51
|
A synergistic interactions of Algerian essential oils of Laurus nobilis L., Lavandula stoechas L. and Mentha pulegium L. on anticholinesterase and antioxidant activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
52
|
Getahun T, Sharma V, Kumar D, Gupta N. Chemical composition, and antibacterial and antioxidant activities of essential oils from Laggera tomentosa Sch. Bip. ex Oliv. et Hiern (Asteraceae). Turk J Chem 2020; 44:1539-1548. [PMID: 33488250 PMCID: PMC7763129 DOI: 10.3906/kim-2004-50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022] Open
Abstract
Laggera tomentosa Sch. Bip. ex Oliv. et Hiern (Asteraceae), an endemic Ethiopian medicinal plant, is traditionally used to treat various ailments. Previously, the chemical constituents of the essential oil (EO) of its leaves and inflorescence were documented. However, no data about the chemical compositions of other parts of the EOs of the plant have been reported to date. Moreover, there are no previous biological activity reports on any parts of the EOs of this plant. Thus, in this study, the EOs were isolated from the stem bark and roots of this plant by hydrodistillation and analyzed using gas chromatography-mass spectrometry to identify their components. In addition, antibacterial potentials of the oils were evaluated using the disc diffusion and minimal inhibitory concentration (MIC) methods. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide methods were also employed to assess their antioxidant properties. Oxygenated monoterpenes (71.82% and 77.51%), of which 2,5-dimethoxy- p -cymene (57.28% and 64.76%) and thymol methyl ether (9.51% and 8.93%) were identified as major components in the EOs of stem bark and roots of L. tomentosa and the oils, were the most potent in the DPPH (IC50, 0.33 ± 1.10 and 0.39 ± 0.97 mg/mL) assay, respectively. Moreover, the EOs demonstrated appreciable activity towards the gram+ ( S. aureus and B. cereus ) bacteria. Among these oils, the oil of the stem bark showed the greatest activity to the gram+ (MIC = 0.625 mg/mL) bacteria. Therefore, the overall results suggested that the EOs of L. tomentosa may be a promising prospect for pharmaceutical, food, and other industrial applications.
Collapse
Affiliation(s)
- Tokuma Getahun
- Advance School of Chemical Sciences, Shoolini University, Bajhol, HP India
| | - Vinit Sharma
- Advance School of Chemical Sciences, Shoolini University, Bajhol, HP India
| | - Deepak Kumar
- School of Pharmacy, Faculty of Pharmaceutical Sciences, Shoolini University, Bajhol, HP India
| | - Neeraj Gupta
- Advance School of Chemical Sciences, Shoolini University, Bajhol, HP India
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Kangra, HP India
| |
Collapse
|
53
|
El Hassani FZ. Characterization, activities, and ethnobotanical uses of Mentha species in Morocco. Heliyon 2020; 6:e05480. [PMID: 33294657 PMCID: PMC7689164 DOI: 10.1016/j.heliyon.2020.e05480] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/09/2020] [Accepted: 11/06/2020] [Indexed: 11/26/2022] Open
Abstract
This work is a summary of the characterization, activities, and ethnobotanical surveys about aromatic and medicinal plants belonging to the genus Mentha in Morocco. The Mentha species investigated are Mentha pulegium, Mentha spicata, Mentha viridis, Mentha suaveolens, Mentha longifolia, Mentha gattefossei, Mentha rotundifolia, and Mentha vulgare, with M. pulegium being the most studied species. M. spicata and M. viridis are poorly explored even though they are daily consumed by Moroccans in tea infusions. The elucidated factors affecting the composition of Mentha essential oils are fertilization, drying conditions, mechanical impedance, NaCl stress, and Gamma irradiation. Investigation of the activities of the Mentha species showed that the main interest was dedicated to addressing the antibacterial effect towards gram+ and gram- bacteria. Essential oils of Mentha species exhibited antifungal, antiviral, antioxidant, insecticidal, licidal, niticidal, allelopathic, antidiabetic, derma-protective, and anticorrosive activities. The ethnobotanical surveys revealed that Mentha species are used in seven regions: Tafilalet, High Atlas, Fez-Boulemane, Taounat, Oujda, Ouazzane, and Rabat. By calculating the Jaccard index, the highest degree of similarity was found between Tafilalet, Rabat, and Oujda regions. The wide use of the Mentha species in Morocco highlights the high ethnobotanical value of the genus.
Collapse
|
54
|
Chemical Composition and Bioactivity of Essential Oil of Ten Labiatae Species. Molecules 2020; 25:molecules25204862. [PMID: 33096843 PMCID: PMC7587947 DOI: 10.3390/molecules25204862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022] Open
Abstract
Using antibiotics as feed additives have been successively banned worldwide from 1986; therefore, it is an urgent task to finding safe and effective alternatives. As natural products of plant origin, essential oils (EOs) are an outstanding option due to their reported bioactivity. In this research, ten EOs of Labiatae species were extracted by steam distillation and its chemical constituents were identified by gas chromatography-mass spectrometry (GC-MS). A total of 123 chemical compounds, including alkenes, phenols, aldehydes and ketones, were identified. The results of antioxidant activity carried out through DPPH free radical scavenging (DPPH) and ferric reducing antioxidant power (FRAP), showing that EOs of Ocimum basilicum Linn. (ObEO), Thymus mongolicus Ronn. (TmEO), Origanum vulgare Linn. (OvEO) and Mosla chinensis Maxim. (McEO) have strong antioxidant activities. Their 50%-inhibitory concentration (IC50) value was <1.00, 1.42, 1.47 and 1.92 μg/mL, respectively; and their FRAP value was 1536.67 ± 24.22, 271.84 ± 4.93, 633.71 ± 13.14 and 480.66 ± 29.90, respectively. The results of filter paper diffusion showing that McEO, OvEO and TmEO inhibition zone diameter (IZD) are all over 30 mm. The results of two-fold dilution method showed that McEO, OvEO and TmEO have strong antibacterial activities against Staphylococcus aureus (S. aureus) and their minimal inhibitory concentrations (MIC) value was 1 μL/mL, 2 μL/mL, and 2 μL/mL, respectively. In conclusion, the results in this work demonstrate the possibility for development and application of EOs as potential feed additives.
Collapse
|
55
|
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020; 25:molecules25204711. [PMID: 33066611 PMCID: PMC7587387 DOI: 10.3390/molecules25204711] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils-natural and liquid secondary plant metabolites-are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.
Collapse
|
56
|
Chemical composition, antioxidant capacity and antibacterial action of five Moroccan essential oils against Listeria monocytogenes and different serotypes of Salmonella enterica. Microb Pathog 2020; 149:104510. [PMID: 32956790 DOI: 10.1016/j.micpath.2020.104510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023]
Abstract
Essential oils (EOs) obtained from aromatic plants are rich in natural components with interesting antimicrobial effects. The aim of this study was to evaluate the chemical composition of EOs extracted from Origanum majorana (OM-EO), Mentha suaveolens (MS-EO), Rosmarinus officinalis (RO-EO), Salvia officinalis (SO-EO) and Mentha pulegium (MP-EO). Their antioxidant properties and antibacterial activity against Listeria monocytogenes and different serotypes of Salmonella enterica subsp. enterica were also studied. The EOs were extracted from plants by hydro-distillation and their chemical composition was determined by GC-MS. Terpinen-4-ol, 1,8-Cineole, Camphor, Limonene and Cinerone were the main chemical components found in OM-EO, RO-EO, SO-EO, MP-EO and MS-EO, respectively. To the best of our knowledge, Limonene and Cinerone were reported, for the first time, as the major components of MP-EO and MS-EO. Moreover, our results showed that MS-EO had the best antioxidant activity with an IC50 of 0.78 ± 0.05 mg/mL, EC50 of 1.53 ± 0.07 mg/mL, and RC50 of 0.98 ± 0.04 mg/mL, and the higher antibacterial activity using microdilution broth method with MIC of 0.5% for Salmonella and 0.25% for L. monocytogenes, while OM-EO had the best antibacterial activity using disc diffusion method (inhibition diameters ranged between 15.3 ± 0.3 mm and 18.5 ± 0.3 mm for Salmonella and between 20.1 ± 0.2 mm and 25.4 ± 0.4 mm for L. monocytogenes). However, OM-EO and MS-EO present the higher percentage of sub-lethally injured cells against S. enterica (5.50 ± 0.11%) and L. monocytogenes (5.23 ± 0.07%), respectively. From this study, we can conclude that the investigated EOs are rich in components with interesting antibacterial activity and they could be applied in food preparations as natural preservatives to extend the shelf life of food products and to inhibit the growth of food-borne pathogens.
Collapse
|
57
|
Raeisi M, Mirkarimi K, Jannat B, Rahimi Esboei B, Pagheh AS, Mehrbakhsh Z, Ghaffarifar F, Jorjani O, Foroutan M. In Vitro Effect of Some Medicinal Plants on Leishmania major Strain MRHO/IR/75/ER. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.4.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
58
|
Mohammad Rahimi H, Khosravi M, Hesari Z, Sharifdini M, Mirjalali H, Zali MR. Anti- Toxoplasma activity and chemical compositions of aquatic extract of Mentha pulegium L. and Rubus idaeus L.: An in vitro study. Food Sci Nutr 2020; 8:3656-3664. [PMID: 32724628 PMCID: PMC7382105 DOI: 10.1002/fsn3.1648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/02/2023] Open
Abstract
This study aimed to determine the chemical compositions of crude aquatic extracts of M. pulegium L. and R. idaeus L., and their anti-Toxoplasma activity. Crude aquatic extraction of aerial parts of R. idaeus L. and M. pulegium L. was performed. GC-MS and HTPLC analyses were carried out. MTT assay was performed on Vero cells treated by different concentrations (Log -10 from 10-1 to 10-6) of the extracts. The anti-Toxoplasma activity of the concentrations was investigated using vital staining. Menthol (99.23%) and limonene (0.227%) were the major compounds of the aquatic extract of M. pulegium L. Phytochemical compositions of R. idaeus L. were terpenoids, esterols, and flavonoids. The cell toxicity of M. pulegium L. was lower than R. idaeus L. (CC50 > 10-2 versus. ≥ 10-4). Aquatic extract of M. pulegium L. showed higher anti-Toxoplasma activity (LC50 ≥ 10-6) than R. idaeus L. (LC50 ≥ 10-5). Statistically significant cell toxicity and anti-Toxoplasma activity (p < .05) were seen regarding the different concentrations of R. idaeus L. and M. pulegium L. Both R. idaeus L. and M. pulegium L. revealed anti-Toxoplasma activities. Cell toxicity of R. idaeus L. was significantly higher than M. pulegium L. M. pulegium L. extract could be more applicable due to its lower cell toxicity.
Collapse
Affiliation(s)
- Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research CenterResearch Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Mojdeh Khosravi
- Department of Pharmacy and Pharmaceutical Technology and ParasitologyUniversity of ValenciaValenciaSpain
| | - Zahra Hesari
- Department of PharmaceuticsSchool of PharmacyGuilan University of Medical SciencesRashtIran
| | - Meysam Sharifdini
- Department of Medical Parasitology and MycologySchool of MedicineGuilan University of Medical SciencesRashtIran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research CenterResearch Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research CenterResearch Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
59
|
Diniz do Nascimento L, Barbosa de Moraes AA, Santana da Costa K, Pereira Galúcio JM, Taube PS, Leal Costa CM, Neves Cruz J, de Aguiar Andrade EH, Guerreiro de Faria LJ. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020; 10:biom10070988. [PMID: 32630297 PMCID: PMC7407208 DOI: 10.3390/biom10070988] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Spice plants have a great influence on world history. For centuries, different civilizations have used them to condiment the foods of kings and nobles and applied them as embalming preservatives, perfumes, cosmetics, and medicines in different regions of the world. In general, these plants have formed the basis of traditional medicine and some of their derived substances have been utilized to treat different human diseases. Essential oils (EOs) obtained from these plants have been also used as therapeutic agents and have shown supportive uses in remedial practices. The discovery and development of bioactive compounds from these natural products, based on their traditional uses, play an important role in developing the scientific evidence of their potential pharmaceutical, cosmetic, and food applications. In the present review, using recent studies, we exhibit a general overview of the main aspects related to the importance of spice plants widely used in traditional medicine: Cinnamomum zeylanicum (true cinnamon), Mentha piperita (peppermint), Ocimum basilicum (basil), Origanum vulgare (oregano), Piper nigrum (black pepper), Rosmarinus officinalis (rosemary), and Thymus vulgaris (thyme); and we discuss new findings of the bioactive compounds obtained from their EOs, their potential applications, as well as their molecular mechanisms of action, focusing on their antioxidant activity. We also exhibit the main in vitro methods applied to determine the antioxidant activities of these natural products.
Collapse
Affiliation(s)
- Lidiane Diniz do Nascimento
- Programa de Pós-graduação em Engenharia de Recursos Naturais da Amazônia, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
- Correspondence: or (L.D.d.N.); (K.S.d.C.); Tel.: +55-91-3217-6086 (L.D.d.N.); +55-93-2101-6771 (K.S.d.C.)
| | - Angelo Antônio Barbosa de Moraes
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Kauê Santana da Costa
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
- Correspondence: or (L.D.d.N.); (K.S.d.C.); Tel.: +55-91-3217-6086 (L.D.d.N.); +55-93-2101-6771 (K.S.d.C.)
| | - João Marcos Pereira Galúcio
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
| | - Paulo Sérgio Taube
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
| | - Cristiane Maria Leal Costa
- Programa de Pós-graduação em Engenharia Química, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
| | - Jorddy Neves Cruz
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Eloisa Helena de Aguiar Andrade
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Lênio José Guerreiro de Faria
- Programa de Pós-graduação em Engenharia de Recursos Naturais da Amazônia, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
- Programa de Pós-graduação em Engenharia Química, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
| |
Collapse
|
60
|
Leporini M, Bonesi M, Loizzo MR, Passalacqua NG, Tundis R. The Essential Oil of Salvia rosmarinus Spenn. from Italy as a Source of Health-Promoting Compounds: Chemical Profile and Antioxidant and Cholinesterase Inhibitory Activity. PLANTS (BASEL, SWITZERLAND) 2020; 9:E798. [PMID: 32604753 PMCID: PMC7356759 DOI: 10.3390/plants9060798] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
The chemical composition of the essential oil from Salvia rosmarinus Spenn. collected in Calabrian Ionian (R1) and Tyrrhenian (R2) coast (Southern Italy) was examined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Essential oils are mainly characterized by monoterpene hydrocarbons (39.32-40.70%) and oxygenated monoterpenes (36.08-39.47%). The 1,8-cineole, α-pinene, camphor, and trans-caryophyllene are the most representative compounds. S. rosmarinus essential oils were investigated for their antioxidant activity by using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing ability power (FRAP), and β-carotene bleaching tests. Additionally, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity assays were used to screen the neuroprotective effects of S. rosmarinus. R2 showed the highest antioxidant potential as confirmed by relative antioxidant capacity index (RACI) and exhibited a selective activity against AChE (half maximal inhibitory concentration, IC50, value of 41.86 μg/mL). These results suggest S. rosmarinus essential oil as a potential source of bioactive compounds.
Collapse
Affiliation(s)
- Mariarosaria Leporini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.L.); (M.B.); (M.R.L.)
| | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.L.); (M.B.); (M.R.L.)
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.L.); (M.B.); (M.R.L.)
| | | | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.L.); (M.B.); (M.R.L.)
| |
Collapse
|
61
|
Bagheri Darvish H, Bahrami A, Jafari SM, Williams L. Micro/nanoencapsulation strategy to improve the efficiency of natural antimicrobials against Listeria monocytogenes in food products. Crit Rev Food Sci Nutr 2020; 61:1241-1259. [PMID: 32323558 DOI: 10.1080/10408398.2020.1755950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Listeria monocytogenes (Lm), the etiological agent of listeriosis diseases in humans, is a serious pathogenic microorganism threatening the food safety especially in ready-to-eat food products. Adhesion on both biotic and abiotic surfaces is making it a potential source of contamination by Lm. Also, this bacterium has become more tolerant in food processing conditions, including in the presence of adverse conditions such as cold and dehydration. One of the attractive and effective methods to inhibit the growth of Lm in the food products is using natural antimicrobial agents, which can be a suitable alternative to synthetic preservatives for producing organic food products. The use of pure natural antimicrobials has some limitations including low stability against harsh conditions, low solubility and absorption, and un-controlled release, which can decrease their functions. These limitations have been overcome by using new advanced encapsulation techniques, which have boosted the anti-listerial activity of natural agents. Therefore, the current paper is aiming to review the results of recent studies conducted on using natural antimicrobials added directly or as encapsulated forms into the food formulation to control the growth of Lm. The information of current study can be used by the researchers as well as the food companies for the optimization of food formulations through encapsulation strategies to control Lm and potentially produce safe foods for the consumers.
Collapse
Affiliation(s)
| | - Akbar Bahrami
- North Carolina Research Campus, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina, USA
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Leonard Williams
- North Carolina Research Campus, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina, USA
| |
Collapse
|
62
|
Sharifi-Rad J, Ezzat SM, El Bishbishy MH, Mnayer D, Sharopov F, Kılıç CS, Neagu M, Constantin C, Sharifi-Rad M, Atanassova M, Nicola S, Pignata G, Salehi B, Fokou PVT, Martins N. Rosmarinus plants: Key farm concepts towards food applications. Phytother Res 2020; 34:1474-1518. [PMID: 32058653 DOI: 10.1002/ptr.6622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Rosmarinus species are aromatic plants that mainly grow in the Mediterranean region. They are widely used in folk medicine, food, and flavor industries and represent a valuable source of biologically active compounds (e.g., terpenoids, flavonoids, and phenolic acids). The extraction of rosemary essential oil is being done using three main methods: carbon dioxide supercritical extraction, steam distillation, and hydrodistillation. Furthermore, interesting antioxidant, antibacterial, antifungal, antileishmanial, anthelmintic, anticancer, anti-inflammatory, antidepressant, and antiamnesic effects have also been broadly recognized for rosemary plant extracts. Thus the present review summarized data on economically important Rosmarinus officinalis species, including isolation, extraction techniques, chemical composition, pharmaceutical, and food applications.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| | - Ceyda S Kılıç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania.,Doctoral School, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, UCTM, Sofia, Bulgaria
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Giuseppe Pignata
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Patrick V T Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
63
|
Capatina L, Boiangiu RS, Dumitru G, Napoli EM, Ruberto G, Hritcu L, Todirascu-Ciornea E. Rosmarinus officinalis Essential Oil Improves Scopolamine-Induced Neurobehavioral Changes via Restoration of Cholinergic Function and Brain Antioxidant Status in Zebrafish ( Danio rerio). Antioxidants (Basel) 2020; 9:antiox9010062. [PMID: 31936730 PMCID: PMC7023291 DOI: 10.3390/antiox9010062] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/25/2022] Open
Abstract
Rosmarinus officinalis L. is a traditional herb with various therapeutic applications such as antibacterial, antioxidant, anti-inflammatory, antidepressant, and anticholinesterase activities, and can be used for the prevention or treatment of dementia. In the present study, we tested whether Rosmarinus officinalis L. could counteract scopolamine-induced anxiety, dementia, and brain oxidative stress in the zebrafish model and tried to find the underlying mechanism. Rosmarinus officinalis L. essential oil (REO: 25, 150, and 300 µL/L) was administered by immersion to zebrafish (Danio rerio) once daily for eight days while scopolamine (100 µM) treatment was delivered 30 min before behavioral tests. The antidepressant and cognitive-enhancing actions of the essential oil in the scopolamine zebrafish model was measured in the novel tank diving test (NTT) and Y-maze test. The chemical composition was identified by Gas chromatograph–Mass spectrometry (GC-MS) analysis. The brain oxidative status and acetylcholinesterase (AChE) activity was also determined. REO reversed scopolamine-induced anxiety, memory impairment, and brain oxidative stress. In addition, a reduced brain AChE activity following the administration of REO in scopolamine-treated fish was observed. In conclusion, REO exerted antidepressant-like effect and cognitive-enhancing action and was able to abolish AChE alteration and brain oxidative stress induced by scopolamine.
Collapse
Affiliation(s)
- Luminita Capatina
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
- Correspondence: ; Tel.: +40-232201666
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| |
Collapse
|
64
|
Bouyahya A, Lagrouh F, El Omari N, Bourais I, El Jemli M, Marmouzi I, Salhi N, Faouzi MEA, Belmehdi O, Dakka N, Bakri Y. Essential oils of Mentha viridis rich phenolic compounds show important antioxidant, antidiabetic, dermatoprotective, antidermatophyte and antibacterial properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
65
|
Jaradat N, Al-lahham S, Abualhasan MN, Ghannam D, Mousa K, Kolayb H, Hussein F, Issa L, Mousa A. Chemical Fingerprinting, Anticancer, Anti-inflammatory and Free Radical Scavenging Properties of Calamintha fenzlii Vis. Volatile Oil from Palestine. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-019-03980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
66
|
Gülçin İ, Gören AC, Taslimi P, Alwasel SH, Kılıc O, Bursal E. Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium)-analysis of its polyphenol contents by LC-MS/MS. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101441] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
67
|
Anastasiou TI, Mandalakis M, Krigas N, Vézignol T, Lazari D, Katharios P, Dailianis T, Antonopoulou E. Comparative Evaluation of Essential Oils from Medicinal-Aromatic Plants of Greece: Chemical Composition, Antioxidant Capacity and Antimicrobial Activity against Bacterial Fish Pathogens. Molecules 2019; 25:E148. [PMID: 31905915 PMCID: PMC6982863 DOI: 10.3390/molecules25010148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023] Open
Abstract
The administration of antibiotics in aquaculture has raised concern about the impact of their overuse in marine ecosystems, seafood safety and consumers' health. This "green consumerism" has forced researchers to find new alternatives against fish pathogens. The present study focused on 12 Mediterranean medicinal-aromatic plants as potential antimicrobials and antioxidant agents that could be used in fish aquaculture. In vitro assays showed that the essential oils (EOs) from all studied plants had anti-bacterial and antioxidant properties, with their efficacy being dependent on their chemical composition. More specifically, EOs rich in carvacrol, p-cymene and γ-terpinene exhibited not only the strongest inhibitory activity against the growth of bacterial pathogens (inhibitory concentration: 26-88 μg mL-1), but also the greatest total antioxidant capacity (ABTS: 2591-5879 μmole mL-1; CUPRAC: 931-2733 μmole mL-1). These compounds were mainly found in the EOs from Greek oregano (Origanum vulgare subsp. hirtum), Spanish oregano (Thymbra capitata) and savoury (Satureja thymbra) collected from cultivations in Greece. The specific EOs stand out as promising candidates for the treatment of bacterial diseases and oxidative stress in farmed fish. Further in vivo experiments are needed to fully understand the effects of EO dietary supplementation on fish farming processes.
Collapse
Affiliation(s)
- Thekla I. Anastasiou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (T.I.A.); (T.V.); (P.K.); (T.D.)
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (T.I.A.); (T.V.); (P.K.); (T.D.)
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, P.O. Box 60458, 57001 Thessaloniki, Greece;
| | - Thomas Vézignol
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (T.I.A.); (T.V.); (P.K.); (T.D.)
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (T.I.A.); (T.V.); (P.K.); (T.D.)
| | - Thanos Dailianis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (T.I.A.); (T.V.); (P.K.); (T.D.)
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
68
|
Yu Z, Tang J, Khare T, Kumar V. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia 2019; 140:104433. [PMID: 31760066 DOI: 10.1016/j.fitote.2019.104433] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Antibiotics, considered as a backbone of modern clinical-medicines, are facing serious threats from emerging antimicrobial-resistance (AMR) in several bacteria from nosocomial and community origins and is posing a serious human-health concern. Recent commitment by the Heads of States at the United Nations General Assembly (UNGA, 2016) for coordinated efforts to curb such infections illustrates the scale of this problem. Amongst the drug-resistant microbes, major threat is posed by the group named as ESKAPEE, an acronym for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli, comprising high to critical drug-resistant, World Health Organization Critical Priority I and II pathogens. The drying pipeline of effective and new antibiotics has worsened the situation with looming threat of heading to a 'post-antibiotic era'. This necessitates novel and effective approaches to combat this life-threatening issue. Medicinal and aromatic plants are hailed as the reservoir of bioactive compounds and can serve as a source of antimicrobial compounds, and some recent leads show that essential oils (EOs) may provide an effective solution for tackling AMR. EOs have shown wide-spectrum antimicrobial potentials via targeting the major determinants of pathogenicity, drug-resistance and its spread including cell membrane, drug efflux pumps, quorum sensing, biofilms and R-plasmids. Latest reports confirm the EOs having strong direct-killing or re-sensitizing potentials to replace or rejuvenate otherwise fading antibiotics arsenal. We discuss herein possibilities of using EOs directly for antimicrobial potentials or in combination with antibiotics to potentiate the later for combating AMR in ESKAPEE pathogens. The current understandings, success stories and challenges for translational success have also been discussed.
Collapse
Affiliation(s)
- Zhihui Yu
- Jilin Agricultural Science and Technology College, School of Agronomy, Jilin 132101, China; College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jie Tang
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
69
|
Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests. NANOMATERIALS 2019; 9:nano9091285. [PMID: 31505756 PMCID: PMC6781030 DOI: 10.3390/nano9091285] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022]
Abstract
The management of parasites, insect pests and vectors requests development of novel, effective and eco-friendly tools. The development of resistance towards many drugs and pesticides pushed scientists to look for novel bioactive compounds endowed with multiple modes of action, and with no risk to human health and environment. Several natural products are used as alternative/complementary approaches to manage parasites, insect pests and vectors due to their high efficacy and often limited non-target toxicity. Their encapsulation into nanosystems helps overcome some hurdles related to their physicochemical properties, for instance limited stability and handling, enhancing the overall efficacy. Among different nanosystems, micro- and nanoemulsions are easy-to-use systems in terms of preparation and industrial scale-up. Different reports support their efficacy against parasites of medical importance, including Leishmania, Plasmodium and Trypanosoma as well as agricultural and stored product insect pests and vectors of human diseases, such as Aedes and Culex mosquitoes. Overall, micro- and nanoemulsions are valid options for developing promising eco-friendly tools in pest and vector management, pending proper field validation. Future research on the improvement of technical aspects as well as chronic toxicity experiments on non-target species is needed.
Collapse
|
70
|
Chang CT, Soo WN, Chen YH, Shyur LF. Essential Oil of Mentha aquatica var. Kenting Water Mint Suppresses Two-Stage Skin Carcinogenesis Accelerated by BRAF Inhibitor Vemurafenib. Molecules 2019; 24:molecules24122344. [PMID: 31242703 PMCID: PMC6630265 DOI: 10.3390/molecules24122344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/29/2022] Open
Abstract
The v-raf murine sarcoma viral homolog B1 (BRAF) inhibitor drug vemurafenib (PLX4032) is used to treat melanoma; however, epidemiological evidence reveals that it could cause cutaneous keratoacanthomas and squamous cell carcinoma in cancer patients with the most prevalent HRASQ61L mutation. In a two-stage skin carcinogenesis mouse model, the skin papillomas induced by 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) (DT) resemble the lesions in BRAF inhibitor-treated patients. In this study, we investigated the bioactivity of Mentha aquatica var. Kenting Water Mint essential oil (KWM-EO) against PDV cells, mouse keratinocytes bearing HRASQ61L mutation, and its effect on inhibiting papilloma formation in a two-stage skin carcinogenesis mouse model with or without PLX4032 co-treatment. Our results revealed that KWM-EO effectively attenuated cell viability, colony formation, and the invasive and migratory abilities of PDV cells. Induction of G2/M cell-cycle arrest and apoptosis in PDV cells was also observed. KWM-EO treatment significantly decreased the formation of cutaneous papilloma further induced by PLX4032 in DT mice (DTP). Immunohistochemistry analyses showed overexpression of keratin14 and COX-2 in DT and DTP skin were profoundly suppressed by KWM-EO treatment. This study demonstrates that KWM-EO has chemopreventive effects against PLX4032-induced cutaneous side-effects in a DMBA/TPA-induced two-stage carcinogenesis model and will be worth further exploration for possible application in melanoma patients.
Collapse
Affiliation(s)
- Chih-Ting Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Biological Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ni Soo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Hsin Chen
- Taichung District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Taichung 515, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
- Department of Biological Science and Technology, National Taiwan University, Taipei 106, Taiwan.
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
71
|
Kavetsou E, Koutsoukos S, Daferera D, Polissiou MG, Karagiannis D, Perdikis DC, Detsi A. Encapsulation of Mentha pulegium Essential Oil in Yeast Cell Microcarriers: An Approach to Environmentally Friendly Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4746-4753. [PMID: 30966749 DOI: 10.1021/acs.jafc.8b05149] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A green approach for the encapsulation of Mentha pulegium essential oil in commercial baker's yeast and its evaluation as a pesticide against the insect pest Myzus persicae are presented. Upon treating aqueous yeast cell dispersion with the essential oil, the formation of essential-oil-loaded microparticles of about 9 μm is observed, with a loading capacity ranging from 29 to 36%, depending upon the encapsulation conditions. The thermal properties of the microparticles were characterized using differential scanning calorimetry and thermogravimetric analysis, confirming the protection of the essential oil from the cells. Encapsulation prolonged the insecticidal activity of the essential oil by 3 days.
Collapse
Affiliation(s)
- Eleni Kavetsou
- Laboaratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering , National Technical University of Athens , 15780 Athens , Greece
| | - Spyridon Koutsoukos
- Laboaratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering , National Technical University of Athens , 15780 Athens , Greece
| | | | | | | | | | - Anastasia Detsi
- Laboaratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering , National Technical University of Athens , 15780 Athens , Greece
| |
Collapse
|
72
|
Nanoemulsions of Essential Oils: New Tool for Control of Vector-Borne Diseases and In Vitro Effects on Some Parasitic Agents. MEDICINES 2019; 6:medicines6020042. [PMID: 30934720 PMCID: PMC6630918 DOI: 10.3390/medicines6020042] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
Abstract
The control of infectious/parasitic diseases is a continuing challenge for global health, which in turn requires new methods of action and the development of innovative agents to be used in its prevention and/or treatment. In this context, the control of vectors and intermediate hosts of etiological agents is an efficient method in the prevention of human and veterinary diseases. In later stages, it is necessary to have bioactive compounds that act efficiently on the agents that produce the disease. However, several synthetic agents have strong residual effects in humans and other animals and cause environmental toxicity, affecting fauna, flora and unbalancing the local ecosystem. Many studies have reported the dual activity of the essential oils (EOs): (i) control of vectors that are important in the cycle of disease transmission, and (ii) relevant activity against pathogens. In general, EOs have an easier degradation and cause less extension of environmental contamination. However, problems related to solubility and stability lead to the development of efficient vehicles for formulations containing EOs, such as nanoemulsions. Therefore, this systematic review describes several studies performed with nanoemulsions as carriers of EOs that have larvicidal, insecticidal, repellent, acaricidal and antiparasitic activities, and thus can be considered as alternatives in the vector control of infectious and parasitic diseases, as well as in the combat against etiological agents of parasitic origin.
Collapse
|
73
|
Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria. J Pharm Anal 2019; 9:301-311. [PMID: 31929939 PMCID: PMC6951490 DOI: 10.1016/j.jpha.2019.03.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate antibacterial activity of Origanum compactum essential oils collected at three phenological stages on Escherichia coli and Bacillus subtilis. The antibacterial activity was evaluated using the agar-well diffusion assay. The MIC and MBC values were determined using the micro-dilution assay. The investigation of the antibacterial action was carried out by the evaluation of the effect of O. compactum essential oils on the antibacterial kinetic growth, the integrity of cell membrane and permeability of the cell membrane. The anti-quorum sensing activity was tested by the inhibition of the biofilm formation. The findings of this study showed that O. compactum essential oil has potent antibacterial activities against E. coli and B. subtilis. The lowest inhibition value against B. subtilis was obtained with O. compactum essential oil at the post-flowering stage (MIC = MBC = 0.0312% (v/v)). The antibacterial mechanisms of O. compactum essential oils are related to the disturbing of the cell membrane integrity and the increasing of the membrane permeability, which leads to the leakage of genetic materials (DNA and RNA). Moreover, O. compactum essential oils inhibited the formation of the biofilms, a phenotype that has been known to be quorum sensing regulated.
Collapse
|
74
|
Active Essential Oils and Their Components in Use against Neglected Diseases and Arboviruses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6587150. [PMID: 30881596 PMCID: PMC6387720 DOI: 10.1155/2019/6587150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
The term neglected diseases refers to a group of infections caused by various classes of pathogens, including protozoa, viruses, bacteria, and helminths, most often affecting impoverished populations without adequate sanitation living in close contact with infectious vectors and domestic animals. The fact that these diseases were historically not considered priorities for pharmaceutical companies made the available treatments options obsolete, precarious, outdated, and in some cases nonexistent. The use of plants for medicinal, religious, and cosmetic purposes has a history dating back to the emergence of humanity. One of the principal fractions of chemical substances found in plants are essential oils (EOs). EOs consist of a mixture of volatile and hydrophobic secondary metabolites with marked odors, composed primarily of terpenes and phenylpropanoids. They have great commercial value and were widely used in traditional medicine, by phytotherapy practitioners, and in public health services for the treatment of several conditions, including neglected diseases. In addition to the recognized cytoprotective and antioxidative activities of many of these compounds, larvicidal, insecticidal, and antiparasitic activities have been associated with the induction of oxidative stress in parasites, increasing levels of nitric oxide in the infected host, reducing parasite resistance to reactive oxygen species, and increasing lipid peroxidation, ultimately leading to serious damage to cell membranes. The hydrophobicity of these compounds also allows them to cross the membranes of parasites as well as the blood-brain barrier, collaborating in combat at the second stage of several of these infections. Based on these considerations, the aim of this review was to present an update of the potential of EOs, their fractions, and their chemical constituents, against some neglected diseases, including American and African trypanosomiasis, leishmaniasis, and arboviruses, specially dengue.
Collapse
|
75
|
Stringaro A, Colone M, Angiolella L. Antioxidant, Antifungal, Antibiofilm, and Cytotoxic Activities of Mentha spp. Essential Oils. MEDICINES 2018; 5:medicines5040112. [PMID: 30347861 PMCID: PMC6313564 DOI: 10.3390/medicines5040112] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022]
Abstract
Since ancient times, plants have been used to preserve food, or for their health properties. Essential oils are complex mixtures of volatile compounds that are obtained from botanical material, specifically from aromatic plants. Lamiaceae is one of the most important families in the production of essential oils, as it has both antioxidant and antimicrobial properties. The essential oils of Mentha (the Lamiaceae family) have been extensively studied for their biological actions. In this review, we report the antioxidant, antifungal, antibiofilm, and cytotoxic properties of Mentha spp. essential oils. The first objective is to provide comprehensive information about the use of essential oils in the treatment of fungal infections, or as antioxidants and integrative anticancer therapy. The second is to explore the evidence supporting its effectiveness in treating diseases without causing any serious adverse reactions.
Collapse
Affiliation(s)
- Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Letizia Angiolella
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
76
|
Tachallait H, Bouyahya A, Talha A, Bakri Y, Dakka N, Demange L, Benhida R, Bougrin K. Concise synthesis and antibacterial evaluation of novel 3-(1,4-disubstituted-1,2,3-triazolyl)uridine nucleosides. Arch Pharm (Weinheim) 2018; 351:e1800204. [DOI: 10.1002/ardp.201800204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Hamza Tachallait
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, Faculty of Science, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center; Mohammed V University in Rabat; Rabat Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathology Biology, Faculty of Science; Mohamed V University; Rabat Morocco
| | - Aicha Talha
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, Faculty of Science, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center; Mohammed V University in Rabat; Rabat Morocco
| | - Youssef Bakri
- Laboratory of Human Pathology Biology, Faculty of Science; Mohamed V University; Rabat Morocco
| | - Nadia Dakka
- Laboratory of Human Pathology Biology, Faculty of Science; Mohamed V University; Rabat Morocco
| | - Luc Demange
- Université Côte d'Azur, CNRS; Institut de Chimie de Nice; Nice France
- Département de Chimie, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques; UFR Biomédicale des Saints Pères; Paris France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS; Institut de Chimie de Nice; Nice France
- Mohammed VI Polytechnic University; Benguerir Morocco
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, Faculty of Science, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center; Mohammed V University in Rabat; Rabat Morocco
- Mohammed VI Polytechnic University; Benguerir Morocco
| |
Collapse
|
77
|
Caputo L, Trotta M, Romaniello A, De Feo V. Chemical Composition and Phytotoxic Activity of Rosmarinus officinalis Essential Oil. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study we determined the chemical composition of R. officinalis essential oil and evaluated its possible phytotoxic activity. The chemical composition of the essential oil was studied by GC and GC-MS analyses. A total of 57 compounds were identified and the main components are α-pinene (24.9%), verbenol (8.5%), verbenone (8.5%), 1,8-cineol (8.2%) and isoborneol (8.1%). Moreover, the essential oil and its main constituents, α-pinene and 1,8-cineol, were evaluated for their possible in vitro phytotoxic activity against germination and initial radical growth of radish ( Raphanus sativus L.), rue ( Ruta graveolens L.), lettuce ( Lactuca sativa L.) and tomato ( Solanum lycopersicum L.). The results showed thatboth germination and radical elongation were sensitive to the oil but not in the same way to α-pinene and 1,8-cineol. The oil influences in different ways radical elongation of R. sativus, R. graveolens, and L. sativa and the germination of S. lycopersicum. Instead α-pinene influenced only radical elongation of lettuce.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Mariarosa Trotta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Angelica Romaniello
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| |
Collapse
|
78
|
Salehi B, Stojanović-Radić Z, Matejić J, Sharopov F, Antolak H, Kręgiel D, Sen S, Sharifi-Rad M, Acharya K, Sharifi-Rad R, Martorell M, Sureda A, Martins N, Sharifi-Rad J. Plants of Genus Mentha: From Farm to Food Factory. PLANTS (BASEL, SWITZERLAND) 2018; 7:E70. [PMID: 30181483 PMCID: PMC6161068 DOI: 10.3390/plants7030070] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/16/2023]
Abstract
Genus Mentha, a member of Lamiaceae family, encompasses a series of species used on an industrial scale and with a well-described and developed culture process. Extracts of this genus are traditionally used as foods and are highly valued due to the presence of significant amounts of antioxidant phenolic compounds. Many essential oil chemotypes show distinct aromatic flavor conferred by different terpene proportions. Mint extracts and their derived essential oils exert notable effects against a broad spectrum of bacteria, fungi or yeasts, tested both in vitro or in various food matrices. Their chemical compositions are well-known, which suggest and even prompt their safe use. In this review, genus Mentha plant cultivation, phytochemical analysis and even antimicrobial activity are carefully described. Also, in consideration of its natural origin, antioxidant and antimicrobial properties, a special emphasis was given to mint-derived products as an interesting alternative to artificial preservatives towards establishing a wide range of applications for shelf-life extension of food ingredients and even foodstuffs. Mentha cultivation techniques markedly influence its phytochemical composition. Both extracts and essential oils display a broad spectrum of activity, closely related to its phytochemical composition. Therefore, industrial implementation of genus Mentha depends on its efficacy, safety and neutral taste.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.
| | - Jelena Matejić
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr Zorana Đinđića 81, 18000 Niš, Serbia.
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 90-924 Łódź, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 90-924 Łódź, Poland.
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663335, Iran.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| | - Razieh Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615585, Iran.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, 4070386 VIII-Bio Bio Region, Chile.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.
| |
Collapse
|
79
|
The Kidney Injury Induced by Short-Term PM 2.5 Exposure and the Prophylactic Treatment of Essential Oils in BALB/c Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9098627. [PMID: 30151074 PMCID: PMC6087578 DOI: 10.1155/2018/9098627] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/08/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
PM2.5 is well known as a major environmental pollutant; it has been proved to be associated with kidney diseases. The kidney damage involves oxidative stress and/or inflammatory response. NOX4 is a major source of reactive oxygen species (ROS) generation in the kidney, and the excessive generation of ROS is recognized to be responsible for oxidative stress. To elucidate whether short-term PM2.5 exposure could induce kidney damage, we exposed BALB/c mice to PM2.5 intratracheally and measured the biomarkers of kidney injury (KIM-1, cystatin C), oxidative stress (MDA, SOD-1, and HO-1), and inflammatory response (NF-κB, TNF-α). Acute kidney damage and excessive oxidative stress as well as transient inflammatory response were observed after PM2.5 installation. The overexpression of some components of the angiotensin system (RAS) after PM2.5 exposure illustrated that RAS may be involved in PM2.5-induced acute kidney injury. CEOs (compound essential oils) have been widely used because of their antioxidant and anti-inflammation properties. Treatment with CEOs substantially attenuated PM2.5-induced acute kidney injury. The suppression of RAS activation was significant and earlier than the decrease of oxidative stress and inflammatory response after CEOs treatment. We hypothesized that CEOs could attenuate the acute kidney injury by suppressing the RAS activation and subsequently inhibit the oxidative stress and inflammatory response.
Collapse
|
80
|
Yeom HJ, Lee HR, Lee SC, Lee JE, Seo SM, Park IK. Insecticidal Activity of Lamiaceae Plant Essential Oils and Their Constituents Against Blattella germanica L. Adult. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:653-661. [PMID: 29474548 DOI: 10.1093/jee/tox378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The insecticidal activities of 13 Lamiaceae plant oils and their components against adult German cockroaches, Blattella germanica L. (Blattodea: Blattellidae), were evaluated using fumigant and contact bioassay. Among the tested oils, basil, pennyroyal, and spearmint showed the strongest insecticidal activities against adult B. germanica. Insecticidal activity of pennyroyal was 100% against male B. germanica at 1.25 mg concentration in fumigant bioassay. Basil and spearmint revealed 100% and 100% insecticidal activity against male B. germanica at 5 mg concentration, but their activities reduced to 80% and 25% at 2.5 mg concentration, respectively. In contact, toxicity bioassay, basil, pennyroyal, and spearmint oils exhibited 100%, 100%, and 98% mortality against female B. germanica at 1 mg/♀, respectively. Among the constituents identified in basil, pennyroyal, and spearmint oils, insecticidal activity of pulegone was the strongest against male and female B. germanica.
Collapse
Affiliation(s)
- Hwa-Jeong Yeom
- Incheon International Airport Regional Office, Animal and Plant Quarantine Agency, Gonghang-ro, Jung-gu, Incheon, Republic of Korea
| | - Hyo-Rim Lee
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Chan Lee
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Eun Lee
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seon-Mi Seo
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Il-Kwon Park
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
81
|
Bouyahya A, Bakri Y, Et-Touys A, Assemian ICC, Abrini J, Dakka N. In vitro antiproliferative activity of selected medicinal plants from the North-West of Morocco on several cancer cell lines. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
82
|
Anacarso I, Sabia C, de Niederhäusern S, Iseppi R, Condò C, Bondi M, Messi P. In vitro evaluation of the amoebicidal activity of rosemary (Rosmarinus officinalis L.) and cloves (Syzygium aromaticum L. Merr. & Perry) essential oils against Acanthamoeba polyphaga trophozoites. Nat Prod Res 2017; 33:606-611. [PMID: 29117746 DOI: 10.1080/14786419.2017.1399390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several species of the genus Acanthamoeba cause human diseases. Treatment of infections involves various problems, emphasising the need to develop alternative antiprotozoal agents. We studied the anti-amoebic activity of Essential Oils (EOs), derived from rosemary (Rosmarinus officinalis L.) and cloves (Syzygium aromaticum L. Merr. & Perry), against Acanthamoeba polyphaga strain. The amoebicidal activity of cloves and rosemary EOs was preliminary demonstrated by the morphology change (modifications in the cell shape, the presence of precipitates in the cytoplasm, autophagic vesicles, membrane blends) of the treated trophozoites. The cell-counts, carried out after staining trophozoites with a Trypan blue solution, revealed that both EOs were active in a dose-dependent manner and in relation to the exposure time. This activity was evident after few hours, with encouraging results obtained in particular with cloves EO, able to act at the lower concentrations and after 1 h, probably for its high eugenol content (65.30%).
Collapse
Affiliation(s)
- Immacolata Anacarso
- a Department of Life Sciences , University of Modena and Reggio E. , Modena , Italy
| | - Carla Sabia
- a Department of Life Sciences , University of Modena and Reggio E. , Modena , Italy
| | | | - Ramona Iseppi
- a Department of Life Sciences , University of Modena and Reggio E. , Modena , Italy
| | - Carla Condò
- a Department of Life Sciences , University of Modena and Reggio E. , Modena , Italy
| | - Moreno Bondi
- a Department of Life Sciences , University of Modena and Reggio E. , Modena , Italy
| | - Patrizia Messi
- a Department of Life Sciences , University of Modena and Reggio E. , Modena , Italy
| |
Collapse
|
83
|
Bouyahya A, Et-Touys A, Abrini J, Talbaoui A, Fellah H, Bakri Y, Dakka N. Lavandula stoechas essential oil from Morocco as novel source of antileishmanial, antibacterial and antioxidant activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|