51
|
Stadler MR, Haines JE, Eisen MB. Convergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo. eLife 2017; 6:29550. [PMID: 29148971 PMCID: PMC5739541 DOI: 10.7554/elife.29550] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Abstract
High-throughput assays of three-dimensional interactions of chromosomes have shed considerable light on the structure of animal chromatin. Despite this progress, the precise physical nature of observed structures and the forces that govern their establishment remain poorly understood. Here we present high resolution Hi-C data from early Drosophila embryos. We demonstrate that boundaries between topological domains of various sizes map to DNA elements that resemble classical insulator elements: short genomic regions sensitive to DNase digestion that are strongly bound by known insulator proteins and are frequently located between divergent promoters. Further, we show a striking correspondence between these elements and the locations of mapped polytene interband regions. We believe it is likely this relationship between insulators, topological boundaries, and polytene interbands extends across the genome, and we therefore propose a model in which decompaction of boundary-insulator-interband regions drives the organization of interphase chromosomes by creating stable physical separation between adjacent domains.
Collapse
Affiliation(s)
- Michael R Stadler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Jenna E Haines
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Michael B Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States.,Department of Integrative Biology, University of California, Berkeley, CA, United States.,Howard Hughes Medical Institute, Berkeley, CA, United States
| |
Collapse
|
52
|
Melnikova LS, Kostyuchenko MV, Krivega IV, Shapovalov IS, Georgiev PG, Golovnin AK. Mapping of the gypsy retrotransposon sequence is responsible for the EAST-dependent repression in the yellow gene model system of Drosophila melanogaster. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417090101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
Melnikova L, Kostyuchenko M, Molodina V, Parshikov A, Georgiev P, Golovnin A. Interactions between BTB domain of CP190 and two adjacent regions in Su(Hw) are required for the insulator complex formation. Chromosoma 2017; 127:59-71. [PMID: 28939920 DOI: 10.1007/s00412-017-0645-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 12/26/2022]
Abstract
The best-studied Drosophila insulator complex consists of two BTB-containing proteins, the Mod(mdg4)-67.2 isoform and CP190, which are recruited cooperatively to chromatin through interactions with the DNA-binding architectural protein Su(Hw). While Mod(mdg4)-67.2 interacts only with Su(Hw), CP190 interacts with many other architectural proteins. In spite of the fact that CP190 is critical for the activity of Su(Hw) insulators, interaction between these proteins has not been studied yet. Therefore, we have performed a detailed analysis of domains involved in the interaction between the Su(Hw) and CP190. The results show that the BTB domain of CP190 interacts with two adjacent regions at the N-terminus of Su(Hw). Deletion of either region in Su(Hw) only weakly affected recruiting of CP190 to the Su(Hw) sites in the presence of Mod(mdg4)-67.2. Deletion of both regions in Su(Hw) prevents its interaction with CP190. Using mutations in vivo, we found that interactions with Su(Hw) and Mod(mdg4)-67.2 are essential for recruiting of CP190 to the Su(Hw) genomic sites.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, Russia, 119334
| | - Margarita Kostyuchenko
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, Russia, 119334
| | - Varvara Molodina
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, Russia, 119334
| | - Alexander Parshikov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, Russia, 119334
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, Russia, 119334.
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, Russia, 119334.
| |
Collapse
|
54
|
Baxley RM, Bullard JD, Klein MW, Fell AG, Morales-Rosado JA, Duan T, Geyer PK. Deciphering the DNA code for the function of the Drosophila polydactyl zinc finger protein Suppressor of Hairy-wing. Nucleic Acids Res 2017; 45:4463-4478. [PMID: 28158673 PMCID: PMC5416891 DOI: 10.1093/nar/gkx040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022] Open
Abstract
Polydactyl zinc finger (ZF) proteins have prominent roles in gene regulation and often execute multiple regulatory functions. To understand how these proteins perform varied regulation, we studiedDrosophila Suppressor of Hairy-wing [Su(Hw)], an exemplar multifunctional polydactyl ZF protein. We identified separation-of-function (SOF) alleles that encode proteins disrupted in a single ZF that retain one of the Su(Hw) regulatory activities. Through extended in vitro analyses of the Su(Hw) ZF domain, we show that clusters of ZFs bind individual modules within a compound DNA consensus sequence. Through in vivo analysis of SOF mutants, we find that Su(Hw) genomic sites separate into sequence subclasses comprised of combinations of modules, with subclasses enriched for different chromatin features. These data suggest a Su(Hw) code, wherein DNA binding dictates its cofactor recruitment and regulatory output. We propose that similar DNA codes might be used to confer multiple regulatory functions of other polydactyl ZF proteins.
Collapse
Affiliation(s)
- Ryan M Baxley
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - James D Bullard
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Michael W Klein
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Ashley G Fell
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | - Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA.,Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
55
|
Rowley MJ, Nichols MH, Lyu X, Ando-Kuri M, Rivera ISM, Hermetz K, Wang P, Ruan Y, Corces VG. Evolutionarily Conserved Principles Predict 3D Chromatin Organization. Mol Cell 2017; 67:837-852.e7. [PMID: 28826674 DOI: 10.1016/j.molcel.2017.07.022] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 06/23/2017] [Accepted: 07/21/2017] [Indexed: 01/02/2023]
Abstract
Topologically associating domains (TADs), CTCF loop domains, and A/B compartments have been identified as important structural and functional components of 3D chromatin organization, yet the relationship between these features is not well understood. Using high-resolution Hi-C and HiChIP, we show that Drosophila chromatin is organized into domains we term compartmental domains that correspond precisely with A/B compartments at high resolution. We find that transcriptional state is a major predictor of Hi-C contact maps in several eukaryotes tested, including C. elegans and A. thaliana. Architectural proteins insulate compartmental domains by reducing interaction frequencies between neighboring regions in Drosophila, but CTCF loops do not play a distinct role in this organism. In mammals, compartmental domains exist alongside CTCF loop domains to form topological domains. The results suggest that compartmental domains are responsible for domain structure in all eukaryotes, with CTCF playing an important role in domain formation in mammals.
Collapse
Affiliation(s)
- M Jordan Rowley
- Department of Biology, Emory University, 1510 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - Michael H Nichols
- Department of Biology, Emory University, 1510 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - Xiaowen Lyu
- Department of Biology, Emory University, 1510 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - Masami Ando-Kuri
- Department of Biology, Emory University, 1510 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - I Sarahi M Rivera
- Department of Biology, Emory University, 1510 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - Karen Hermetz
- Department of Biology, Emory University, 1510 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - Ping Wang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Road Northeast, Atlanta, GA 30322, USA.
| |
Collapse
|
56
|
Jox T, Buxa MK, Bohla D, Ullah I, Mačinković I, Brehm A, Bartkuhn M, Renkawitz R. Drosophila CP190- and dCTCF-mediated enhancer blocking is augmented by SUMOylation. Epigenetics Chromatin 2017; 10:32. [PMID: 28680483 PMCID: PMC5496309 DOI: 10.1186/s13072-017-0140-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/27/2017] [Indexed: 12/02/2022] Open
Abstract
Background Chromatin insulators shield promoters and chromatin domains from neighboring enhancers or chromatin regions with opposing activities. Insulator-binding proteins and their cofactors mediate the boundary function. In general, covalent modification of proteins by the small ubiquitin-like modifier (SUMO) is an important mechanism to control the interaction of proteins within complexes. Results Here we addressed the impact of dSUMO in respect of insulator function, chromatin binding of insulator factors and formation of insulator speckles in Drosophila. SUMOylation augments the enhancer blocking function of four different insulator sequences and increases the genome-wide binding of the insulator cofactor CP190. Conclusions These results indicate that enhanced chromatin binding of SUMOylated CP190 causes fusion of insulator speckles, which may allow for more efficient insulation. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0140-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Theresa Jox
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany.,Institute for Molecular Pathology, UKGM, 35392 Giessen, Germany
| | - Melanie K Buxa
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany.,Flohr Consult, Adenauerallee 136, 53113 Bonn, Germany
| | - Dorte Bohla
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Ikram Ullah
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, 35037 Marburg, Germany
| | - Igor Mačinković
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, 35037 Marburg, Germany
| | - Alexander Brehm
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, 35037 Marburg, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
57
|
Three-Dimensional Genome Organization and Function in Drosophila. Genetics 2017; 205:5-24. [PMID: 28049701 PMCID: PMC5223523 DOI: 10.1534/genetics.115.185132] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.
Collapse
|
58
|
Tue NT, Yoshioka Y, Mizoguchi M, Yoshida H, Zurita M, Yamaguchi M. DREF plays multiple roles during Drosophila development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:705-712. [PMID: 28363744 DOI: 10.1016/j.bbagrm.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022]
Abstract
DREF was originally identified as a transcription factor that coordinately regulates the expression of DNA replication- and proliferation-related genes in Drosophila. Subsequent studies demonstrated that DREF is involved in tumor suppressor pathways including p53 and Hippo signaling. DREF also regulates the expression of genes encoding components of the JNK and EGFR pathways during Drosophila development. DREF itself is under the control of the TOR pathway during cell and tissue growth responding to nutrition. Recent studies revealed that DREF plays a role in chromatin organization including insulator function, chromatin remodeling, and telomere maintenance. DREF is also involved in the regulation of genes related to mitochondrial biogenesis, linking it to cellular proliferation. Thus, DREF is now emerging as not only a transcription factor, but also a multi-functional protein. In this review, we summarize current advances in studies on the novel functions of Drosophila DREF.
Collapse
Affiliation(s)
- Nguyen Trong Tue
- Gene-Protein Research Center, Hanoi Medical University, Hanoi, Vietnam
| | - Yasuhide Yoshioka
- Faculty of Science and Engineering, Setsunan University, Osaka, Japan
| | - Megumi Mizoguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mario Zurita
- Departamento de Genética del Desarrollo Y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62250 Cuernavaca, Mor., Mexico
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
59
|
Lomaev D, Mikhailova A, Erokhin M, Shaposhnikov AV, Moresco JJ, Blokhina T, Wolle D, Aoki T, Ryabykh V, Yates JR, Shidlovskii YV, Georgiev P, Schedl P, Chetverina D. The GAGA factor regulatory network: Identification of GAGA factor associated proteins. PLoS One 2017; 12:e0173602. [PMID: 28296955 PMCID: PMC5351981 DOI: 10.1371/journal.pone.0173602] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/23/2017] [Indexed: 11/24/2022] Open
Abstract
The Drosophila GAGA factor (GAF) has an extraordinarily diverse set of functions that include the activation and silencing of gene expression, nucleosome organization and remodeling, higher order chromosome architecture and mitosis. One hypothesis that could account for these diverse activities is that GAF is able to interact with partners that have specific and dedicated functions. To test this possibility we used affinity purification coupled with high throughput mass spectrometry to identify GAF associated partners. Consistent with this hypothesis the GAF interacting network includes a large collection of factors and complexes that have been implicated in many different aspects of gene activity, chromosome structure and function. Moreover, we show that GAF interactions with a small subset of partners is direct; however for many others the interactions could be indirect, and depend upon intermediates that serve to diversify the functional capabilities of the GAF protein.
Collapse
Affiliation(s)
- Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Mikhailova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - James J. Moresco
- Department of Chemical Physiology, SR302B, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tatiana Blokhina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
| | - Tsutomu Aoki
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
| | - Vladimir Ryabykh
- Institute of Animal Physiology, Biochemistry and Nutrition, Borovsk, Russia
| | - John R. Yates
- Department of Chemical Physiology, SR302B, The Scripps Research Institute, La Jolla, California, United States of America
| | | | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (DC); (PS); (PG)
| | - Paul Schedl
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
- * E-mail: (DC); (PS); (PG)
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (DC); (PS); (PG)
| |
Collapse
|
60
|
Golovnin AK, Molodina VV, Shapovalov IS, Georgiev PG, Melnikova LS. LTR sequence of the MDG4 retrotransposon contains the MAD protein binding site that affects the east-dependent repression. DOKL BIOCHEM BIOPHYS 2017; 473:106-110. [DOI: 10.1134/s1607672917020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 11/22/2022]
|
61
|
Gerland TA, Sun B, Smialowski P, Lukacs A, Thomae AW, Imhof A. The Drosophila speciation factor HMR localizes to genomic insulator sites. PLoS One 2017; 12:e0171798. [PMID: 28207793 PMCID: PMC5312933 DOI: 10.1371/journal.pone.0171798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
Hybrid incompatibility between Drosophila melanogaster and D. simulans is caused by a lethal interaction of the proteins encoded by the Hmr and Lhr genes. In D. melanogaster the loss of HMR results in mitotic defects, an increase in transcription of transposable elements and a deregulation of heterochromatic genes. To better understand the molecular mechanisms that mediate HMR’s function, we measured genome-wide localization of HMR in D. melanogaster tissue culture cells by chromatin immunoprecipitation. Interestingly, we find HMR localizing to genomic insulator sites that can be classified into two groups. One group belongs to gypsy insulators and another one borders HP1a bound regions at active genes. The transcription of the latter group genes is strongly affected in larvae and ovaries of Hmr mutant flies. Our data suggest a novel link between HMR and insulator proteins, a finding that implicates a potential role for genome organization in the formation of species.
Collapse
Affiliation(s)
- Thomas Andreas Gerland
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bo Sun
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Pawel Smialowski
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Biomedical Center, Core Facility Computational Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Andrea Lukacs
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Andreas Walter Thomae
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Biomedical Center, Core Facility Bioimaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
62
|
Different Evolutionary Strategies To Conserve Chromatin Boundary Function in the Bithorax Complex. Genetics 2016; 205:589-603. [PMID: 28007886 PMCID: PMC5289839 DOI: 10.1534/genetics.116.195586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022] Open
Abstract
Chromatin boundary elements subdivide chromosomes in multicellular organisms into physically independent domains. In addition to this architectural function, these elements also play a critical role in gene regulation. Here we investigated the evolution of a Drosophila Bithorax complex boundary element called Fab-7, which is required for the proper parasegment specific expression of the homeotic Abd-B gene. Using a “gene” replacement strategy, we show that Fab-7 boundaries from two closely related species, D. erecta and D. yakuba, and a more distant species, D. pseudoobscura, are able to substitute for the melanogaster boundary. Consistent with this functional conservation, the two known Fab-7 boundary factors, Elba and LBC, have recognition sequences in the boundaries from all species. However, the strategies used for maintaining binding and function in the face of sequence divergence is different. The first is conventional, and depends upon conservation of the 8 bp Elba recognition sequence. The second is unconventional, and takes advantage of the unusually large and flexible sequence recognition properties of the LBC boundary factor, and the deployment of multiple LBC recognition elements in each boundary. In the former case, binding is lost when the recognition sequence is altered. In the latter case, sequence divergence is accompanied by changes in the number, relative affinity, and location of the LBC recognition elements.
Collapse
|
63
|
Kyrchanova OV, Postika NY, Parshikov AF, Georgiev PG. Insulators can disrupt weak transcription derived from the white gene enhancer in Drosophila transgenic lines. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
64
|
Pauli T, Vedder L, Dowling D, Petersen M, Meusemann K, Donath A, Peters RS, Podsiadlowski L, Mayer C, Liu S, Zhou X, Heger P, Wiehe T, Hering L, Mayer G, Misof B, Niehuis O. Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects : Insect insulator proteins. BMC Genomics 2016; 17:861. [PMID: 27809783 PMCID: PMC5094011 DOI: 10.1186/s12864-016-3205-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/25/2016] [Indexed: 01/19/2023] Open
Abstract
Background Body plan development in multi-cellular organisms is largely determined by homeotic genes. Expression of homeotic genes, in turn, is partially regulated by insulator binding proteins (IBPs). While only a few enhancer blocking IBPs have been identified in vertebrates, the common fruit fly Drosophila melanogaster harbors at least twelve different enhancer blocking IBPs. We screened recently compiled insect transcriptomes from the 1KITE project and genomic and transcriptomic data from public databases, aiming to trace the origin of IBPs in insects and other arthropods. Results Our study shows that the last common ancestor of insects (Hexapoda) already possessed a substantial number of IBPs. Specifically, of the known twelve insect IBPs, at least three (i.e., CP190, Su(Hw), and CTCF) already existed prior to the evolution of insects. Furthermore we found GAF orthologs in early branching insect orders, including Zygentoma (silverfish and firebrats) and Diplura (two-pronged bristletails). Mod(mdg4) is most likely a derived feature of Neoptera, while Pita is likely an evolutionary novelty of holometabolous insects. Zw5 appears to be restricted to schizophoran flies, whereas BEAF-32, ZIPIC and the Elba complex, are probably unique to the genus Drosophila. Selection models indicate that insect IBPs evolved under neutral or purifying selection. Conclusions Our results suggest that a substantial number of IBPs either pre-date the evolution of insects or evolved early during insect evolution. This suggests an evolutionary history of insulator binding proteins in insects different to that previously thought. Moreover, our study demonstrates the versatility of the 1KITE transcriptomic data for comparative analyses in insects and other arthropods. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Pauli
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany.
| | - Lucia Vedder
- University of Tübingen, Geschwister-Scholl-Platz, 72074, Tübingen, Germany
| | - Daniel Dowling
- Johannes Gutenberg University Mainz, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Malte Petersen
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Karen Meusemann
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany.,Department for Evolutionary Biology and Ecology (Institut for Biology I, Zoology), University of Freiburg, Hauptstr. 1, 79104, Freiburg, Germany.,Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Acton, ACT, 2601, Australia
| | - Alexander Donath
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Ralph S Peters
- Zoological Research Museum Alexander Koenig, Arthropod Department, Adenauerallee 160, 53113, Bonn, Germany
| | - Lars Podsiadlowski
- University of Bonn, Institute of Evolutionary Biology and Ecology, An der Immenburg 1, 53121, Bonn, Germany
| | - Christoph Mayer
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Shanlin Liu
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Peter Heger
- University of Cologne, Cologne Biocenter, Institute for Genetics, Zülpicher Straße 47a, 50674, Köln, Germany
| | - Thomas Wiehe
- University of Cologne, Cologne Biocenter, Institute for Genetics, Zülpicher Straße 47a, 50674, Köln, Germany
| | - Lars Hering
- Department of Zoology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Georg Mayer
- Department of Zoology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Bernhard Misof
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Oliver Niehuis
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany.
| |
Collapse
|
65
|
Xu N, Lu X, Kavi H, Emelyanov AV, Bernardo TJ, Vershilova E, Skoultchi AI, Fyodorov DV. BEN domain protein Elba2 can functionally substitute for linker histone H1 in Drosophila in vivo. Sci Rep 2016; 6:34354. [PMID: 27687115 PMCID: PMC5043383 DOI: 10.1038/srep34354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/09/2016] [Indexed: 01/20/2023] Open
Abstract
Metazoan linker histones are essential for development and play crucial roles in organization of chromatin, modification of epigenetic states and regulation of genetic activity. Vertebrates express multiple linker histone H1 isoforms, which may function redundantly. In contrast, H1 isoforms are not present in Dipterans, including D. melanogaster, except for an embryo-specific, distantly related dBigH1. Here we show that Drosophila BEN domain protein Elba2, which is expressed in early embryos and was hypothesized to have insulator-specific functions, can compensate for the loss of H1 in vivo. Although the Elba2 gene is not essential, its mutation causes a disruption of normal internucleosomal spacing of chromatin and reduced nuclear compaction in syncytial embryos. Elba2 protein is distributed ubiquitously in polytene chromosomes and strongly colocalizes with H1. In H1-depleted animals, ectopic expression of Elba2 rescues the increased lethality and ameliorates abnormalities of chromosome architecture and heterochromatin functions. We also demonstrate that ectopic expression of BigH1 similarly complements the deficiency of H1 protein. Thus, in organisms that do not express redundant H1 isoforms, the structural and biological functions performed by canonical linker histones in later development, may be shared in early embryos by weakly homologous proteins, such as BigH1, or even unrelated, non-homologous proteins, such as Elba2.
Collapse
Affiliation(s)
- Na Xu
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| | - Xingwu Lu
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| | - Harsh Kavi
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| | | | - Travis J. Bernardo
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| | - Elena Vershilova
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| | - Arthur I. Skoultchi
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| | - Dmitry V. Fyodorov
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| |
Collapse
|
66
|
Buxa MK, Slotman JA, van Royen ME, Paul MW, Houtsmuller AB, Renkawitz R. Insulator speckles associated with long-distance chromatin contacts. Biol Open 2016; 5:1266-74. [PMID: 27464669 PMCID: PMC5051650 DOI: 10.1242/bio.019455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nuclear foci of chromatin binding factors are, in many cases, discussed as sites of long-range chromatin interaction in the three-dimensional nuclear space. Insulator binding proteins have been shown to aggregate into insulator bodies, which are large structures not involved in insulation; however, the more diffusely distributed insulator speckles have not been analysed in this respect. Furthermore, insulator binding proteins have been shown to drive binding sites for Polycomb group proteins into Polycomb bodies. Here we find that insulator speckles, marked by the insulator binding protein dCTCF, and Polycomb bodies show differential association with the insulator protein CP190. They differ in number and three-dimensional location with only 26% of the Polycomb bodies overlapping with CP190. By using fluorescence in situ hybridization (FISH) probes to identify long-range interaction (kissing) of the Hox gene clusters Antennapedia complex (ANT-C) and Bithorax complex (BX-C), we found the frequency of interaction to be very low. However, these rare kissing events were associated with insulator speckles at a significantly shorter distance and an increased speckle number. This suggests that insulator speckles are associated with long-distance interaction.
Collapse
Affiliation(s)
- Melanie K Buxa
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, Giessen D35392, Germany
| | - Johan A Slotman
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Postbus 2040, Rotterdam 3000 CA, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Postbus 2040, Rotterdam 3000 CA, The Netherlands
| | - Maarten W Paul
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Postbus 2040, Rotterdam 3000 CA, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Postbus 2040, Rotterdam 3000 CA, The Netherlands
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, Giessen D35392, Germany
| |
Collapse
|
67
|
Ma Z, Li M, Roy S, Liu KJ, Romine ML, Lane DC, Patel SK, Cai HN. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters. World J Biol Chem 2016; 7:223-230. [PMID: 27621770 PMCID: PMC4997523 DOI: 10.4331/wjbc.v7.i3.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/14/2016] [Accepted: 07/13/2016] [Indexed: 02/05/2023] Open
Abstract
The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development.
Collapse
|
68
|
Chaharbakhshi E, Jemc JC. Broad-complex, tramtrack, and bric-à-brac (BTB) proteins: Critical regulators of development. Genesis 2016; 54:505-518. [DOI: 10.1002/dvg.22964] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Edwin Chaharbakhshi
- Department of Biology; Loyola University Chicago; Chicago IL
- Stritch School of Medicine; Loyola University Chicago; Maywood IL
| | | |
Collapse
|
69
|
Carballar-Lejarazú R, Brennock P, James AA. Suppressor of hairy-wing, modifier of mdg4 and centrosomal protein of 190 gene orthologues of the gypsy insulator complex in the malaria mosquito, Anopheles stephensi. INSECT MOLECULAR BIOLOGY 2016; 25:460-469. [PMID: 27110891 PMCID: PMC4935592 DOI: 10.1111/imb.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA insulators organize independent gene regulatory domains and can regulate interactions amongst promoter and enhancer elements. They have the potential to be important in genome enhancing and editing technologies because they can mitigate chromosomal position effects on transgenes. The orthologous genes of the Anopheles stephensi putative gypsy-like insulator protein complex were identified and expression characteristics studied. These genes encode polypeptides with all the expected protein domains (Cysteine 2 Histidine 2 (C2H2) zinc fingers and/or a bric-a-brac/poxvirus and zinc finger). The mosquito gypsy transcripts are expressed constitutively and are upregulated in ovaries of blood-fed females. We have uncovered significant experimental evidence that the gypsy insulator protein complex is widespread in vector mosquitoes.
Collapse
Affiliation(s)
- R Carballar-Lejarazú
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - P Brennock
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - A A James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| |
Collapse
|
70
|
Chatterjee RN, Chatterjee R, Ghosh S. Heterochromatin-binding proteins regulate male X polytene chromosome morphology and dosage compensation: an evidence from a variegated rearranged strain [In (1)BM 2,(rv)] and its interactions with hyperploids and mle mutation in Drosophila melanogaster. THE NUCLEUS 2016. [DOI: 10.1007/s13237-016-0177-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
71
|
Golovnin AK, Molodina VV, Georgiev PG, Melnikova LS. Zinc finger domain of Su(Hw) protein is required for the formation of functional Su(Hw)-dependent insulator complex. DOKL BIOCHEM BIOPHYS 2016; 469:247-52. [DOI: 10.1134/s1607672916040049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 11/23/2022]
|
72
|
Fukaya T, Lim B, Levine M. Enhancer Control of Transcriptional Bursting. Cell 2016; 166:358-368. [PMID: 27293191 DOI: 10.1016/j.cell.2016.05.025] [Citation(s) in RCA: 450] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/13/2016] [Accepted: 05/04/2016] [Indexed: 11/27/2022]
Abstract
Transcription is episodic, consisting of a series of discontinuous bursts. Using live-imaging methods and quantitative analysis, we examine transcriptional bursting in living Drosophila embryos. Different developmental enhancers positioned downstream of synthetic reporter genes produce transcriptional bursts with similar amplitudes and duration but generate very different bursting frequencies, with strong enhancers producing more bursts than weak enhancers. Insertion of an insulator reduces the number of bursts and the corresponding level of gene expression, suggesting that enhancer regulation of bursting frequency is a key parameter of gene control in development. We also show that linked reporter genes exhibit coordinated bursting profiles when regulated by a shared enhancer, challenging conventional models of enhancer-promoter looping.
Collapse
Affiliation(s)
- Takashi Fukaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Bomyi Lim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
73
|
Melnikova L, Shapovalov I, Kostyuchenko M, Georgiev P, Golovnin A. EAST affects the activity of Su(Hw) insulators by two different mechanisms in Drosophila melanogaster. Chromosoma 2016; 126:299-311. [PMID: 27136940 DOI: 10.1007/s00412-016-0596-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/24/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
Recent data suggest that insulators organize chromatin architecture in the nucleus. The best characterized Drosophila insulator, found in the gypsy retrotransposon, contains 12 binding sites for the Su(Hw) protein. Enhancer blocking, along with Su(Hw), requires BTB/POZ domain proteins, Mod(mdg4)-67.2 and CP190. Inactivation of Mod(mdg4)-67.2 leads to a direct repression of the yellow gene promoter by the gypsy insulator. Here, we have shown that such repression is regulated by the level of the EAST protein, which is an essential component of the interchromatin compartment. Deletion of the EAST C-terminal domain suppresses Su(Hw)-mediated repression. Partial inactivation of EAST by mutations in the east gene suppresses the enhancer-blocking activity of the gypsy insulator. The binding of insulator proteins to chromatin is highly sensitive to the level of EAST expression. These results suggest that EAST, one of the main components of the interchromatin compartment, can regulate the activity of chromatin insulators.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Igor Shapovalov
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Margarita Kostyuchenko
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia.
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia.
| |
Collapse
|
74
|
Ali T, Renkawitz R, Bartkuhn M. Insulators and domains of gene expression. Curr Opin Genet Dev 2016; 37:17-26. [PMID: 26802288 DOI: 10.1016/j.gde.2015.11.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 01/07/2023]
Abstract
The genomic organization into active and inactive chromatin domains imposes specific requirements for having domain boundaries to prohibit interference between the opposing activities of neighbouring domains. These boundaries provide an insulator function by binding architectural proteins that mediate long-range interactions. Among these, CTCF plays a prominent role in establishing chromatin loops (between pairs of CTCF binding sites) through recruiting cohesin. CTCF-mediated long-range interactions are integral for a multitude of topological features of interphase chromatin, such as the formation of topologically associated domains, domain insulation, enhancer blocking and even enhancer function.
Collapse
Affiliation(s)
- Tamer Ali
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, D35392 Giessen, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, D35392 Giessen, Germany.
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, D35392 Giessen, Germany
| |
Collapse
|
75
|
Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex. Genetics 2015; 202:601-17. [PMID: 26715665 DOI: 10.1534/genetics.115.179309] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer-promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and "bridging" proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior-posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains.
Collapse
|
76
|
Zolotarev NA, Kyrchanova OV, Maksimenko OG, Georgiev PG. Recruiting insulator protein ZIPIC of Drosophila melanogaster to minor binding sites in vivo depends on other DNA-binding transcription factors. Mol Biol 2015. [DOI: 10.1134/s0026893315060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
77
|
Elizar’ev PV, Chetverina DA, Golovnin AK, Georgiev PG, Erokhin MM. The role of Su(Hw) protein in transcription regulation in Drosophila melanogaster. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Golovnin A, Melnikova L, Shapovalov I, Kostyuchenko M, Georgiev P. EAST Organizes Drosophila Insulator Proteins in the Interchromosomal Nuclear Compartment and Modulates CP190 Binding to Chromatin. PLoS One 2015; 10:e0140991. [PMID: 26489095 PMCID: PMC4638101 DOI: 10.1371/journal.pone.0140991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/02/2015] [Indexed: 12/02/2022] Open
Abstract
Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF. The CP190 protein is a cofactor for the dCTCF and Su(Hw) insulators. CP190 is required for the functional activity of insulator proteins and is involved in the aggregation of the insulator proteins into specific structures named nuclear speckles. Here, we have shown that the nuclear distribution of CP190 is dependent on the level of EAST protein, an essential component of the interchromatin compartment. EAST interacts with CP190 and Mod(mdg4)-67.2 proteins in vitro and in vivo. Over-expression of EAST in S2 cells leads to an extrusion of the CP190 from the insulator bodies containing Su(Hw), Mod(mdg4)-67.2, and dCTCF. In consistent with the role of the insulator bodies in assembly of protein complexes, EAST over-expression led to a striking decrease of the CP190 binding with the dCTCF and Su(Hw) dependent insulators and promoters. These results suggest that EAST is involved in the regulation of CP190 nuclear localization.
Collapse
Affiliation(s)
- Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Igor Shapovalov
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Margarita Kostyuchenko
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| |
Collapse
|
79
|
Matharu NK, Ahanger SH. Chromatin Insulators and Topological Domains: Adding New Dimensions to 3D Genome Architecture. Genes (Basel) 2015; 6:790-811. [PMID: 26340639 PMCID: PMC4584330 DOI: 10.3390/genes6030790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 01/21/2023] Open
Abstract
The spatial organization of metazoan genomes has a direct influence on fundamental nuclear processes that include transcription, replication, and DNA repair. It is imperative to understand the mechanisms that shape the 3D organization of the eukaryotic genomes. Chromatin insulators have emerged as one of the central components of the genome organization tool-kit across species. Recent advancements in chromatin conformation capture technologies have provided important insights into the architectural role of insulators in genomic structuring. Insulators are involved in 3D genome organization at multiple spatial scales and are important for dynamic reorganization of chromatin structure during reprogramming and differentiation. In this review, we will discuss the classical view and our renewed understanding of insulators as global genome organizers. We will also discuss the plasticity of chromatin structure and its re-organization during pluripotency and differentiation and in situations of cellular stress.
Collapse
Affiliation(s)
- Navneet K Matharu
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Sajad H Ahanger
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich 8952, Switzerland.
| |
Collapse
|
80
|
Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex. Mol Cell Biol 2015; 35:3739-52. [PMID: 26303531 DOI: 10.1128/mcb.00456-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/17/2015] [Indexed: 12/23/2022] Open
Abstract
Chromatin boundaries are architectural elements that determine the three-dimensional folding of the chromatin fiber and organize the chromosome into independent units of genetic activity. The Fab-7 boundary from the Drosophila bithorax complex (BX-C) is required for the parasegment-specific expression of the Abd-B gene. We have used a replacement strategy to identify sequences that are necessary and sufficient for Fab-7 boundary function in the BX-C. Fab-7 boundary activity is known to depend on factors that are stage specific, and we describe a novel ∼700-kDa complex, the late boundary complex (LBC), that binds to Fab-7 sequences that have insulator functions in late embryos and adults. We show that the LBC is enriched in nuclear extracts from late, but not early, embryos and that it contains three insulator proteins, GAF, Mod(mdg4), and E(y)2. Its DNA binding properties are unusual in that it requires a minimal sequence of >65 bp; however, other than a GAGA motif, the three Fab-7 LBC recognition elements display few sequence similarities. Finally, we show that mutations which abrogate LBC binding in vitro inactivate the Fab-7 boundary in the BX-C.
Collapse
|
81
|
Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster. BMC Biol 2015; 13:63. [PMID: 26248466 PMCID: PMC4528719 DOI: 10.1186/s12915-015-0168-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background Insulators play a central role in gene regulation, chromosomal architecture and genome function in higher eukaryotes. To learn more about how insulators carry out their diverse functions, we have begun an analysis of the Drosophila CTCF (dCTCF). CTCF is one of the few insulator proteins known to be conserved from flies to man. Results In the studies reported here we have focused on the identification and characterization of two dCTCF protein interaction modules. The first mediates dCTCF multimerization, while the second mediates dCTCF–CP190 interactions. The multimerization domain maps in the N-terminus of the dCTCF protein and likely mediates the formation of tetrameric complexes. The CP190 interaction module encompasses a sequence ~200 amino acids long that spans the C-terminal and mediates interactions with the N-terminal BTB domain of the CP190 protein. Transgene rescue experiments showed that a dCTCF protein lacking sequences critical for CP190 interactions was almost as effective as wild type in rescuing the phenotypic effects of a dCTCF null allele. The mutation did, however, affect CP190 recruitment to specific Drosophila insulator elements and had a modest effect on dCTCF chromatin association. A protein lacking the N-terminal dCTCF multimerization domain incompletely rescued the zygotic and maternal effect lethality of the null and did not rescue the defects in Abd-B regulation evident in surviving adult dCTCF mutant flies. Finally, we show that elimination of maternally contributed dCTCF at the onset of embryogenesis has quite different effects on development and Abd-B regulation than is observed when the homozygous mutant animals develop in the presence of maternally derived dCTCF activity. Conclusions Our results indicate that dCTCF–CP190 interactions are less critical for the in vivo functions of the dCTCF protein than the N-terminal dCTCF–dCTCF interaction domain. We also show that the phenotypic consequences of dCTCF mutations differ depending upon when and how dCTCF activity is lost. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0168-7) contains supplementary material, which is available to authorized users.
Collapse
|
82
|
Cubeñas-Potts C, Corces VG. Architectural proteins, transcription, and the three-dimensional organization of the genome. FEBS Lett 2015; 589:2923-30. [PMID: 26008126 DOI: 10.1016/j.febslet.2015.05.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/07/2015] [Accepted: 05/09/2015] [Indexed: 12/20/2022]
Abstract
Architectural proteins mediate interactions between distant sequences in the genome. Two well-characterized functions of architectural protein interactions include the tethering of enhancers to promoters and bringing together Polycomb-containing sites to facilitate silencing. The nature of which sequences interact genome-wide appears to be determined by the orientation of the architectural protein binding sites as well as the number and identity of architectural proteins present. Ultimately, long range chromatin interactions result in the formation of loops within the chromatin fiber. In this review, we discuss data suggesting that architectural proteins mediate long range chromatin interactions that both facilitate and hinder neighboring interactions, compartmentalizing the genome into regions of highly interacting chromatin domains.
Collapse
Affiliation(s)
- Caelin Cubeñas-Potts
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA.
| |
Collapse
|
83
|
Razin SV, Gavrilov AA, Ulyanov SV. Transcription-controlling regulatory elements of the eukaryotic genome. Mol Biol 2015. [DOI: 10.1134/s0026893315020119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
84
|
Hsu SJ, Plata MP, Ernest B, Asgarifar S, Labrador M. The insulator protein Suppressor of Hairy wing is required for proper ring canal development during oogenesis in Drosophila. Dev Biol 2015; 403:57-68. [PMID: 25882370 DOI: 10.1016/j.ydbio.2015.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 03/05/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022]
Abstract
Chromatin insulators orchestrate gene transcription during embryo development and cell differentiation by stabilizing interactions between distant genomic sites. Mutations in genes encoding insulator proteins are generally lethal, making in vivo functional analyses of insulator proteins difficult. In Drosophila, however, mutations in the gene encoding the Suppressor of Hairy wing insulator protein [Su(Hw)] are viable and female sterile, providing an opportunity to study insulator function during oocyte development. Whereas previous reports suggest that the function of Su(Hw) in oogenesis is independent of its insulator activity, many aspects of the role of Su(Hw) in Drosophila oogenesis remain unexplored. Here we show that mutations in su(Hw) result in smaller ring canal lumens and smaller outer ring diameters, which likely obstruct molecular and vesicle passage from nurse cells to the oocyte. Fluorescence microscopy reveals that lack of Su(Hw) leads to excess accumulation of Kelch (Kel) and Filament-actin (F-actin) proteins in the ring canal structures of developing egg chambers. Furthermore, we found that misexpression of the Src oncogene at 64B (Src64B) may cause ring canal development defects as microarray analysis and real-time RT-PCR revealed there is a three fold decrease in Src64B expression in su(Hw) mutant ovaries. Restoration of Src64B expression in su(Hw) mutant female germ cells rescued the ring phenotype but did not restore fertility. We conclude that loss of su(Hw) affects expression of many oogenesis related genes and down-regulates Src64B, resulting in ring canal defects potentially contributing to obstruction of molecular flow and an eventual failure of egg chamber organization.
Collapse
Affiliation(s)
- Shih-Jui Hsu
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Maria P Plata
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ben Ernest
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Saghi Asgarifar
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
85
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
86
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
87
|
Magbanua JP, Runneburger E, Russell S, White R. A variably occupied CTCF binding site in the ultrabithorax gene in the Drosophila bithorax complex. Mol Cell Biol 2015; 35:318-30. [PMID: 25368383 PMCID: PMC4295388 DOI: 10.1128/mcb.01061-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/10/2014] [Accepted: 10/25/2014] [Indexed: 11/20/2022] Open
Abstract
Although the majority of genomic binding sites for the insulator protein CCCTC-binding factor (CTCF) are constitutively occupied, a subset show variable occupancy. Such variable sites provide an opportunity to assess context-specific CTCF functions in gene regulation. Here, we have identified a variably occupied CTCF site in the Drosophila Ultrabithorax (Ubx) gene. This site is occupied in tissues where Ubx is active (third thoracic leg imaginal disc) but is not bound in tissues where the Ubx gene is repressed (first thoracic leg imaginal disc). Using chromatin conformation capture, we show that this site preferentially interacts with the Ubx promoter region in the active state. The site lies close to Ubx enhancer elements and is also close to the locations of several gypsy transposon insertions that disrupt Ubx expression, leading to the bx mutant phenotype. gypsy insertions carry the Su(Hw)-dependent gypsy insulator and were found to affect both CTCF binding at the variable site and the chromatin topology. This suggests that insertion of the gypsy insulator in this region interferes with CTCF function and supports a model for the normal function of the variable CTCF site as a chromatin loop facilitator, promoting interaction between Ubx enhancers and the Ubx transcription start site.
Collapse
Affiliation(s)
- Jose Paolo Magbanua
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Estelle Runneburger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
88
|
Schoborg T, Labrador M. Expanding the roles of chromatin insulators in nuclear architecture, chromatin organization and genome function. Cell Mol Life Sci 2014; 71:4089-113. [PMID: 25012699 PMCID: PMC11113341 DOI: 10.1007/s00018-014-1672-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/31/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Abstract
Of the numerous classes of elements involved in modulating eukaryotic chromosome structure and function, chromatin insulators arguably remain the most poorly understood in their contribution to these processes in vivo. Indeed, our view of chromatin insulators has evolved dramatically since their chromatin boundary and enhancer blocking properties were elucidated roughly a quarter of a century ago as a result of recent genome-wide, high-throughput methods better suited to probing the role of these elements in their native genomic contexts. The overall theme that has emerged from these studies is that chromatin insulators function as general facilitators of higher-order chromatin loop structures that exert both physical and functional constraints on the genome. In this review, we summarize the result of recent work that supports this idea as well as a number of other studies linking these elements to a diverse array of nuclear processes, suggesting that chromatin insulators exert master control over genome organization and behavior.
Collapse
Affiliation(s)
- Todd Schoborg
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
- Present Address: Laboratory of Molecular Machines and Tissue Architecture, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Dr Rm 2122, Bethesda, MD 20892 USA
| | - Mariano Labrador
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
| |
Collapse
|
89
|
Abstract
Retroelements with long-terminal repeats (LTRs) inhabit nearly all eukaryotic genomes. During the time of their rich evolutionary history they have developed highly diverse forms, ranging from ordinary retrotransposons to complex pathogenic retroviruses such as HIV-I. Errantiviruses are a group of insect endogenous LTR elements that share structural and functional features with vertebrate endogenous retroviruses. The errantiviruses illustrate one of the evolutionary strategies of retrotransposons to become infective, which together with their similarities to vertebrate retroviruses make them an attractive object of research promising to shed more light on the evolution of retroviruses.
Collapse
Affiliation(s)
- Yury Stefanov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | | | | |
Collapse
|
90
|
Maksimenko O, Bartkuhn M, Stakhov V, Herold M, Zolotarev N, Jox T, Buxa MK, Kirsch R, Bonchuk A, Fedotova A, Kyrchanova O, Renkawitz R, Georgiev P. Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin. Genome Res 2014; 25:89-99. [PMID: 25342723 PMCID: PMC4317163 DOI: 10.1101/gr.174169.114] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insulators are multiprotein-DNA complexes that regulate the nuclear architecture. The Drosophila CP190 protein is a cofactor for the DNA-binding insulator proteins Su(Hw), CTCF, and BEAF-32. The fact that CP190 has been found at genomic sites devoid of either of the known insulator factors has until now been unexplained. We have identified two DNA-binding zinc-finger proteins, Pita, and a new factor named ZIPIC, that interact with CP190 in vivo and in vitro at specific interaction domains. Genomic binding sites for these proteins are clustered with CP190 as well as with CTCF and BEAF-32. Model binding sites for Pita or ZIPIC demonstrate a partial enhancer-blocking activity and protect gene expression from PRE-mediated silencing. The function of the CTCF-bound MCP insulator sequence requires binding of Pita. These results identify two new insulator proteins and emphasize the unifying function of CP190, which can be recruited by many DNA-binding insulator proteins.
Collapse
Affiliation(s)
- Oksana Maksimenko
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, D-35392 Giessen, Germany
| | - Viacheslav Stakhov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Martin Herold
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, D-35392 Giessen, Germany
| | - Nickolay Zolotarev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Theresa Jox
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, D-35392 Giessen, Germany
| | - Melanie K Buxa
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, D-35392 Giessen, Germany
| | - Ramona Kirsch
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, D-35392 Giessen, Germany
| | - Artem Bonchuk
- Group of Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna Fedotova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga Kyrchanova
- Group of Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, D-35392 Giessen, Germany;
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
91
|
Rhee DY, Cho DY, Zhai B, Slattery M, Ma L, Mintseris J, Wong CY, White KP, Celniker SE, Przytycka TM, Gygi SP, Obar RA, Artavanis-Tsakonas S. Transcription factor networks in Drosophila melanogaster. Cell Rep 2014; 8:2031-2043. [PMID: 25242320 DOI: 10.1016/j.celrep.2014.08.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/09/2014] [Accepted: 08/16/2014] [Indexed: 11/15/2022] Open
Abstract
Specific cellular fates and functions depend on differential gene expression, which occurs primarily at the transcriptional level and is controlled by complex regulatory networks of transcription factors (TFs). TFs act through combinatorial interactions with other TFs, cofactors, and chromatin-remodeling proteins. Here, we define protein-protein interactions using a coaffinity purification/mass spectrometry method and study 459 Drosophila melanogaster transcription-related factors, representing approximately half of the established catalog of TFs. We probe this network in vivo, demonstrating functional interactions for many interacting proteins, and test the predictive value of our data set. Building on these analyses, we combine regulatory network inference models with physical interactions to define an integrated network that connects combinatorial TF protein interactions to the transcriptional regulatory network of the cell. We use this integrated network as a tool to connect the functional network of genetic modifiers related to mastermind, a transcriptional cofactor of the Notch pathway.
Collapse
Affiliation(s)
- David Y Rhee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dong-Yeon Cho
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Slattery
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lijia Ma
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christina Y Wong
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Susan E Celniker
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Teresa M Przytycka
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert A Obar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Spyros Artavanis-Tsakonas
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Biogen Idec, Inc., Cambridge, MA 02142, USA.
| |
Collapse
|
92
|
Alekseyenko AA, Gorchakov AA, Zee BM, Fuchs SM, Kharchenko PV, Kuroda MI. Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs. Genes Dev 2014; 28:1445-60. [PMID: 24990964 PMCID: PMC4083088 DOI: 10.1101/gad.241950.114] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterochromatin protein 1 (HP1a) plays conserved roles in gene silencing and heterochromatin and is also implicated in transcription, DNA replication, and repair. Using BioTAP-XL mass spectrometry and sequencing across multiple life stages of Drosophila, Alekseyenko et al. identify HP1a chromatin-associated protein and RNA interactions. They discover 13 novel candidates among the top interactions. Furthermore, HP1a selectively associates with a broad set of RNAs transcribed from repetitive regions. The validation of several novel HP1a protein interactors reveals new HP1a links to chromatin organization and function. Heterochromatin protein 1 (HP1a) has conserved roles in gene silencing and heterochromatin and is also implicated in transcription, DNA replication, and repair. Here we identify chromatin-associated protein and RNA interactions of HP1a by BioTAP-XL mass spectrometry and sequencing from Drosophila S2 cells, embryos, larvae, and adults. Our results reveal an extensive list of known and novel HP1a-interacting proteins, of which we selected three for validation. A strong novel interactor, dADD1 (Drosophila ADD1) (CG8290), is highly enriched in heterochromatin, harbors an ADD domain similar to human ATRX, displays selective binding to H3K9me2 and H3K9me3, and is a classic genetic suppressor of position-effect variegation. Unexpectedly, a second hit, HIPP1 (HP1 and insulator partner protein-1) (CG3680), is strongly connected to CP190-related complexes localized at putative insulator sequences throughout the genome in addition to its colocalization with HP1a in heterochromatin. A third interactor, the histone methyltransferase MES-4, is also enriched in heterochromatin. In addition to these protein–protein interactions, we found that HP1a selectively associated with a broad set of RNAs transcribed from repetitive regions. We propose that this rich network of previously undiscovered interactions will define how HP1a complexes perform their diverse functions in cells and developing organisms.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrey A Gorchakov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| | - Barry M Zee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen M Fuchs
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA; Hematology/Oncology Program, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
93
|
Vogelmann J, Le Gall A, Dejardin S, Allemand F, Gamot A, Labesse G, Cuvier O, Nègre N, Cohen-Gonsaud M, Margeat E, Nöllmann M. Chromatin insulator factors involved in long-range DNA interactions and their role in the folding of the Drosophila genome. PLoS Genet 2014; 10:e1004544. [PMID: 25165871 PMCID: PMC4148193 DOI: 10.1371/journal.pgen.1004544] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators are genetic elements implicated in the organization of chromatin and the regulation of transcription. In Drosophila, different insulator types were characterized by their locus-specific composition of insulator proteins and co-factors. Insulators mediate specific long-range DNA contacts required for the three dimensional organization of the interphase nucleus and for transcription regulation, but the mechanisms underlying the formation of these contacts is currently unknown. Here, we investigate the molecular associations between different components of insulator complexes (BEAF32, CP190 and Chromator) by biochemical and biophysical means, and develop a novel single-molecule assay to determine what factors are necessary and essential for the formation of long-range DNA interactions. We show that BEAF32 is able to bind DNA specifically and with high affinity, but not to bridge long-range interactions (LRI). In contrast, we show that CP190 and Chromator are able to mediate LRI between specifically-bound BEAF32 nucleoprotein complexes in vitro. This ability of CP190 and Chromator to establish LRI requires specific contacts between BEAF32 and their C-terminal domains, and dimerization through their N-terminal domains. In particular, the BTB/POZ domains of CP190 form a strict homodimer, and its C-terminal domain interacts with several insulator binding proteins. We propose a general model for insulator function in which BEAF32/dCTCF/Su(HW) provide DNA specificity (first layer proteins) whereas CP190/Chromator are responsible for the physical interactions required for long-range contacts (second layer). This network of organized, multi-layer interactions could explain the different activities of insulators as chromatin barriers, enhancer blockers, and transcriptional regulators, and suggest a general mechanism for how insulators may shape the organization of higher-order chromatin during cell division.
Collapse
Affiliation(s)
- Jutta Vogelmann
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Antoine Le Gall
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Stephanie Dejardin
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Frederic Allemand
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Adrien Gamot
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université de Toulouse, Toulouse; France
| | - Gilles Labesse
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Olivier Cuvier
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université de Toulouse, Toulouse; France
| | - Nicolas Nègre
- Laboratoire Diversité, Génomes & Interactions Microorganismes-Insectes, INRA UMR1333, Université de Montpellier 2, Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Emmanuel Margeat
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Marcelo Nöllmann
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
- * E-mail:
| |
Collapse
|
94
|
Bowman SK, Deaton AM, Domingues H, Wang PI, Sadreyev RI, Kingston RE, Bender W. H3K27 modifications define segmental regulatory domains in the Drosophila bithorax complex. eLife 2014; 3:e02833. [PMID: 25082344 PMCID: PMC4139060 DOI: 10.7554/elife.02833] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bithorax complex (BX-C) in Drosophila melanogaster is a cluster of homeotic genes that determine body segment identity. Expression of these genes is governed by cis-regulatory domains, one for each parasegment. Stable repression of these domains depends on Polycomb Group (PcG) functions, which include trimethylation of lysine 27 of histone H3 (H3K27me3). To search for parasegment-specific signatures that reflect PcG function, chromatin from single parasegments was isolated and profiled. The H3K27me3 profiles across the BX-C in successive parasegments showed a 'stairstep' pattern that revealed sharp boundaries of the BX-C regulatory domains. Acetylated H3K27 was broadly enriched across active domains, in a pattern complementary to H3K27me3. The CCCTC-binding protein (CTCF) bound the borders between H3K27 modification domains; it was retained even in parasegments where adjacent domains lack H3K27me3. These findings provide a molecular definition of the homeotic domains, and implicate precisely positioned H3K27 modifications as a central determinant of segment identity.
Collapse
Affiliation(s)
- Sarah K Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Aimee M Deaton
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Heber Domingues
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Peggy I Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Pathology, Harvard Medical School, Boston, United States
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
95
|
Korenjak M, Kwon E, Morris RT, Anderssen E, Amzallag A, Ramaswamy S, Dyson NJ. dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes. Nucleic Acids Res 2014; 42:8939-53. [PMID: 25053843 PMCID: PMC4132727 DOI: 10.1093/nar/gku609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
dREAM complexes represent the predominant form of E2F/RBF repressor complexes in Drosophila. dREAM associates with thousands of sites in the fly genome but its mechanism of action is unknown. To understand the genomic context in which dREAM acts we examined the distribution and localization of Drosophila E2F and dREAM proteins. Here we report a striking and unexpected overlap between dE2F2/dREAM sites and binding sites for the insulator-binding proteins CP190 and Beaf-32. Genetic assays show that these components functionally co-operate and chromatin immunoprecipitation experiments on mutant animals demonstrate that dE2F2 is important for association of CP190 with chromatin. dE2F2/dREAM binding sites are enriched at divergently transcribed genes, and the majority of genes upregulated by dE2F2 depletion represent the repressed half of a differentially expressed, divergently transcribed pair of genes. Analysis of mutant animals confirms that dREAM and CP190 are similarly required for transcriptional integrity at these gene pairs and suggest that dREAM functions in concert with CP190 to establish boundaries between repressed/activated genes. Consistent with the idea that dREAM co-operates with insulator-binding proteins, genomic regions bound by dREAM possess enhancer-blocking activity that depends on multiple dREAM components. These findings suggest that dREAM functions in the organization of transcriptional domains.
Collapse
Affiliation(s)
- Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eunjeong Kwon
- Massachusetts General Hospital, Cutaneous Biology Research Center, Charlestown, MA 02129, USA
| | - Robert T Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Endre Anderssen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Arnaud Amzallag
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
96
|
Van Bortle K, Nichols MH, Li L, Ong CT, Takenaka N, Qin ZS, Corces VG. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol 2014; 15:R82. [PMID: 24981874 PMCID: PMC4226948 DOI: 10.1186/gb-2014-15-5-r82] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements. How topologically associating domains are established and what differentiates border-associated from non-border architectural protein binding sites remain unanswered questions. RESULTS By mapping the genome-wide target sites for several Drosophila architectural proteins, including previously uncharacterized profiles for TFIIIC and SMC-containing condensin complexes, we uncover an extensive pattern of colocalization in which architectural proteins establish dense clusters at the borders of topological domains. Reporter-based enhancer-blocking insulator activity as well as endogenous domain border strength scale with the occupancy level of architectural protein binding sites, suggesting co-binding by architectural proteins underlies the functional potential of these loci. Analyses in mouse and human stem cells suggest that clustering of architectural proteins is a general feature of genome organization, and conserved architectural protein binding sites may underlie the tissue-invariant nature of topologically associating domains observed in mammals. CONCLUSIONS We identify a spectrum of architectural protein occupancy that scales with the topological structure of chromosomes and the regulatory potential of these elements. Whereas high occupancy architectural protein binding sites associate with robust partitioning of topologically associating domains and robust insulator function, low occupancy sites appear reserved for gene-specific regulation within topological domains.
Collapse
Affiliation(s)
- Kevin Van Bortle
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Michael H Nichols
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Li Li
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Chin-Tong Ong
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Naomi Takenaka
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
97
|
Heger P, Wiehe T. New tools in the box: An evolutionary synopsis of chromatin insulators. Trends Genet 2014; 30:161-71. [DOI: 10.1016/j.tig.2014.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/19/2023]
|
98
|
King MR, Matzat LH, Dale RK, Lim SJ, Lei EP. The RNA-binding protein Rumpelstiltskin antagonizes gypsy chromatin insulator function in a tissue-specific manner. J Cell Sci 2014; 127:2956-66. [PMID: 24706949 DOI: 10.1242/jcs.151126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chromatin insulators are DNA-protein complexes that are situated throughout the genome that are proposed to contribute to higher-order organization and demarcation into distinct transcriptional domains. Mounting evidence in different species implicates RNA and RNA-binding proteins as regulators of chromatin insulator activities. Here, we identify the Drosophila hnRNP M homolog Rumpelstiltskin (Rump) as an antagonist of gypsy chromatin insulator enhancer-blocking and barrier activities. Despite ubiquitous expression of Rump, decreasing Rump levels leads to improvement of barrier activity only in tissues outside of the central nervous system (CNS). Furthermore, rump mutants restore insulator body localization in an insulator mutant background only in non-CNS tissues. Rump associates physically with core gypsy insulator proteins, and chromatin immunoprecipitation and sequencing analysis of Rump demonstrates extensive colocalization with a subset of insulator sites across the genome. The genome-wide binding profile and tissue specificity of Rump contrast with that of Shep, a recently identified RNA-binding protein that antagonizes gypsy insulator activity primarily in the CNS. Our findings indicate parallel roles for RNA-binding proteins in mediating tissue-specific regulation of chromatin insulator activity.
Collapse
Affiliation(s)
- Matthew R King
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leah H Matzat
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Su Jun Lim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elissa P Lei
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
99
|
Zhou J, Troyanskaya OG. Global quantitative modeling of chromatin factor interactions. PLoS Comput Biol 2014; 10:e1003525. [PMID: 24675896 PMCID: PMC3967939 DOI: 10.1371/journal.pcbi.1003525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. Chromatin, like many other molecular biological systems, is composed of multiple interacting factors. Our knowledge about chromatin factors is mostly qualitative, and such qualitative knowledge can be insufficient for predicting collective behaviors. It's also extremely challenging to study collective behaviors involving multiple interacting factors through genetic and biochemical experiments. An alternative approach is to leverage large-scale genome-wide chromatin profiles and statistical modeling to create predictive models and infer underlying interaction mechanisms based on these observed high-throughput data. In this study, we developed a novel maximum entropy-based modeling approach to quantitatively capture interactions between chromatin factors at the same genomic location, which we see as a step toward quantitative understanding of chromatin organization that involves a system of multiple interacting factors. We applied this quantitative model to successfully infer functional properties of chromatin including interactions between chromatin factors. Furthermore, the model predicts unmeasured chromatin profiles with high accuracy based on its inferred dependencies with other factors within and across cell-types. Thus our modeling approach effectively ultilizes large-scale chromatin profiles to dissect chromatin factor interactions and to make data-driven inferences about chromatin regulation.
Collapse
Affiliation(s)
- Jian Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
100
|
Zielke T, Saumweber H. Dissection of open chromatin domain formation by site-specific recombination in Drosophila. J Cell Sci 2014; 127:2365-75. [PMID: 24639466 DOI: 10.1242/jcs.147546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drosophila polytene interphase chromosomes provide an ideal test system to study the rules that define the structure of chromatin domains. We established a transgenic condensed chromatin domain cassette for the insertion of large pieces of DNA by site-specific recombination. Insertion of this cassette into open chromatin generated a condensed domain, visible as an extra band on polytene chromosomes. Site-specific recombination of DNA sequence variants into this ectopic band allowed us to compare their capacity for open chromatin formation by cytogenetic methods. We demonstrate that the 61C7-8 interband DNA maintains its open chromatin conformation and epigenetic state at an ectopic position. By deletion analysis, we mapped the sequences essential for open chromatin formation to a 490-bp fragment in the proximal part of the 17-kb interband sequence. This fragment overlaps binding sites for the chromatin protein Chriz (also known as Chro), the histone kinase Jil-1 and the boundary element protein CP190. It also overlaps a promoter region that locates between the Rev1 and Med30 transcription units.
Collapse
Affiliation(s)
- Thomas Zielke
- Humboldt University Berlin Institute of Biology, Cytogenetics Group, Chausseestrasse 117, 10115, Berlin, Germany
| | - Harald Saumweber
- Humboldt University Berlin Institute of Biology, Cytogenetics Group, Chausseestrasse 117, 10115, Berlin, Germany
| |
Collapse
|