS deployment within host tissues. Last, we propose future research directions necessary to construct a comprehensive model that (a) links the perception of host metabolite signals to T3SS deployment and (b) places these host–pathogen signaling events in the overall context of P. syringae infection.
Collapse
|
68
|
Ortet P, Fochesato S, Bitbol AF, Whitworth DE, Lalaouna D, Santaella C, Heulin T, Achouak W, Barakat M. Evolutionary history expands the range of signaling interactions in hybrid multikinase networks. Sci Rep 2021; 11:11763. [PMID: 34083699 PMCID: PMC8175716 DOI: 10.1038/s41598-021-91260-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Two-component systems (TCSs) are ubiquitous signaling pathways, typically comprising a sensory histidine kinase (HK) and a response regulator, which communicate via intermolecular kinase-to-receiver domain phosphotransfer. Hybrid HKs constitute non-canonical TCS signaling pathways, with transmitter and receiver domains within a single protein communicating via intramolecular phosphotransfer. Here, we report how evolutionary relationships between hybrid HKs can be used as predictors of potential intermolecular and intramolecular interactions (‘phylogenetic promiscuity’). We used domain-swap genes chimeras to investigate the specificity of phosphotransfer within hybrid HKs of the GacS–GacA multikinase network of Pseudomonas brassicacearum. The receiver domain of GacS was replaced with those from nine donor hybrid HKs. Three chimeras with receivers from other hybrid HKs demonstrated correct functioning through complementation of a gacS mutant, which was dependent on strains having a functional gacA. Formation of functional chimeras was predictable on the basis of evolutionary heritage, and raises the possibility that HKs sharing a common ancestor with GacS might remain components of the contemporary GacS network. The results also demonstrate that understanding the evolutionary heritage of signaling domains in sophisticated networks allows their rational rewiring by simple domain transplantation, with implications for the creation of designer networks and inference of functional interactions.
Collapse
Affiliation(s)
- Philippe Ortet
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Sylvain Fochesato
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Anne-Florence Bitbol
- CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin (UMR8237), Sorbonne Université, 75005, Paris, France.,Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, SY23 3DD, UK
| | - David Lalaouna
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France.,CNRS, ARN UPR 9002, Université de Strasbourg, 67000, Strasbourg, France
| | - Catherine Santaella
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Mohamed Barakat
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France.
| |
Collapse
|
69
|
Di Menna L, Busceti CL, Ginerete RP, D'Errico G, Orlando R, Alborghetti M, Bruno V, Battaglia G, Fornai F, Leoni L, Rampioni G, Visca P, Monn JA, Nicoletti F. The bacterial quorum sensing molecule, 2-heptyl-3-hydroxy-4-quinolone (PQS), inhibits signal transduction mechanisms in brain tissue and is behaviorally active in mice. Pharmacol Res 2021; 170:105691. [PMID: 34044128 DOI: 10.1016/j.phrs.2021.105691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022]
Abstract
Interkingdom communication between bacteria and host organisms is one of the most interesting research topics in biology. Quorum sensing molecules produced by Gram-negative bacteria, such as acylated homoserine lactones and quinolones, have been shown to interact with host cell receptors, stimulating innate immunity and bacterial clearance. To our knowledge, there is no evidence that these molecules influence CNS function. Here, we have found that low micromolar concentrations of the Pseudomonas aeruginosa quorum sensing autoinducer, 2-heptyl-3-hydroxy-4-quinolone (PQS), inhibited polyphosphoinositide hydrolysis in mouse brain slices, whereas four selected acylated homoserine lactones were inactive. PQS also inhibited forskolin-stimulated cAMP formation in brain slices. We therefore focused on PQS in our study. Biochemical effects of PQS were not mediated by the bitter taste receptors, T2R4 and T2R16. Interestingly, submicromolar concentrations of PQS could be detected in the serum and brain tissue of adult mice under normal conditions. Levels increased in five selected brain regions after single i.p. injection of PQS (10 mg/kg), peaked after 15 min, and returned back to normal between 1 and 4 h. Systemically administered PQS reduced spontaneous locomotor activity, increased the immobility time in the forced swim test, and largely attenuated motor response to the psychostimulant, methamphetamine. These findings offer the first demonstration that a quorum sensing molecule specifically produced by Pseudomonas aeruginosa is centrally active and influences cell signaling and behavior. Quorum sensing autoinducers might represent new interkingdom signaling molecules between ecological communities of commensal, symbiotic, and pathogenic microorganisms and the host CNS.
Collapse
Affiliation(s)
| | | | | | | | - R Orlando
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - M Alborghetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Italy
| | - V Bruno
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - G Battaglia
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - F Fornai
- IRCCS Neuromed, Pozzilli, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - L Leoni
- Department of Science, Roma Tre University, Roma, Italy
| | - G Rampioni
- Department of Science, Roma Tre University, Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - P Visca
- Department of Science, Roma Tre University, Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | | | - F Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy.
| |
Collapse
|
70
|
Biological and clinical significance of quorum sensing alkylquinolones: current analytical and bioanalytical methods for their quantification. Anal Bioanal Chem 2021; 413:4599-4618. [PMID: 33959788 DOI: 10.1007/s00216-021-03356-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/21/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022]
Abstract
Quorum sensing (QS) is a sophisticated bacterial communication system which plays a key role in the virulence and biofilm formation of many pathogens. The Pseudomonas aeruginosa QS network consists of four sets of connected systems (las, rlh, pqs and iqs) hierarchically organized. The pqs system involves characteristic autoinducers (AI), most of them sharing an alkylquinolone (AQ) structure, and is able to carry out several relevant biological functions besides its main signalling activity. Their role in bacterial physiology and pathogenicity has been widely studied. Indeed, the presence of these metabolites in several body fluids and infected tissues has pointed to their potential value as biomarkers of infection. In this review, we summarize the most recent findings about the biological implications and the clinical significance of the main P. aeruginosa AQs. These findings have encouraged the development of analytical and bioanalytical techniques addressed to assess the role of these metabolites in bacterial growth and survival, during pathogenesis or as biomarkers of infections. The availability of highly sensitive reliable analytical methods suitable for clinical analysis would allow getting knowledge about pathogenesis and disease prognosis or progression, supporting clinicians on the decision-making process for the management of these infections and guiding them on the application of more effective and appropriate treatments. The benefits from the implementation of the point-of-care (PoC)-type testing in infectious disease diagnostics, which are seen to improve patient outcomes by promoting earlier therapeutic interventions, are also discussed.
Collapse
|
71
|
Antonelli G, Cappelli L, Cinelli P, Cuffaro R, Manca B, Nicchi S, Tondi S, Vezzani G, Viviani V, Delany I, Scarselli M, Schiavetti F. Strategies to Tackle Antimicrobial Resistance: The Example of Escherichia coli and Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:4943. [PMID: 34066555 PMCID: PMC8125385 DOI: 10.3390/ijms22094943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon called antimicrobial resistance (AMR). Nowadays, AMR represents a critical health threat, for which new medical interventions are urgently needed. By 2050, it is estimated that the leading cause of death will be through untreatable AMR pathogens. Although antibiotics remain a first-line treatment, non-antibiotic therapies such as prophylactic vaccines and therapeutic monoclonal antibodies (mAbs) are increasingly interesting alternatives to limit the spread of such antibiotic resistant microorganisms. For the discovery of new vaccines and mAbs, the search for effective antigens that are able to raise protective immune responses is a challenging undertaking. In this context, outer membrane vesicles (OMV) represent a promising approach, as they recapitulate the complete antigen repertoire that occurs on the surface of Gram-negative bacteria. In this review, we present Escherichia coli and Pseudomonas aeruginosa as specific examples of key AMR threats caused by Gram-negative bacteria and we discuss the current status of mAbs and vaccine approaches under development as well as how knowledge on OMV could benefit antigen discovery strategies.
Collapse
Affiliation(s)
- Giada Antonelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Luigia Cappelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Paolo Cinelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Cuffaro
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Benedetta Manca
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Sonia Nicchi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Serena Tondi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Viola Viviani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Isabel Delany
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Maria Scarselli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Francesca Schiavetti
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| |
Collapse
|
72
|
Grekov I, Thöming JG, Kordes A, Häussler S. Evolution of Pseudomonas aeruginosa toward higher fitness under standard laboratory conditions. THE ISME JOURNAL 2021; 15:1165-1177. [PMID: 33273720 PMCID: PMC8115180 DOI: 10.1038/s41396-020-00841-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Identifying genetic factors that contribute to the evolution of adaptive phenotypes in pathogenic bacteria is key to understanding the establishment of infectious diseases. In this study, we performed mutation accumulation experiments to record the frequency of mutations and their effect on fitness in hypermutator strains of the environmental bacterium Pseudomonas aeruginosa in comparison to the host-niche-adapted Salmonella enterica. We demonstrate that P. aeruginosa, but not S. enterica, hypermutators evolve toward higher fitness under planktonic conditions. Adaptation to increased growth performance was accompanied by a reversible perturbing of the local genetic context of membrane and cell wall biosynthesis genes. Furthermore, we observed a fine-tuning of complex regulatory circuits involving multiple di-guanylate modulating enzymes that regulate the transition between fast growing planktonic and sessile biofilm-associated lifestyles. The redundancy and local specificity of the di-guanylate signaling pathways seem to allow a convergent shift toward increased growth performance across niche-adapted clonal P. aeruginosa lineages, which is accompanied by a pronounced heterogeneity of their motility, virulence, and biofilm phenotypes.
Collapse
Affiliation(s)
- Igor Grekov
- grid.7490.a0000 0001 2238 295XDepartment of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany ,grid.475435.4Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Janne Gesine Thöming
- grid.452370.70000 0004 0408 1805Institute of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany ,grid.475435.4Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Adrian Kordes
- grid.452370.70000 0004 0408 1805Institute of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany ,grid.10423.340000 0000 9529 9877Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Susanne Häussler
- grid.7490.a0000 0001 2238 295XDepartment of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany ,grid.452370.70000 0004 0408 1805Institute of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany ,grid.475435.4Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.10423.340000 0000 9529 9877Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
73
|
Min KB, Hwang W, Lee KM, Kim JB, Yoon SS. Chemical inhibitors of the conserved bacterial transcriptional regulator DksA1 suppressed quorum sensing-mediated virulence of Pseudomonas aeruginosa. J Biol Chem 2021; 296:100576. [PMID: 33757766 PMCID: PMC8081920 DOI: 10.1016/j.jbc.2021.100576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen whose virulence is dependent on quorum sensing (QS). DksA1, an RNA polymerase-binding transcriptional regulator, plays a role in determining a number of phenotypes, including QS-mediated virulence. We therefore envisioned that DksA1 inhibitors may help to control P. aeruginosa infection. Here, we screened a library of 6970 chemical compounds and identified two compounds (henceforth termed Dkstatins) that specifically suppressed DksA1 activity. Treatment with these two compounds also substantially decreased the production of elastase and pyocyanin, dominant virulence determinants of P. aeruginosa, and protected murine hosts from lethal infection from a prototype strain of P. aeruginosa, PAO1. The Dkstatins also suppressed production of homoserine lactone (HSL)-based autoinducers that activate P. aeruginosa QS. The level of 3-oxo-C12-HSL produced by Dkstatin-treated wildtype PAO1 closely resembled that of the ΔdksA1 mutant. RNA-Seq analysis showed that transcription levels of QS- and virulence-associated genes were markedly reduced in Dkstatin-treated PAO1 cells, indicating that Dkstatin-mediated suppression occurs at the transcriptional level. Importantly, Dkstatins increased the antibiotic susceptibilities of PAO1, particularly to protein synthesis inhibitors, such as tobramycin and tetracycline. Co-immunoprecipitation assays demonstrated that these Dkstatins interfered with DksA1 binding to the β subunit of RNA polymerase, pointing to a potential mechanism of action. Collectively, our results illustrate that inhibition of P. aeruginosa QS may be achieved via DksA1 inhibitors and that Dkstatins may serve as potential lead compounds to control infection.
Collapse
Affiliation(s)
- Kyung Bae Min
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Wontae Hwang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Kang-Mu Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
| | - June Beom Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
74
|
Montagut E, Martin-Gomez MT, Marco MP. An Immunochemical Approach to Quantify and Assess the Potential Value of the Pseudomonas Quinolone Signal as a Biomarker of Infection. Anal Chem 2021; 93:4859-4866. [PMID: 33691411 PMCID: PMC8479725 DOI: 10.1021/acs.analchem.0c04731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 01/20/2023]
Abstract
Quorum sensing (QS) is a bacterial cell density-based communication system using low molecular weight signals called autoinducers (AIs). Identification and quantification of these molecules could provide valuable information related to the stage of colonization or infection as well as the stage of the disease. With this scenario, we report here for the first time the development of antibodies against the PQS (pseudomonas quinolone signal), the main signaling molecule from the pqs QS system of Pseudomonas aeruginosa, and the development of a microplate-based enzyme-linked immunosorbent assay (ELISA) able of quantifying this molecule in complex biological media in the low nanometer range (LOD, 0.36 ± 0.14 nM in culture broth media). Moreover, the PQS ELISA here reported has been found to be robust and reliable, providing accurate results in culture media. The technique allowed us to follow up the PQS profile of the release of bacterial clinical isolates obtained from patients of different disease status. A clear correlation was found between the PQS immunoreactivity equivalents and the chronic or acute infection conditions, which supports the reported differences on virulence and behavior of these bacterial strains due to their adaptation capability to the host environment. The results obtained point to the potential of the PQS as a biomarker of infection and to the value of the antibodies and the technology developed for improving diagnosis and management of P. aeruginosa infections based on the precise identification of the pathogen, appropriate stratification of the patients according to their disease status, and knowledge of the disease progression.
Collapse
Affiliation(s)
- Enrique
J. Montagut
- Nanobiotechnology
for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC)
of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M. Teresa Martin-Gomez
- Microbiology
Department, Vall d’Hebron University
Hospital (VHUH), 08035 Barcelona, Spain
- Genetics
and Microbiology Department, Universitat
Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - M. Pilar Marco
- Nanobiotechnology
for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC)
of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
75
|
Yamamoto K, Kusada H, Kamagata Y, Tamaki H. Parallel Evolution of Enhanced Biofilm Formation and Phage-Resistance in Pseudomonas aeruginosa during Adaptation Process in Spatially Heterogeneous Environments. Microorganisms 2021; 9:569. [PMID: 33801971 PMCID: PMC7999436 DOI: 10.3390/microorganisms9030569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/22/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
An opportunistic pathogen Pseudomonas aeruginosa has a versatile phenotype and high evolutionary potential to adapt to various natural habitats. As the organism normally lives in spatially heterogeneous and polymicrobial environments from open fields to the inside of hosts, adaptation to abiotic (spatial heterogeneity) and biotic factors (interspecies interactions) is a key process to proliferate. However, our knowledge about the adaptation process of P. aeruginosa in spatially heterogeneous environments associated with other species is limited. We show herein that the evolutionary dynamics of P. aeruginosa PAO1 in spatially heterogeneous environments with Staphylococcus aureus known to coexist in vivo is dictated by two distinct core evolutionary trajectories: (i) the increase of biofilm formation and (ii) the resistance to infection by a filamentous phage which is retained in the PAO1 genome. Hyperbiofilm and/or pili-deficient phage-resistant variants were frequently selected in the laboratory evolution experiment, indicating that these are key adaptive traits under spatially structured conditions. On the other hand, the presence of S. aureus had only a marginal effect on the emergence and maintenance of these variants. These results show key adaptive traits of P. aeruginosa and indicate the strong selection pressure conferred by spatial heterogeneity, which might overwhelm the effect of interspecies interactions.
Collapse
Affiliation(s)
- Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 0628517, Hokkaido, Japan
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058577, Ibaraki, Japan
| | - Hiroyuki Kusada
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
| | - Yoichi Kamagata
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
| | - Hideyuki Tamaki
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058577, Ibaraki, Japan
- Biotechnology Research Center, University of Tokyo, Bunkyo-ku, Tokyo 1138657, Japan
| |
Collapse
|
76
|
Pérez-Cruz C, Briansó F, Sonnleitner E, Bläsi U, Mercadé E. RNA release via membrane vesicles in Pseudomonas aeruginosa PAO1 is associated with the growth phase. Environ Microbiol 2021; 23:5030-5041. [PMID: 33650279 DOI: 10.1111/1462-2920.15436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Pseudomonas aeruginosa PAO1 membrane vesicles (MVs) are known to play a role in cell-to-cell communication. Several studies have shown that the MV composition and physicochemical properties vary according to the bacterial growth stage, but the impact this might have on the externalization of RNA via MVs has not been addressed. Therefore, a study to characterize the RNA content from MVs retrieved at different growth phases was conducted. First, the transcriptome analyses revealed a higher abundance of around 300 RNA species in MVs when compared with the cells. The vesiculation rate along the growth curve was determined, showing that the release of MVs increased during the transition to the stationary phase, whereas it decreased in the late stationary phase. RNA-seq of MVs retrieved along the transition to the stationary phase demonstrated that the RNA cargo of vesicles did not vary. However, the amount of smaller RNAs (<200 nt) inside MVs retrieved in the late exponential phase was higher than in the stationary phase MVs. These results indicate that the externalization of RNA via MVs occurs during late exponential phase and implies the secretion of different types of MVs during growth.
Collapse
Affiliation(s)
- Carla Pérez-Cruz
- Marine Research Division, AZTI, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain.,Microbiology Unit, Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Ferran Briansó
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Center of Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Center of Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Elena Mercadé
- Microbiology Unit, Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| |
Collapse
|
77
|
Mangiaterra G, Carotti E, Vaiasicca S, Cedraro N, Citterio B, La Teana A, Biavasco F. Contribution of Drugs Interfering with Protein and Cell Wall Synthesis to the Persistence of Pseudomonas aeruginosa Biofilms: An In Vitro Model. Int J Mol Sci 2021; 22:ijms22041628. [PMID: 33562782 PMCID: PMC7914939 DOI: 10.3390/ijms22041628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The occurrence of Pseudomonas aeruginosa (PA) persisters, including viable but non-culturable (VBNC) forms, subpopulations of tolerant cells that can survive high antibiotic doses, is the main reason for PA lung infections failed eradication and recurrence in Cystic Fibrosis (CF) patients, subjected to life-long, cyclic antibiotic treatments. In this paper, we investigated the role of subinhibitory concentrations of different anti-pseudomonas antibiotics in the maintenance of persistent (including VBNC) PA cells in in vitro biofilms. Persisters were firstly selected by exposure to high doses of antibiotics and their abundance over time evaluated, using a combination of cultural, qPCR and flow cytometry assays. Two engineered GFP-producing PA strains were used. The obtained results demonstrated a major involvement of tobramycin and bacterial cell wall-targeting antibiotics in the resilience to starvation of VBNC forms, while the presence of ciprofloxacin and ceftazidime/avibactam lead to their complete loss. Moreover, a positive correlation between tobramycin exposure, biofilm production and c-di-GMP levels was observed. The presented data could allow a deeper understanding of bacterial population dynamics during the treatment of recurrent PA infections and provide a reliable evaluation of the real efficacy of the antibiotic treatments against the bacterial population within the CF lung.
Collapse
Affiliation(s)
- Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
- Correspondence: ; Tel.: +39-071-220-4622; Fax: +39-071-220-4316
| | - Elisa Carotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Salvatore Vaiasicca
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Nicholas Cedraro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Barbara Citterio
- Department of Biomolecular Science, Biotechnology Section, University of Urbino “Carlo Bo”, via Arco d’Augusto 2, 61032 Fano, Italy;
| | - Anna La Teana
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| |
Collapse
|
78
|
Steinchen W, Ahmad S, Valentini M, Eilers K, Majkini M, Altegoer F, Lechner M, Filloux A, Whitney JC, Bange G. Dual role of a (p)ppGpp- and (p)ppApp-degrading enzyme in biofilm formation and interbacterial antagonism. Mol Microbiol 2021; 115:1339-1356. [PMID: 33448498 DOI: 10.1111/mmi.14684] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The guanosine nucleotide-based second messengers ppGpp and pppGpp (collectively: (p)ppGpp) enable adaptation of microorganisms to environmental changes and stress conditions. In contrast, the closely related adenosine nucleotides (p)ppApp are involved in type VI secretion system (T6SS)-mediated killing during bacterial competition. Long RelA-SpoT Homolog (RSH) enzymes regulate synthesis and degradation of (p)ppGpp (and potentially also (p)ppApp) through their synthetase and hydrolase domains, respectively. Small alarmone hydrolases (SAH) that consist of only a hydrolase domain are found in a variety of bacterial species, including the opportunistic human pathogen Pseudomonas aeruginosa. Here, we present the structure and mechanism of P. aeruginosa SAH showing that the enzyme promiscuously hydrolyses (p)ppGpp and (p)ppApp in a strictly manganese-dependent manner. While being dispensable for P. aeruginosa growth or swimming, swarming, and twitching motilities, its enzymatic activity is required for biofilm formation. Moreover, (p)ppApp-degradation by SAH provides protection against the T6SS (p)ppApp synthetase effector Tas1, suggesting that SAH enzymes can also serve as defense proteins during interbacterial competition.
Collapse
Affiliation(s)
- Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Shehryar Ahmad
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Kira Eilers
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Mohamad Majkini
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
79
|
Vigouroux A, Meyer T, Naretto A, Legrand P, Aumont-Nicaise M, Di Cicco A, Renoud S, Doré J, Lévy D, Vial L, Lavire C, Moréra S. Characterization of the first tetrameric transcription factor of the GntR superfamily with allosteric regulation from the bacterial pathogen Agrobacterium fabrum. Nucleic Acids Res 2021; 49:529-546. [PMID: 33313837 PMCID: PMC7797058 DOI: 10.1093/nar/gkaa1181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
A species-specific region, denoted SpG8-1b allowing hydroxycinnamic acids (HCAs) degradation is important for the transition between the two lifestyles (rhizospheric versus pathogenic) of the plant pathogen Agrobacterium fabrum. Indeed, HCAs can be either used as trophic resources and/or as induced-virulence molecules. The SpG8-1b region is regulated by two transcriptional regulators, namely, HcaR (Atu1422) and Atu1419. In contrast to HcaR, Atu1419 remains so far uncharacterized. The high-resolution crystal structures of two fortuitous citrate complexes, two DNA complexes and the apoform revealed that the tetrameric Atu1419 transcriptional regulator belongs to the VanR group of Pfam PF07729 subfamily of the large GntR superfamily. Until now, GntR regulators were described as dimers. Here, we showed that Atu1419 represses three genes of the HCAs catabolic pathway. We characterized both the effector and DNA binding sites and identified key nucleotides in the target palindrome. From promoter activity measurement using defective gene mutants, structural analysis and gel-shift assays, we propose N5,N10-methylenetetrahydrofolate as the effector molecule, which is not a direct product/substrate of the HCA degradation pathway. The Zn2+ ion present in the effector domain has both a structural and regulatory role. Overall, our work shed light on the allosteric mechanism of transcription employed by this GntR repressor.
Collapse
Affiliation(s)
- Armelle Vigouroux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Thibault Meyer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Anaïs Naretto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Magali Aumont-Nicaise
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Aurélie Di Cicco
- Sorbonne Université, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France
| | - Sébastien Renoud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Jeanne Doré
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Daniel Lévy
- Sorbonne Université, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France
| | - Ludovic Vial
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Céline Lavire
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Solange Moréra
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
80
|
Montagut EJ, Vilaplana L, Martin-Gomez MT, Marco MP. High-Throughput Immunochemical Method to Assess the 2-Heptyl-4-quinolone Quorum Sensing Molecule as a Potential Biomarker of Pseudomonas aeruginosa Infections. ACS Infect Dis 2020; 6:3237-3246. [PMID: 33210530 DOI: 10.1021/acsinfecdis.0c00604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial quorum sensing (QS) is being contemplated as a promising target for developing innovative diagnostic and therapeutic strategies. Here we report for the first time the development of antibodies against 2-heptyl-4-quinolone (HHQ), a signaling molecule from the pqs QS system of Pseudomonas aeruginosa, involved in the production of important virulent factors and biofilm formation. The antibodies produced were used to develop an immunochemical diagnostic approach to assess the potential of this molecule as a biomarker of P. aeruginosa infection. The ELISA developed is able to reach a detectability in the low nM range (IC50 = 4.59 ± 0.29 nM and LOD = 0.34 ± 0.13 nM), even in complex biological samples such as Müeller Hinton (MH) culture media. The ELISA developed is robust and reproducible and has been found to be specific to HHQ, with little interference from other related alkylquinolones from the pqs QS system. The ELISA has been used to analyze the HHQ production kinetics of P. aeruginosa clinical isolates grown in MH media, pointing to its potential as a biomarker of infection and at the possibility to use the technology developed to obtain additional information about the disease stage.
Collapse
Affiliation(s)
- Enrique J. Montagut
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lluisa Vilaplana
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M. Teresa Martin-Gomez
- Microbiology Department, Vall d’Hebron University Hospital (VHUH), 08035 Barcelona, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain
| | - M. Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
81
|
Latour X. The Evanescent GacS Signal. Microorganisms 2020; 8:microorganisms8111746. [PMID: 33172195 PMCID: PMC7695008 DOI: 10.3390/microorganisms8111746] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
The GacS histidine kinase is the membrane sensor of the major upstream two-component system of the regulatory Gac/Rsm signal transduction pathway. This pathway governs the expression of a wide range of genes in pseudomonads and controls bacterial fitness and motility, tolerance to stress, biofilm formation, and virulence or plant protection. Despite the importance of these roles, the ligands binding to the sensor domain of GacS remain unknown, and their identification is an exciting challenge in this domain. At high population densities, the GacS signal triggers a switch from primary to secondary metabolism and a change in bacterial lifestyle. It has been suggested, based on these observations, that the GacS signal is a marker of the emergence of nutritional stress and competition. Biochemical investigations have yet to characterize the GacS signal fully. However, they portray this cue as a low-molecular weight, relatively simple and moderately apolar metabolite possibly resembling, but nevertheless different, from the aliphatic organic acids acting as quorum-sensing signaling molecules in other Proteobacteria. Significant progress in the development of metabolomic tools and new databases dedicated to Pseudomonas metabolism should help to unlock some of the last remaining secrets of GacS induction, making it possible to control the Gac/Rsm pathway.
Collapse
Affiliation(s)
- Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Normandy University (University of Rouen Normandy), 55 rue Saint-Germain, 27000 Evreux, France;
- Research Federation NORVEGE Fed4277, Normandy University, F-76821 Mont-Saint-Aignan, France
| |
Collapse
|
82
|
Vesga P, Flury P, Vacheron J, Keel C, Croll D, Maurhofer M. Transcriptome plasticity underlying plant root colonization and insect invasion by Pseudomonas protegens. THE ISME JOURNAL 2020; 14:2766-2782. [PMID: 32879461 PMCID: PMC7784888 DOI: 10.1038/s41396-020-0729-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Pseudomonas protegens shows a high degree of lifestyle plasticity since it can establish both plant-beneficial and insect-pathogenic interactions. While P. protegens protects plants against soilborne pathogens, it can also invade insects when orally ingested leading to the death of susceptible pest insects. The mechanism whereby pseudomonads effectively switch between lifestyles, plant-beneficial or insecticidal, and the specific factors enabling plant or insect colonization are poorly understood. We generated a large-scale transcriptomics dataset of the model P. protegens strain CHA0 which includes data from the colonization of wheat roots, the gut of Plutella xylostella after oral uptake and the Galleria mellonella hemolymph after injection. We identified extensive plasticity in transcriptomic profiles depending on the environment and specific factors associated to different hosts or different stages of insect infection. Specifically, motor-activity and Reb toxin-related genes were highly expressed on wheat roots but showed low expression within insects, while certain antimicrobial compounds (pyoluteorin), exoenzymes (a chitinase and a polyphosphate kinase), and a transposase exhibited insect-specific expression. We further identified two-partner secretion systems as novel factors contributing to pest insect invasion. Finally, we use genus-wide comparative genomics to retrace the evolutionary origins of cross-kingdom colonization.
Collapse
Affiliation(s)
- Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Pascale Flury
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Crop Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
83
|
Vrla GD, Esposito M, Zhang C, Kang Y, Seyedsayamdost MR, Gitai Z. Cytotoxic alkyl-quinolones mediate surface-induced virulence in Pseudomonas aeruginosa. PLoS Pathog 2020; 16:e1008867. [PMID: 32925969 PMCID: PMC7515202 DOI: 10.1371/journal.ppat.1008867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/24/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Surface attachment, an early step in the colonization of multiple host environments, activates the virulence of the human pathogen P. aeruginosa. However, the downstream toxins that mediate surface-dependent P. aeruginosa virulence remain unclear, as do the signaling pathways that lead to their activation. Here, we demonstrate that alkyl-quinolone (AQ) secondary metabolites are rapidly induced upon surface association and act directly on host cells to cause cytotoxicity. Surface-induced AQ cytotoxicity is independent of other AQ functions like quorum sensing or PQS-specific activities like iron sequestration. We further show that packaging of AQs in outer-membrane vesicles (OMVs) increases their cytotoxicity to host cells but not their ability to stimulate downstream quorum sensing pathways in bacteria. OMVs lacking AQs are significantly less cytotoxic, suggesting these molecules play a role in OMV cytotoxicity, in addition to their previously characterized role in OMV biogenesis. AQ reporters also enabled us to dissect the signal transduction pathways downstream of the two known regulators of surface-dependent virulence, the quorum sensing receptor, LasR, and the putative mechanosensor, PilY1. Specifically, we show that PilY1 regulates surface-induced AQ production by repressing the AlgR-AlgZ two-component system. AlgR then induces RhlR, which can induce the AQ biosynthesis operon under specific conditions. These findings collectively suggest that the induction of AQs upon surface association is both necessary and sufficient to explain surface-induced P. aeruginosa virulence. Pseudomonas aeruginosa is one of the most intensely studied bacterial pathogens and is a leading cause of hospital-acquired infections in the United States. An intriguing aspect of P. aeruginosa is its ability increase its virulence following attachment to a solid surface, suggesting that these bacteria use mechano-transduction to regulate pathogenesis. However, the cytotoxins that mediate host-cell killing in response to surface attachment remain unknown. Here, we use a microscopy-based host-cell killing assay to show that the alkyl-quinolone (AQ) family of secreted small molecules is both necessary and sufficient to explain surface-induced virulence. We further show that these compounds are upregulated rapidly following bacterial surface attachment and that packaging of AQs into secreted outer membrane vesicles enhances AQ cytotoxicity. This work thus fills a major gap in our understanding of surface sensing in P. aeruginosa and provides new methods for investigating surface-dependent signaling pathways.
Collapse
Affiliation(s)
- Geoffrey D. Vrla
- Department of Molecular Biology, Princeton University, Princeton, NJ, Unites States of America
| | - Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, Unites States of America
| | - Chen Zhang
- Department of Chemistry, Princeton University, Princeton, NJ, Unites States of America
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, Unites States of America
| | | | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, Unites States of America
- * E-mail:
| |
Collapse
|
84
|
Shao X, Xie Y, Zhang Y, Liu J, Ding Y, Wu M, Wang X, Deng X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin Drug Discov 2020; 15:1403-1423. [PMID: 32880507 DOI: 10.1080/17460441.2020.1803274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota , Grand Forks, North Dakota, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong , Shenzhen, China
| |
Collapse
|
85
|
Ozdemir O, Soyer F. Pseudomonas aeruginosa Presents Multiple Vital Changes in Its Proteome in the Presence of 3-Hydroxyphenylacetic Acid, a Promising Antimicrobial Agent. ACS OMEGA 2020; 5:19938-19951. [PMID: 32832748 PMCID: PMC7439270 DOI: 10.1021/acsomega.0c00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/21/2020] [Indexed: 05/06/2023]
Abstract
Pseudomonas aeruginosa, a widely distributed opportunistic pathogen, is an important threat to human health for causing serious infections worldwide. Due to its antibiotic resistance and virulence factors, it is so difficult to combat this bacterium; thus, new antimicrobial agents are in search. 3-Hydroxyphenylacetic acid (3-HPAA), which is a phenolic acid mostly found in olive oil wastewater, can be a promising candidate with its dose-dependent antimicrobial properties. Elucidating the molecular mechanism of action is crucial for future examinations and the presentation of 3-HPAA as a new agent. In this study, the antimicrobial activity of 3-HPAA on P. aeruginosa and its action mechanism was investigated via shot-gun proteomics. The data, which are available via ProteomeXchange with identifier PXD016243, were examined by STRING analysis to determine the interaction networks of proteins. KEGG Pathway enrichment analysis via the DAVID bioinformatics tool was also performed to investigate the metabolic pathways that undetected and newly detected groups of the proteins. The results displayed remarkable changes after 3-HPAA exposure in the protein profile of P. aeruginosa related to DNA replication and repair, RNA modifications, ribosomes and proteins, cell envelope, oxidative stress, as well as nutrient availability. 3-HPAA showed its antimicrobial action on P. aeruginosa by affecting multiple bacterial processes; hence, it could be categorized as a multitarget antimicrobial agent.
Collapse
|
86
|
Pip serves as an intermediate in RpoS-modulated phz2 expression and pyocyanin production in Pseudomonas aeruginosa. Microb Pathog 2020; 147:104409. [PMID: 32707314 DOI: 10.1016/j.micpath.2020.104409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Pyocyanin, a main virulence factor that is produced by Pseudomonas aeruginosa, plays an important role in pathogen-host interaction during infection. Two copies of phenazine-biosynthetic operons on genome, phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2), contribute to phenazine biosynthesis. In our previous study, we found that RpoS positively regulates expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa PAO1. In this work, when a TetR-family regulator gene, pip, was knocked out, we found that pyocyanin production was dramatically reduced, indicating that Pip positively regulates pyocyanin biosynthesis. With further phenazines quantification and β-galactosidase assay, we confirmed that Pip positively regulates phz2 expression, but does not regulate phz1 expression. In addition, while the rpoS gene was deleted, expression of pip was down-regulated. Expression of rpoS in the wild-type PAO1 strain, however, was similar to that in the Pip-deficient mutant PAΔpip, suggesting that expression of pip could positively be regulated by RpoS, whereas rpoS could not be regulated by Pip. Taken together, we drew a conclusion that Pip might serve as an intermediate in RpoS-modulated expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa.
Collapse
|
87
|
González Plaza JJ. Small RNAs as Fundamental Players in the Transference of Information During Bacterial Infectious Diseases. Front Mol Biosci 2020; 7:101. [PMID: 32613006 PMCID: PMC7308464 DOI: 10.3389/fmolb.2020.00101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Communication shapes life on Earth. Transference of information has played a paramount role on the evolution of all living or extinct organisms since the appearance of life. Success or failure in this process will determine the prevalence or disappearance of a certain set of genes, the basis of Darwinian paradigm. Among different molecules used for transmission or reception of information, RNA plays a key role. For instance, the early precursors of life were information molecules based in primitive RNA forms. A growing field of research has focused on the contribution of small non-coding RNA forms due to its role on infectious diseases. These are short RNA species that carry out regulatory tasks in cis or trans. Small RNAs have shown their relevance in fine tuning the expression and activity of important regulators of essential genes for bacteria. Regulation of targets occurs through a plethora of mechanisms, including mRNA stabilization/destabilization, driving target mRNAs to degradation, or direct binding to regulatory proteins. Different studies have been conducted during the interplay of pathogenic bacteria with several hosts, including humans, animals, or plants. The sRNAs help the invader to quickly adapt to the change in environmental conditions when it enters in the host, or passes to a free state. The adaptation is achieved by direct targeting of the pathogen genes, or subversion of the host immune system. Pathogens trigger also an immune response in the host, which has been shown as well to be regulated by a wide range of sRNAs. This review focuses on the most recent host-pathogen interaction studies during bacterial infectious diseases, providing the perspective of the pathogen.
Collapse
Affiliation(s)
- Juan José González Plaza
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
88
|
Nosocomial outbreak linked to a flexible gastrointestinal endoscope contaminated with an amikacin-resistant ST17 clone of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2020; 39:1837-1844. [PMID: 32372127 DOI: 10.1007/s10096-020-03915-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Endoscope contamination is infrequent but can be the source of nosocomial infections and outbreaks. In August 2016, an unexpected increase in the incidence of amikacin-resistant P. aeruginosa isolates (AK-Pae) was observed at a tertiary care center in the south of Spain. An epidemiological and microbiological investigation (August-October 2016) was performed to explain this finding. Isolates from clinical and environmental samples (2 endoscopes used for retrograde cholangiopancreatography; ERCP) were identified by MALDI-TOF. Antimicrobial susceptibility testing was performed using the MicroScan system. Whole-Genome-Sequencing (Miseq, Illumina) was performed to determine the resistome and virulome. Clonal relatedness among isolates was assessed by SpeI-PFGE and MLST. A Caenorhabditis elegans killing assay was performed for virulence testing. Biofilm formation was performed using a colorimetric assay. Four of the 5 patients infected and/or colonized with AK-Pae in August 2016 had undergone ERCP ≤5 days before sample collection. Two endoscopes were contaminated with AK-Pae. Isolates from one endoscope showed an identical PFGE pattern to 9 isolates (cluster I) and differed (1-2 bands) to 5 isolates (cluster II). Isolates from these clusters belonged to the ST17 clone. This S17 clone was characterized by its low virulence in the C. elegans killing assay, and its biofilm-forming ability, slightly superior to that of high-risk clones of P. aeruginosa ST175 and ST235. This outbreak was caused by an endoscope used for ERCP contaminated with an invasive, moderately virulent, biofilm-forming AK-Pae ST17 clone, suggesting the possible emergence of a new high-risk lineage of this clone.
Collapse
|
89
|
Valentini M, Filloux A. Multiple Roles of c-di-GMP Signaling in Bacterial Pathogenesis. Annu Rev Microbiol 2020; 73:387-406. [PMID: 31500536 DOI: 10.1146/annurev-micro-020518-115555] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intracellular signaling molecule cyclic di-GMP (c-di-GMP) regulates the lifestyle of bacteria and controls many key functions and mechanisms. In the case of bacterial pathogens, a wide variety of virulence lifestyle factors have been shown to be regulated by c-di-GMP. Evidence of the importance of this molecule for bacterial pathogenesis has become so great that new antimicrobial agents are tested for their capacity of targeting c-di-GMP signaling. This review summarizes the current knowledge on this topic and reveals its application for the development of new antivirulence intervention strategies.
Collapse
Affiliation(s)
- Martina Valentini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland;
| | - Alain Filloux
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom;
| |
Collapse
|
90
|
Ernst CM, Braxton JR, Rodriguez-Osorio CA, Zagieboylo AP, Li L, Pironti A, Manson AL, Nair AV, Benson M, Cummins K, Clatworthy AE, Earl AM, Cosimi LA, Hung DT. Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae. Nat Med 2020; 26:705-711. [PMID: 32284589 PMCID: PMC9194776 DOI: 10.1038/s41591-020-0825-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
Among the most urgent public health threats is the worldwide emergence of carbapenem-resistant Enterobacteriaceae1-4, which are resistant to the antibiotic class of 'last resort'. In the United States and Europe, carbapenem-resistant strains of the Klebsiella pneumoniae ST258 (ref. 5) sequence type are dominant, endemic6-8 and associated with high mortality6,9,10. We report the global evolution of pathogenicity in carbapenem-resistant K. pneumoniae, resulting in the repeated convergence of virulence and carbapenem resistance in the United States and Europe, dating back to as early as 2009. We demonstrate that K. pneumoniae can enhance its pathogenicity by adopting two opposing infection programs through easily acquired gain- and loss-of-function mutations. Single-nucleotide polymorphisms in the capsule biosynthesis gene wzc lead to hypercapsule production, which confers phagocytosis resistance, enhanced dissemination and increased mortality in animal models. In contrast, mutations disrupting capsule biosynthesis genes impair capsule production, which enhances epithelial cell invasion, in vitro biofilm formation and persistence in urinary tract infections. These two types of capsule mutants have emerged repeatedly and independently in Europe and the United States, with hypercapsule mutants associated with bloodstream infections and capsule-deficient mutants associated with urinary tract infections. In the latter case, drug-tolerant K. pneumoniae can persist to yield potentially untreatable, persistent infection.
Collapse
Affiliation(s)
- Christoph M Ernst
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Julian R Braxton
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Carlos A Rodriguez-Osorio
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Anna P Zagieboylo
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Li Li
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | - Anil V Nair
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Maura Benson
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Kaelyn Cummins
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Anne E Clatworthy
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ashlee M Earl
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lisa A Cosimi
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Deborah T Hung
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
91
|
Wang K, Kai L, Zhang K, Hao M, Yu Y, Xu X, Yu Z, Chen L, Chi X, Ge Y. Overexpression of phzM contributes to much more production of pyocyanin converted from phenazine-1-carboxylic acid in the absence of RpoS in Pseudomonas aeruginosa. Arch Microbiol 2020; 202:1507-1515. [PMID: 32222778 DOI: 10.1007/s00203-020-01837-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/15/2020] [Accepted: 02/14/2020] [Indexed: 11/29/2022]
Abstract
Pyocyanin produced by Pseudomonas aeruginosa is a key virulence factor that often causes heavy damages to airway and lung in patients. Conversion of phenazine-1-carboxylic acid to pyocyanin involves an extrametabolic pathway that contains two enzymes encoded, respectively, by phzM and phzS. In this study, with construction of the rpoS-deficient mutant, we first found that although phenazine production increased, pyocyanin produced in the mutant YTΔrpoS was fourfold much higher than that in the wild-type strain YT. To investigate this issue, we constructed phzM-lacZ fusion on a vector and on the chromosome. By quantifying β-galactosidase activities, we confirmed that expression of the phzM was up-regulated when the rpoS gene was inactivated. However, no changes occurred in the expression of phzS and phzH when the rpoS was knocked out. Taken together, overproduction of the SAM-dependent methyltransferase (PhzM) might contribute to the increased pyocyanin in the absence of RpoS in P. aeruginosa.
Collapse
Affiliation(s)
- Kewen Wang
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Le Kai
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Kailu Zhang
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Mengyue Hao
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Yanjie Yu
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Xinyu Xu
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Zhifen Yu
- Affiliated Hospital, Ludong University, Yantai, 264025, China
| | - Lijuan Chen
- Affiliated Hospital, Ludong University, Yantai, 264025, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China.
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China. .,Affiliated Hospital, Ludong University, Yantai, 264025, China.
| |
Collapse
|
92
|
Lu Y, Li H, Pu J, Xiao Q, Zhao C, Cai Y, Liu Y, Wang L, Li Y, Huang B, Zeng J, Chen C. Identification of a novel RhlI/R-PrrH-LasI/Phzc/PhzD signalling cascade and its implication in P. aeruginosa virulence. Emerg Microbes Infect 2020; 8:1658-1667. [PMID: 31718472 PMCID: PMC6853234 DOI: 10.1080/22221751.2019.1687262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Small regulatory RNAs (sRNAs) act as key regulators in many bacterial signalling cascades. However, in P. aeruginosa, the sRNAs involved in quorum sensing (QS) regulation and their function are still largely unknown. Here, we explored how the prrH locus sRNA influences P. aeruginosa virulence in the context of the QS regulatory network. First, gain- and loss-of-function studies showed that PrrH affects pyocyanin, elastase and rhamnolipid production; biofilm formation; and swimming and swarming motility and impaired the viability of P. aeruginosa in human whole blood. Next, our investigation disclosed that LasI and PhzC/D were directly repressed by PrrH. In addition, RhlI, the key member of the rhl QS system, diminished the expression of PrrH and enhanced the expression of downstream genes. Bioinformatics analysis found two binding sites of RhlR, the transcription factor of the rhl system, on the promoter region of prrH. Further β-galactosidase reporter and qPCR assays confirmed that PrrH was transcriptionally repressed by RhlR. Collectively, our data identified a novel RhlI/R-PrrH-LasI/PhzC/PhzD regulatory circuitry that may contribute to P. aeruginosa pathogenesis. Our findings indicate that PrrH is a quorum regulatory RNA (Qrr) in P. aeruginosa and provide new insight into PrrH’s function.
Collapse
Affiliation(s)
- Yang Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Honglin Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Jieying Pu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Qian Xiao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Chanjing Zhao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Yimei Cai
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Yuyang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Lina Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Youqiang Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Jianming Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| |
Collapse
|
93
|
Cramer N, Fischer S, Hedtfeld S, Dorda M, Tümmler B. Intraclonal competitive fitness of longitudinal cystic fibrosis Pseudomonas aeruginosa airway isolates in liquid cultures. Environ Microbiol 2020; 22:2536-2549. [PMID: 31985137 DOI: 10.1111/1462-2920.14924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
The metabolically versatile Pseudomonas aeruginosa inhabits biotic and abiotic environments including the niche of cystic fibrosis (CF) airways. This study investigated how the adaptation to CF lungs affects the within-clone fitness of P. aeruginosa to grow and persist in liquid cultures in the presence of the clonal ancestors. Longitudinal clonal P. aeruginosa isolates that had been collected from 12 CF donors since the onset of colonization for up to 30 years was subjected to within-clone competition experiments. The relative quantities of individual strains were determined by marker-free amplicon sequencing of multiplex PCR products of strain-specific nucleotide sequence variants, a novel method that is generally applicable to studies in evolutionary genetics and microbial ecology with real-world strain collections. For 10 of the 12 examined patient courses, P. aeruginosa isolates of the first years of colonization grew faster in the presence of their clonal progeny than alone. Single growth of individual strains showed no temporal trend with colonization time, but in co-culture, the early isolates out-competed their clonal progeny. Irrespective of the genetic make-up of the clone and its genomic microevolution in CF lungs, the early isolates expressed fitness traits to win the within-clone competition that were absent in their progeny.
Collapse
Affiliation(s)
- Nina Cramer
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Sebastian Fischer
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover, Germany
| | - Silke Hedtfeld
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover, Germany
| | - Marie Dorda
- Research Core Unit Genomics, Hannover, Germany
| | - Burkhard Tümmler
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
94
|
Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf B Biointerfaces 2020; 185:110627. [DOI: 10.1016/j.colsurfb.2019.110627] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/08/2023]
|
95
|
O’Malley MR, Chien C, Peck SC, Lin N, Anderson JC. A revised model for the role of GacS/GacA in regulating type III secretion by Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT PATHOLOGY 2020; 21:139-144. [PMID: 31588661 PMCID: PMC6913209 DOI: 10.1111/mpp.12876] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
GacS/GacA is a conserved two-component system that functions as a master regulator of virulence-associated traits in many bacterial pathogens, including Pseudomonas spp., that collectively infect both plant and animal hosts. Among many GacS/GacA-regulated traits, type III secretion of effector proteins into host cells plays a critical role in bacterial virulence. In the opportunistic plant and animal pathogen Pseudomonas aeruginosa, GacS/GacA negatively regulates the expression of type III secretion system (T3SS)-encoding genes. However, in the plant pathogenic bacterium Pseudomonas syringae, strain-to-strain variation exists in the requirement of GacS/GacA for T3SS deployment, and this variability has limited the development of predictive models of how GacS/GacA functions in this species. In this work we re-evaluated the function of GacA in P. syringae pv. tomato DC3000. Contrary to previous reports, we discovered that GacA negatively regulates the expression of T3SS genes in DC3000, and that GacA is not required for DC3000 virulence inside Arabidopsis leaf tissue. However, our results show that GacA is required for full virulence of leaf surface-inoculated bacteria. These data significantly revise current understanding of GacS/GacA in regulating P. syringae virulence.
Collapse
Affiliation(s)
- Megan R. O’Malley
- Department of Botany and Plant PathologyOregon State UniversityCorvallisORUSA
| | - Ching‐Fang Chien
- Department of Agricultural ChemistryNational Taiwan UniversityTaipeiTaiwanR.O.C.
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwanR.O.C.
| | - Scott C. Peck
- Department of BiochemistryUniversity of MissouriColumbiaMOUSA
- Christopher S Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Interdisciplinary Plant GroupUniversity of MissouriColumbiaMOUSA
| | - Nai‐Chun Lin
- Department of Agricultural ChemistryNational Taiwan UniversityTaipeiTaiwanR.O.C.
| | - Jeffrey C. Anderson
- Department of Botany and Plant PathologyOregon State UniversityCorvallisORUSA
| |
Collapse
|
96
|
Effects of Pseudomonas aeruginosa on Microglial-Derived Extracellular Vesicle Biogenesis and Composition. Pathogens 2019; 8:pathogens8040297. [PMID: 31847332 PMCID: PMC6963293 DOI: 10.3390/pathogens8040297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
The packaging of molecular constituents inside extracellular vesicles (EVs) allows them to participate in intercellular communication and the transfer of biological molecules, however the role of EVs during bacterial infection is poorly understood. The goal of this study was to examine the effects of Pseudomonas aeruginosa (P. aeruginosa) infection on the biogenesis and composition of EVs derived from the mouse microglia cell line, BV-2. BV-2 cells were cultured in exosome-free media and infected with 0, 1.3 × 104, or 2.6 × 104 colony forming units per milliliter P. aeruginosa for 72 h. The results indicated that compared with the control group, BV-2 cell viability significantly decreased after P. aeruginosa infection and BV-2-derived EVs concentration decreased significantly in the P. aeruginosa-infected group. P. aeruginosa infection significantly decreased chemokine ligand 4 messenger RNA in BV-2-derived infected EVs, compared with the control group (p ≤ 0.05). This study also revealed that heat shock protein 70 (p ≤ 0.05) and heat shock protein 90β (p ≤ 0.001) levels of expression within EVs increased after P. aeruginosa infection. EV treatment with EVs derived from P. aeruginosa infection reduced cell viability of BV-2 cells. P. aeruginosa infection alters the expression of specific proteins and mRNA in EVs. Our study suggests that P. aeruginosa infection modulates EV biogenesis and composition, which may influence bacterial pathogenesis and infection.
Collapse
|
97
|
Galdino ACM, de Oliveira MP, Ramalho TC, de Castro AA, Branquinha MH, Santos ALS. Anti-Virulence Strategy against the Multidrug-Resistant Bacterial Pathogen Pseudomonas aeruginosa: Pseudolysin (Elastase B) as a Potential Druggable Target. Curr Protein Pept Sci 2019; 20:471-487. [PMID: 30727891 DOI: 10.2174/1389203720666190207100415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is a non-fermentative, gram-negative bacterium that is one of the most common pathogens responsible for hospital-acquired infections worldwide. The management of the infections caused by P. aeruginosa represents a huge challenge in the healthcare settings due to the increased emergence of resistant isolates, some of them resistant to all the currently available antimicrobials, which results in elevated morbimortality rates. Consequently, the development of new therapeutic strategies against multidrug-resistant P. aeruginosa is urgent and needful. P. aeruginosa is wellrecognized for its extreme genetic versatility and its ability to produce a lush variety of virulence factors. In this context, pseudolysin (or elastase B) outstands as a pivotal virulence attribute during the infectious process, playing multifunctional roles in different aspects of the pathogen-host interaction. This protein is a 33-kDa neutral zinc-dependent metallopeptidase that is the most abundant peptidase found in pseudomonal secretions, which contributes to the invasiveness of P. aeruginosa due to its ability to cleave several extracellular matrix proteins and to disrupt the basolateral intercellular junctions present in the host tissues. Moreover, pseudolysin makes P. aeruginosa able to overcome host defenses by the hydrolysis of many immunologically relevant molecules, including antibodies and complement components. The attenuation of this striking peptidase therefore emerges as an alternative and promising antivirulence strategy to combat antibiotic-refractory infections caused by P. aeruginosa. The anti-virulence approach aims to disarm the P. aeruginosa infective arsenal by inhibiting the expression/activity of bacterial virulence factors in order to reduce the invasiveness of P. aeruginosa, avoiding the emergence of resistance since the proliferation is not affected. This review summarizes the most relevant features of pseudolysin and highlights this enzyme as a promising target for the development of new anti-virulence compounds.
Collapse
Affiliation(s)
- Anna Clara M Galdino
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P de Oliveira
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States
| | - Teodorico C Ramalho
- Departamento de Quimica, Universidade Federal de Lavras, Minas Gerais, Brazil
| | | | - Marta H Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
98
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Regulation and controlling the motility properties of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2019; 104:33-49. [DOI: 10.1007/s00253-019-10201-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
|
99
|
Hassan AA, Vitorino MV, Robalo T, Rodrigues MS, Sá-Correia I. Variation of Burkholderia cenocepacia cell wall morphology and mechanical properties during cystic fibrosis lung infection, assessed by atomic force microscopy. Sci Rep 2019; 9:16118. [PMID: 31695169 PMCID: PMC6834607 DOI: 10.1038/s41598-019-52604-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The influence that Burkholderia cenocepacia adaptive evolution during long-term infection in cystic fibrosis (CF) patients has on cell wall morphology and mechanical properties is poorly understood despite their crucial role in cell physiology, persistent infection and pathogenesis. Cell wall morphology and physical properties of three B. cenocepacia isolates collected from a CF patient over a period of 3.5 years were compared using atomic force microscopy (AFM). These serial clonal variants include the first isolate retrieved from the patient and two late isolates obtained after three years of infection and before the patient's death with cepacia syndrome. A consistent and progressive decrease of cell height and a cell shape evolution during infection, from the typical rods to morphology closer to cocci, were observed. The images of cells grown in biofilms showed an identical cell size reduction pattern. Additionally, the apparent elasticity modulus significantly decreases from the early isolate to the last clonal variant retrieved from the patient but the intermediary highly antibiotic resistant clonal isolate showed the highest elasticity values. Concerning the adhesion of bacteria surface to the AFM tip, the first isolate was found to adhere better than the late isolates whose lipopolysaccharide (LPS) structure loss the O-antigen (OAg) during CF infection. The OAg is known to influence Gram-negative bacteria adhesion and be an important factor in B. cenocepacia adaptation to chronic infection. Results reinforce the concept of the occurrence of phenotypic heterogeneity and adaptive evolution, also at the level of cell size, form, envelope topography and physical properties during long-term infection.
Collapse
Affiliation(s)
- A Amir Hassan
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
| | - Miguel V Vitorino
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Tiago Robalo
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mário S Rodrigues
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal.
| |
Collapse
|
100
|
Palmioli A, Sperandeo P, Polissi A, Airoldi C. Targeting Bacterial Biofilm: A New LecA Multivalent Ligand with Inhibitory Activity. Chembiochem 2019; 20:2911-2915. [DOI: 10.1002/cbic.201900383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Alessandro Palmioli
- Department of Biotechnology and BiosciencesUniversity of Milano–Bicocca Piazza della Scienza 2 20126 Milano Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular SciencesUniversity of Milano Via Balzaretti, 9/11/13 20133 Milano Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular SciencesUniversity of Milano Via Balzaretti, 9/11/13 20133 Milano Italy
| | - Cristina Airoldi
- Department of Biotechnology and BiosciencesUniversity of Milano–Bicocca Piazza della Scienza 2 20126 Milano Italy
| |
Collapse
|