51
|
Murray J, Savva CG, Shin BS, Dever TE, Ramakrishnan V, Fernández IS. Structural characterization of ribosome recruitment and translocation by type IV IRES. eLife 2016; 5. [PMID: 27159451 PMCID: PMC4861600 DOI: 10.7554/elife.13567] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/04/2016] [Indexed: 12/20/2022] Open
Abstract
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts the otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation. DOI:http://dx.doi.org/10.7554/eLife.13567.001
Collapse
Affiliation(s)
- Jason Murray
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | | | - Byung-Sik Shin
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Thomas E Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
52
|
Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife 2016; 5. [PMID: 27159452 PMCID: PMC4896748 DOI: 10.7554/elife.14874] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/08/2016] [Indexed: 12/17/2022] Open
Abstract
Internal ribosome entry sites (IRESs) mediate cap-independent translation of viral mRNAs. Using electron cryo-microscopy of a single specimen, we present five ribosome structures formed with the Taura syndrome virus IRES and translocase eEF2•GTP bound with sordarin. The structures suggest a trajectory of IRES translocation, required for translation initiation, and provide an unprecedented view of eEF2 dynamics. The IRES rearranges from extended to bent to extended conformations. This inchworm-like movement is coupled with ribosomal inter-subunit rotation and 40S head swivel. eEF2, attached to the 60S subunit, slides along the rotating 40S subunit to enter the A site. Its diphthamide-bearing tip at domain IV separates the tRNA-mRNA-like pseudoknot I (PKI) of the IRES from the decoding center. This unlocks 40S domains, facilitating head swivel and biasing IRES translocation via hitherto-elusive intermediates with PKI captured between the A and P sites. The structures suggest missing links in our understanding of tRNA translocation.
Collapse
Affiliation(s)
| | - Cha San Koh
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Timothy Grant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
53
|
Translocation: lights, camera, and action. Nat Struct Mol Biol 2016; 23:367-8. [PMID: 27142323 DOI: 10.1038/nsmb.3219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
54
|
Protein Elongation, Co-translational Folding and Targeting. J Mol Biol 2016; 428:2165-85. [DOI: 10.1016/j.jmb.2016.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022]
|
55
|
Ling C, Ermolenko DN. Structural insights into ribosome translocation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:620-36. [PMID: 27117863 PMCID: PMC4990484 DOI: 10.1002/wrna.1354] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/23/2022]
Abstract
During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF‐G) in bacteria and elongation factor 2 (EF‐2) in eukaryotes. Recent structural and single‐molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the ‘head’ domain of small ribosomal subunit undergoes forward‐ and back‐swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF‐G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF‐G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620–636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clarence Ling
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
56
|
Tinoco I, Kim HK, Yan S. Frameshifting dynamics. Biopolymers 2016; 99:1147-66. [PMID: 23722586 DOI: 10.1002/bip.22293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 01/26/2023]
Abstract
Translation of messenger RNA by a ribosome occurs three nucleotides at a time from start signal to stop. However, a frameshift means that some nucleotides are read twice or some are skipped, and the following sequence of amino acids is completely different from the sequence in the original frame. In some messenger RNAs, including viral RNAs, frameshifting is programmed with RNA signals to produce specific ratios of proteins vital to the replication of the organism. The mechanisms that cause frameshifting have been studied for many years, but there are no definitive conclusions. We review ribosome structure and dynamics in relation to frameshifting dynamics provided by classical ensemble studies, and by new single-molecule methods using optical tweezers and FRET.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460
| | | | | |
Collapse
|
57
|
Frank J. Story in a sample-the potential (and limitations) of cryo-electron microscopy applied to molecular machines. Biopolymers 2016; 99:832-6. [PMID: 23640776 DOI: 10.1002/bip.22274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 01/03/2023]
Abstract
This article addresses recent developments in cryo-electron microscopy and single-particle reconstruction of macromolecules. With the advent of powerful classification techniques, it is now possible to extract and visualize multiple conformers contained within the same dataset. It is discussed how and to what extent this technique can be used in the study of the dynamics of molecular machines.
Collapse
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY, 10032; Department of Biological Sciences, Columbia University, New York, NY, 10027
| |
Collapse
|
58
|
Choreography of molecular movements during ribosome progression along mRNA. Nat Struct Mol Biol 2016; 23:342-8. [PMID: 26999556 DOI: 10.1038/nsmb.3193] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
Abstract
During translation elongation, ribosome translocation along an mRNA entails rotations of the ribosomal subunits, swiveling motions of the small subunit (SSU) head and stepwise movements of the tRNAs together with the mRNA. Here, we reconstructed the choreography of the collective motions of the Escherichia coli ribosome during translocation promoted by elongation factor EF-G, by recording the fluorescence signatures of nine different reporters placed on both ribosomal subunits, tRNA and mRNA. We captured an early forward swiveling of the SSU head taking place while the SSU body rotates in the opposite, clockwise direction. Backward swiveling of the SSU head starts upon tRNA translocation and continues until the post-translocation state is reached. This work places structures of translocation intermediates along a time axis and unravels principles of the motions of macromolecular machines.
Collapse
|
59
|
Ling C, Ermolenko DN. Ribosome subunit joining frozen in time. Structure 2016; 23:977-8. [PMID: 26039346 DOI: 10.1016/j.str.2015.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this issue of Structure, Chen et al. (2015) report the use of a mixing-spraying method of time-resolved cryogenic electron microscopy, which allowed the progression of ribosomal subunit association to be visualized on the millisecond timescale.
Collapse
Affiliation(s)
- Clarence Ling
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
60
|
Frank J, Ourmazd A. Continuous changes in structure mapped by manifold embedding of single-particle data in cryo-EM. Methods 2016; 100:61-7. [PMID: 26884261 DOI: 10.1016/j.ymeth.2016.02.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/01/2022] Open
Abstract
Cryo-electron microscopy, when combined with single-particle reconstruction, is a powerful method for studying macromolecular structure. Recent developments in detector technology have pushed the resolution into a range comparable to that of X-ray crystallography. However, cryo-EM is able to separate and thus recover the structure of each of several discrete structures present in the sample. For the more general case involving continuous structural changes, a novel technique employing manifold embedding has been recently demonstrated. Potentially, the entire work-cycle of a molecular machine may be observed as it passes through a continuum of states, and its free-energy landscape may be mapped out. This technique will be outlined and discussed in the context of its application to a large single-particle dataset of yeast ribosomes.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States; Department of Biological Sciences, Columbia University, New York, NY 10027, United States.
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI 53211, United States.
| |
Collapse
|
61
|
Frank J. Generalized single-particle cryo-EM--a historical perspective. Microscopy (Oxf) 2016; 65:3-8. [PMID: 26566976 PMCID: PMC4749046 DOI: 10.1093/jmicro/dfv358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 11/14/2022] Open
Abstract
This is a brief account of the earlier history of single-particle cryo-EM of biological molecules lacking internal symmetry, which goes back to the mid-seventies. The emphasis of this review is on the mathematical concepts and computational approaches. It is written as the field experiences a turning point in the wake of the introduction of digital cameras capable of single electron counting, and near-atomic resolution can be reached even for smaller molecules.
Collapse
Affiliation(s)
- Joachim Frank
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
62
|
Probing the Translation Dynamics of Ribosomes Using Zero-Mode Waveguides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 139:1-43. [PMID: 26970189 DOI: 10.1016/bs.pmbts.2015.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to coordinate the complex biochemical and structural feat of converting triple-nucleotide codons into their corresponding amino acids, the ribosome must physically manipulate numerous macromolecules including the mRNA, tRNAs, and numerous translation factors. The ribosome choreographs binding, dissociation, physical movements, and structural rearrangements so that they synergistically harness the energy from biochemical processes, including numerous GTP hydrolysis steps and peptide bond formation. Due to the dynamic and complex nature of translation, the large cast of ligands involved, and the large number of possible configurations, tracking the global time evolution or dynamics of the ribosome complex in translation has proven to be challenging for bulk methods. Conventional single-molecule fluorescence experiments on the other hand require low concentrations of fluorescent ligands to reduce background noise. The significantly reduced bimolecular association rates under those conditions limit the number of steps that can be observed within the time window available to a fluorophore. The advent of zero-mode waveguide (ZMW) technology has allowed the study of translation at near-physiological concentrations of labeled ligands, moving single-molecule fluorescence microscopy beyond focused model systems into studying the global dynamics of translation in realistic setups. This chapter reviews the recent works using the ZMW technology to dissect the mechanism of translation initiation and elongation in prokaryotes, including complex processes such as translational stalling and frameshifting. Given the success of the technology, similarly complex biological processes could be studied in near-physiological conditions with the controllability of conventional in vitro experiments.
Collapse
|
63
|
Kim J, Kim JG, Yun G, Lee PS, Kim DN. Toward Modular Analysis of Supramolecular Protein Assemblies. J Chem Theory Comput 2015; 11:4260-72. [PMID: 26575921 DOI: 10.1021/acs.jctc.5b00329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite recent advances in molecular simulation technologies, analysis of high-molecular-weight structures is still challenging. Here, we propose an automated model reduction procedure aiming to enable modular analysis of these structures. It employs a component mode synthesis for the reduction of finite element protein models. Reduced models may consist of real biological subunits or artificial partitions whose dynamics is described using the degrees of freedom at the substructural interfaces and a small set of dominant vibrational modes only. Notably, the proper number of dominant modes is automatically determined using a novel estimator for eigenvalue errors without calculating the reference eigensolutions of the full model. The performance of the proposed approach is thoroughly investigated by analyzing 50 representative structures including a crystal structure of GroEL and an electron density map of a ribosome.
Collapse
Affiliation(s)
| | - Jin-Gyun Kim
- Mechanical Systems Safety Research Division, Korea Institute of Machinery & Materials , Gajeongbuk-ro 156, Yuseong-gu, Daejeon 34103, Republic of Korea
| | | | - Phill-Seung Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology , Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | |
Collapse
|
64
|
Bock LV, Blau C, Vaiana AC, Grubmüller H. Dynamic contact network between ribosomal subunits enables rapid large-scale rotation during spontaneous translocation. Nucleic Acids Res 2015; 43:6747-60. [PMID: 26109353 PMCID: PMC4538834 DOI: 10.1093/nar/gkv649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/10/2015] [Indexed: 11/13/2022] Open
Abstract
During ribosomal translation, the two ribosomal subunits remain associated through intersubunit bridges, despite rapid large-scale intersubunit rotation. The absence of large barriers hindering rotation is a prerequisite for rapid rotation. Here, we investigate how such a flat free-energy landscape is achieved, in particular considering the large shifts the bridges undergo at the periphery. The dynamics and energetics of the intersubunit contact network are studied using molecular dynamics simulations of the prokaryotic ribosome in intermediate states of spontaneous translocation. Based on observed occupancies of intersubunit contacts, residues were grouped into clusters. In addition to the central contact clusters, peripheral clusters were found to maintain strong steady interactions by changing contacts in the course of rotation. The peripheral B1 bridges are stabilized by a changing contact pattern of charged residues that adapts to the rotational state. In contrast, steady strong interactions of the B4 bridge are ensured by the flexible helix H34 following the movement of protein S15. The tRNAs which span the subunits contribute to the intersubunit binding enthalpy to an almost constant degree, despite their different positions in the ribosome. These mechanisms keep the intersubunit interaction strong and steady during rotation, thereby preventing dissociation and enabling rapid rotation.
Collapse
Affiliation(s)
- Lars V Bock
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Blau
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrea C Vaiana
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
65
|
Adio S, Senyushkina T, Peske F, Fischer N, Wintermeyer W, Rodnina MV. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome. Nat Commun 2015; 6:7442. [PMID: 26072700 PMCID: PMC4490557 DOI: 10.1038/ncomms8442] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement. EF-G enhances the rate of tRNA–mRNA translocation on the ribosome. Here the authors use single-molecule FRET to follow tRNA translocation in real time, identifying new chimeric intermediates and suggesting how EF-G binding and GTP hydrolysis change the energetic landscape of translocation to accelerate forward tRNA movement.
Collapse
Affiliation(s)
- Sarah Adio
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Niels Fischer
- 3D Electron Cryomicroscopy Group, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| |
Collapse
|
66
|
Structural insights into the translational infidelity mechanism. Nat Commun 2015; 6:7251. [PMID: 26037619 PMCID: PMC4468848 DOI: 10.1038/ncomms8251] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022] Open
Abstract
The decoding of mRNA on the ribosome is the least accurate process during genetic information transfer. Here we propose a unified decoding mechanism based on 11 high-resolution X-ray structures of the 70S ribosome that explains the occurrence of missense errors during translation. We determined ribosome structures in rare states where incorrect tRNAs were incorporated into the peptidyl-tRNA-binding site. These structures show that in the codon-anticodon duplex, a G·U mismatch adopts the Watson-Crick geometry, indicating a shift in the tautomeric equilibrium or ionization of the nucleobase. Additional structures with mismatches in the 70S decoding centre show that the binding of any tRNA induces identical rearrangements in the centre, which favours either isosteric or close to the Watson-Crick geometry codon-anticodon pairs. Overall, the results suggest that a mismatch escapes discrimination by preserving the shape of a Watson-Crick pair and indicate that geometric selection via tautomerism or ionization dominates the translational infidelity mechanism.
Collapse
|
67
|
Behrmann E, Loerke J, Budkevich TV, Yamamoto K, Schmidt A, Penczek PA, Vos MR, Bürger J, Mielke T, Scheerer P, Spahn CMT. Structural snapshots of actively translating human ribosomes. Cell 2015; 161:845-57. [PMID: 25957688 PMCID: PMC4432480 DOI: 10.1016/j.cell.2015.03.052] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/05/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
Macromolecular machines, such as the ribosome, undergo large-scale conformational changes during their functional cycles. Although their mode of action is often compared to that of mechanical machines, a crucial difference is that, at the molecular dimension, thermodynamic effects dominate functional cycles, with proteins fluctuating stochastically between functional states defined by energetic minima on an energy landscape. Here, we have used cryo-electron microscopy to image ex-vivo-derived human polysomes as a source of actively translating ribosomes. Multiparticle refinement and 3D variability analysis allowed us to visualize a variety of native translation intermediates. Significantly populated states include not only elongation cycle intermediates in pre- and post-translocational states, but also eEF1A-containing decoding and termination/recycling complexes. Focusing on the post-translocational state, we extended this assessment to the single-residue level, uncovering striking details of ribosome-ligand interactions and identifying both static and functionally important dynamic elements.
Collapse
Affiliation(s)
- Elmar Behrmann
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Tatyana V Budkevich
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kaori Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrea Schmidt
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institut für Medizinische Physik und Biophysik, AG Protein X-Ray Crystallography, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, 6431 Fannin MSB 6.220, Houston, TX 77054, USA
| | - Matthijn R Vos
- FEI Company, Nanoport Europe, Achtseweg Noord 5, 5651 GG Eindhoven, the Netherlands
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Max-Planck Institut für Molekulare Genetik, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institut für Medizinische Physik und Biophysik, AG Protein X-Ray Crystallography, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
68
|
Li W, Liu Z, Koripella RK, Langlois R, Sanyal S, Frank J. Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G. SCIENCE ADVANCES 2015; 1:e1500169. [PMID: 26229983 PMCID: PMC4517844 DOI: 10.1126/sciadv.1500169] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step is catalyzed by elongation factor G (EF-G), a guanosine triphosphatase (GTPase), and accompanied by a rotation between the two ribosomal subunits. A mutant of EF-G, H91A, renders the factor impaired in guanosine triphosphate (GTP) hydrolysis and thereby stabilizes it on the ribosome. We use cryogenic electron microscopy (cryo-EM) at near-atomic resolution to investigate two complexes formed by EF-G H91A in its GTP state with the ribosome, distinguished by the presence or absence of the intersubunit rotation. Comparison of these two structures argues in favor of a direct role of the conserved histidine in the switch II loop of EF-G in GTPase activation, and explains why GTP hydrolysis cannot proceed with EF-G bound to the unrotated form of the ribosome.
Collapse
Affiliation(s)
- Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Blackwell, 165 West 168th Street, New York, NY 10032, USA
| | - Zheng Liu
- Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Blackwell, 165 West 168th Street, New York, NY 10032, USA
| | - Ravi Kiran Koripella
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124 Uppsala, Sweden
| | - Robert Langlois
- Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Blackwell, 165 West 168th Street, New York, NY 10032, USA
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124 Uppsala, Sweden
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Blackwell, 165 West 168th Street, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
69
|
Structural Insights into tRNA Dynamics on the Ribosome. Int J Mol Sci 2015; 16:9866-95. [PMID: 25941930 PMCID: PMC4463622 DOI: 10.3390/ijms16059866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/17/2022] Open
Abstract
High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation.
Collapse
|
70
|
Paci M, Fox GE. Major centers of motion in the large ribosomal RNAs. Nucleic Acids Res 2015; 43:4640-9. [PMID: 25870411 PMCID: PMC4482067 DOI: 10.1093/nar/gkv289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/24/2015] [Indexed: 01/26/2023] Open
Abstract
Major centers of motion in the rRNAs of Thermus thermophilus are identified by alignment of crystal structures of EF-G bound and EF-G unbound ribosomal subunits. Small rigid helices upstream of these 'pivots' are aligned, thereby decoupling their motion from global rearrangements. Of the 21 pivots found, six are observed in the large subunit rRNA and 15 in the small subunit rRNA. Although the magnitudes of motion differ, with only minor exceptions equivalent pivots are seen in comparisons of Escherichia coli structures and one Saccharomyces cerevisiae structure pair. The pivoting positions are typically associated with structurally weak motifs such as non-canonical, primarily U-G pairs, bulge loops and three-way junctions. Each pivot is typically in direct physical contact with at least one other in the set and often several others. Moving helixes include rRNA segments in contact with the tRNA, intersubunit bridges and helices 28, 32 and 34 of the small subunit. These helices are envisioned to form a network. EF-G rearrangement would then provide directional control of this network propagating motion from the tRNA to the intersubunit bridges to the head swivel or along the same path backward.
Collapse
Affiliation(s)
- Maxim Paci
- Department of Biology and Biochemistry, University of Houston, 4800 Cullen Blvd. Houston, TX 77204-5001, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, 4800 Cullen Blvd. Houston, TX 77204-5001, USA
| |
Collapse
|
71
|
Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 2015; 348:303-8. [PMID: 25837512 DOI: 10.1126/science.aaa3872] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 01/10/2023]
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Philipp Bieri
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
72
|
Thompson CDK, Sharma AK, Frank J, Gonzalez RL, Chowdhury D. Quantitative Connection between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryogenic Electron Microscopy and Single-Molecule Fluorescence Resonance Energy Transfer Investigations of the Ribosome. J Phys Chem B 2015; 119:10888-10901. [PMID: 25785884 DOI: 10.1021/jp5128805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describe transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies of the bacterial ribosomal pre-translocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pre-translocation complex, which are observed in a cryo-EM study, may not be observed in several smFRET studies.
Collapse
|
73
|
Graifer D, Karpova G. Interaction of tRNA with eukaryotic ribosome. Int J Mol Sci 2015; 16:7173-94. [PMID: 25830484 PMCID: PMC4425011 DOI: 10.3390/ijms16047173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/16/2022] Open
Abstract
This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.
Collapse
Affiliation(s)
- Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, ul. Pirogova, 2, 630090 Novosibirsk, Russia.
| | - Galina Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, ul. Pirogova, 2, 630090 Novosibirsk, Russia.
| |
Collapse
|
74
|
Abstract
A Brownian machine, a tiny device buffeted by the random motions of molecules in the environment, is capable of exploiting these thermal motions for many of the conformational changes in its work cycle. Such machines are now thought to be ubiquitous, with the ribosome, a molecular machine responsible for protein synthesis, increasingly regarded as prototypical. Here we present a new analytical approach capable of determining the free-energy landscape and the continuous trajectories of molecular machines from a large number of snapshots obtained by cryogenic electron microscopy. We demonstrate this approach in the context of experimental cryogenic electron microscope images of a large ensemble of nontranslating ribosomes purified from yeast cells. The free-energy landscape is seen to contain a closed path of low energy, along which the ribosome exhibits conformational changes known to be associated with the elongation cycle. Our approach allows model-free quantitative analysis of the degrees of freedom and the energy landscape underlying continuous conformational changes in nanomachines, including those important for biological function.
Collapse
|
75
|
Following movement of domain IV of elongation factor G during ribosomal translocation. Proc Natl Acad Sci U S A 2014; 111:15060-5. [PMID: 25288752 DOI: 10.1073/pnas.1410873111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translocation of mRNA and tRNAs through the ribosome is catalyzed by a universally conserved elongation factor (EF-G in prokaryotes and EF-2 in eukaryotes). Previous studies have suggested that ribosome-bound EF-G undergoes significant structural rearrangements. Here, we follow the movement of domain IV of EF-G, which is critical for the catalysis of translocation, relative to protein S12 of the small ribosomal subunit using single-molecule FRET. We show that ribosome-bound EF-G adopts distinct conformations corresponding to the pre- and posttranslocation states of the ribosome. Our results suggest that, upon ribosomal translocation, domain IV of EF-G moves toward the A site of the small ribosomal subunit and facilitates the movement of peptidyl-tRNA from the A to the P site. We found no evidence of direct coupling between the observed movement of domain IV of EF-G and GTP hydrolysis. In addition, our results suggest that the pretranslocation conformation of the EF-G-ribosome complex is significantly less stable than the posttranslocation conformation. Hence, the structural rearrangement of EF-G makes a considerable energetic contribution to promoting tRNA translocation.
Collapse
|
76
|
Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A, Schmitz N, Aebersold R, Ban N. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature 2014; 515:283-6. [DOI: 10.1038/nature13895] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022]
|
77
|
Zhou J, Lancaster L, Donohue JP, Noller HF. How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science 2014; 345:1188-91. [PMID: 25190797 PMCID: PMC4242719 DOI: 10.1126/science.1255030] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coupled translocation of messenger RNA and transfer RNA (tRNA) through the ribosome, a process catalyzed by elongation factor EF-G, is a crucial step in protein synthesis. The crystal structure of a bacterial translocation complex describes the binding states of two tRNAs trapped in mid-translocation. The deacylated P-site tRNA has moved into a partly translocated pe/E chimeric hybrid state. The anticodon stem-loop of the A-site tRNA is captured in transition toward the 30S P site, while its 3' acceptor end contacts both the A and P loops of the 50S subunit, forming an ap/ap chimeric hybrid state. The structure shows how features of ribosomal RNA rearrange to hand off the A-site tRNA to the P site, revealing an active role for ribosomal RNA in the translocation process.
Collapse
Affiliation(s)
- Jie Zhou
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Laura Lancaster
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - John Paul Donohue
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Harry F Noller
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
78
|
Abstract
During ribosomal translocation, a process central to the elongation phase of protein synthesis, movement of mRNA and tRNAs requires large-scale rotation of the head domain of the small (30S) subunit of the ribosome. It has generally been accepted that the head rotates by pivoting around the neck helix (h28) of 16S rRNA, its sole covalent connection to the body domain. Surprisingly, we observe that the calculated axis of rotation does not coincide with the neck. Instead, comparative structure analysis across 55 ribosome structures shows that 30S head movement results from flexing at two hinge points lying within conserved elements of 16S rRNA. Hinge 1, although located within the neck, moves by straightening of the kinked helix h28 at the point of contact with the mRNA. Hinge 2 lies within a three-way helix junction that extends to the body through a second, noncovalent connection; its movement results from flexing between helices h34 and h35 in a plane orthogonal to the movement of hinge 1. Concerted movement at these two hinges accounts for the observed magnitudes of head rotation. Our findings also explain the mode of action of spectinomycin, an antibiotic that blocks translocation by binding to hinge 2.
Collapse
|
79
|
Holtkamp W, Wintermeyer W, Rodnina MV. Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis. Bioessays 2014; 36:908-18. [PMID: 25118068 DOI: 10.1002/bies.201400076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The translocation of tRNAs through the ribosome proceeds through numerous small steps in which tRNAs gradually shift their positions on the small and large ribosomal subunits. The most urgent questions are: (i) whether these intermediates are important; (ii) how the ribosomal translocase, the GTPase elongation factor G (EF-G), promotes directed movement; and (iii) how the energy of GTP hydrolysis is coupled to movement. In the light of recent advances in biophysical and structural studies, we argue that intermediate states of translocation are snapshots of dynamic fluctuations that guide the movement. In contrast to current models of stepwise translocation, kinetic evidence shows that the tRNAs move synchronously on the two ribosomal subunits in a rapid reaction orchestrated by EF-G and GTP hydrolysis. EF-G combines the energy regimes of a GTPase and a motor protein and facilitates tRNA movement by a combination of directed Brownian ratchet and power stroke mechanisms.
Collapse
Affiliation(s)
- Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
80
|
Liu T, Kaplan A, Alexander L, Yan S, Wen JD, Lancaster L, Wickersham CE, Fredrick K, Fredrik K, Noller H, Tinoco I, Bustamante CJ. Direct measurement of the mechanical work during translocation by the ribosome. eLife 2014; 3:e03406. [PMID: 25114092 PMCID: PMC4126342 DOI: 10.7554/elife.03406] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A detailed understanding of tRNA/mRNA translocation requires measurement of the forces generated by the ribosome during this movement. Such measurements have so far remained elusive and, thus, little is known about the relation between force and translocation and how this reflects on its mechanism and regulation. Here, we address these questions using optical tweezers to follow translation by individual ribosomes along single mRNA molecules, against an applied force. We find that translocation rates depend exponentially on the force, with a characteristic distance close to the one-codon step, ruling out the existence of sub-steps and showing that the ribosome likely functions as a Brownian ratchet. We show that the ribosome generates ∼13 pN of force, barely sufficient to unwind the most stable structures in mRNAs, thus providing a basis for their regulatory role. Our assay opens the way to characterizing the ribosome's full mechano-chemical cycle.
Collapse
Affiliation(s)
- Tingting Liu
- Jason L Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Ariel Kaplan
- Jason L Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States Department of Physics, University of California, Berkeley, Berkeley, United States Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel Lorry I Lokey Interdisciplinary Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lisa Alexander
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Shannon Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Jin-Der Wen
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Laura Lancaster
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, United States
| | - Charles E Wickersham
- Jason L Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States Department of Physics, University of California, Berkeley, Berkeley, United States
| | | | - Kurt Fredrik
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, United States
| | - Harry Noller
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, United States
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Carlos J Bustamante
- Jason L Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States Department of Physics, University of California, Berkeley, Berkeley, United States Department of Chemistry, University of California, Berkeley, Berkeley, United States California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
81
|
Gagnon MG, Lin J, Bulkley D, Steitz TA. Crystal structure of elongation factor 4 bound to a clockwise ratcheted ribosome. Science 2014; 345:684-7. [PMID: 25104389 PMCID: PMC9153294 DOI: 10.1126/science.1253525] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Elongation factor 4 (EF4/LepA) is a highly conserved guanosine triphosphatase translation factor. It was shown to promote back-translocation of tRNAs on posttranslocational ribosome complexes and to compete with elongation factor G for interaction with pretranslocational ribosomes, inhibiting the elongation phase of protein synthesis. Here, we report a crystal structure of EF4-guanosine diphosphate bound to the Thermus thermophilus ribosome with a P-site tRNA at 2.9 angstroms resolution. The C-terminal domain of EF4 reaches into the peptidyl transferase center and interacts with the acceptor stem of the peptidyl-tRNA in the P site. The ribosome is in an unusual state of ratcheting with the 30S subunit rotated clockwise relative to the 50S subunit, resulting in a remodeled decoding center. The structure is consistent with EF4 functioning either as a back-translocase or a ribosome sequester.
Collapse
Affiliation(s)
- Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA
| | - Jinzhong Lin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - David Bulkley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA. Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA.
| |
Collapse
|
82
|
The ribosome uses cooperative conformational changes to maximize and regulate the efficiency of translation. Proc Natl Acad Sci U S A 2014; 111:12073-8. [PMID: 25085895 DOI: 10.1073/pnas.1401864111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the most challenging unanswered questions regarding the structural biology of biomolecular machines such as the two-subunit ribosome is whether and how these machines coordinate seemingly independent and random conformational fluctuations to maximize and regulate their functional efficiencies. To address this question, we have used ribosome mutagenesis or a ribosome-targeting antibiotic to predictably perturb the dynamics of intersubunit rotation, a structural rearrangement of the ribosome that is essential for the translocation and ejection of ribosome-bound tRNAs during translation. Concomitantly, we have used single-molecule fluorescence resonance energy transfer (smFRET) to characterize the effects of these perturbations on the dynamics of ribosomal L1 stalk movements and ribosome-bound tRNA reconfigurations, conformational changes that are likewise essential for the translocation and ejection of tRNAs during translation. Together with the results of complementary biochemical studies, our smFRET studies demonstrate that the ribosome uses cooperative conformational changes to maximize and regulate the efficiency with which it translocates and ejects tRNAs during translation. We propose that the ribosome employs cooperative conformational changes to efficiently populate global conformational states that are productive for translation, that translation factors exploit this cooperativity as part of their mechanisms of action, and that antibiotics exploit it to maximize the potency with which they inhibit translation. It is likely that similar cooperative conformational changes underlie the function and regulation of other biomolecular machines.
Collapse
|
83
|
Structures of yeast 80S ribosome-tRNA complexes in the rotated and nonrotated conformations. Structure 2014; 22:1210-1218. [PMID: 25043550 DOI: 10.1016/j.str.2014.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 01/10/2023]
Abstract
The structural understanding of eukaryotic translation lags behind that of translation on bacterial ribosomes. Here, we present two subnanometer resolution structures of S. cerevisiae 80S ribosome complexes formed with either one or two tRNAs and bound in response to an mRNA fragment containing the Kozak consensus sequence. The ribosomes adopt two globally different conformations that are related to each other by the rotation of the small subunit. Comparison with bacterial ribosome complexes reveals that the global structures and modes of intersubunit rotation of the yeast ribosome differ significantly from those in the bacterial counterpart, most notably in the regions involving the tRNA, small ribosomal subunit, and conserved helix 69 of the large ribosomal subunit. The structures provide insight into ribosome dynamics implicated in tRNA translocation and help elucidate the role of the Kozak fragment in positioning an open reading frame during translation initiation in eukaryotes.
Collapse
|
84
|
Voorhees RM, Fernández IS, Scheres SHW, Hegde RS. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 2014; 157:1632-43. [PMID: 24930395 PMCID: PMC4081569 DOI: 10.1016/j.cell.2014.05.024] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/27/2022]
Abstract
Cotranslational protein translocation is a universally conserved process for secretory and membrane protein biosynthesis. Nascent polypeptides emerging from a translating ribosome are either transported across or inserted into the membrane via the ribosome-bound Sec61 channel. Here, we report structures of a mammalian ribosome-Sec61 complex in both idle and translating states, determined to 3.4 and 3.9 Å resolution. The data sets permit building of a near-complete atomic model of the mammalian ribosome, visualization of A/P and P/E hybrid-state tRNAs, and analysis of a nascent polypeptide in the exit tunnel. Unprecedented chemical detail is observed for both the ribosome-Sec61 interaction and the conformational state of Sec61 upon ribosome binding. Comparison of the maps from idle and translating complexes suggests how conformational changes to the Sec61 channel could facilitate translocation of a secreted polypeptide. The high-resolution structure of the mammalian ribosome-Sec61 complex provides a valuable reference for future functional and structural studies. A near-complete atomic resolution structure of the mammalian ribosome Snapshot of a translating ribosome with hybrid state tRNAs and nascent polypeptide Structures of the Sec61 translocon bound to idle and translating ribosomes Molecular details of the residues involved in the ribosome-Sec61 interaction
Collapse
Affiliation(s)
- Rebecca M Voorhees
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Israel S Fernández
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
85
|
Chen J, Petrov A, Johansson M, Tsai A, O'Leary SE, Puglisi JD. Dynamic pathways of -1 translational frameshifting. Nature 2014; 512:328-32. [PMID: 24919156 PMCID: PMC4472451 DOI: 10.1038/nature13428] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/01/2014] [Indexed: 12/16/2022]
Abstract
Spontaneous changes in the reading frame of translation are rare (frequency of 10−3 – 10−4 per codon)1, but can be induced by specific features in the messenger RNA (mRNA). In the presence of mRNA secondary structures, a heptanucleotide “slippery sequence” usually defined by the motif X XXY YYZ, and (in some prokaryotic cases) mRNA sequences that base pair with the 3′ end of the 16S ribosomal rRNA (internal Shine-Dalgarno (SD) sequences), there is an increased probability that a specific programmed change of frame occurs, wherein the ribosome shifts one nucleotide backwards into an overlapping reading frame (−1 frame) and continues by translating a new sequence of amino acids2,3. Despite extensive biochemical and genetic studies, there is no clear mechanistic description for frameshifting. Here, we apply single-molecule fluorescence to track the compositional and conformational dynamics of the individual ribosomes at each codon during translation of a frameshift-inducing mRNA from the dnaX gene in Escherichia coli. Ribosomes that frameshift into the −1 frame are characterized by a 10-fold longer pause in elongation compared to non-frameshifted ribosomes, which translate through unperturbed. During the pause, interactions of the ribosome with the mRNA stimulatory elements uncouple EF-G catalyzed translocation from normal ribosomal subunit reverse-rotation, leaving the ribosome in a non-canonical intersubunit rotated state with an exposed codon in the aminoacyl-tRNA site (A site). tRNALys sampling and accommodation to the empty A site either lead to the slippage of the tRNAs into the −1 frame or maintain the ribosome into the 0 frame. Our results provide a general mechanistic and conformational framework for −1 frameshifting, highlighting multiple kinetic branchpoints during elongation.
Collapse
Affiliation(s)
- Jin Chen
- 1] Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA [2] Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Alexey Petrov
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Magnus Johansson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Albert Tsai
- 1] Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA [2] Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Seán E O'Leary
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| |
Collapse
|
86
|
Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center. Proc Natl Acad Sci U S A 2014; 111:9139-44. [PMID: 24927574 DOI: 10.1073/pnas.1406335111] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In cap-dependent translation initiation, the open reading frame (ORF) of mRNA is established by the placement of the AUG start codon and initiator tRNA in the ribosomal peptidyl (P) site. Internal ribosome entry sites (IRESs) promote translation of mRNAs in a cap-independent manner. We report two structures of the ribosome-bound Taura syndrome virus (TSV) IRES belonging to the family of Dicistroviridae intergenic IRESs. Intersubunit rotational states differ in these structures, suggesting that ribosome dynamics play a role in IRES translocation. Pseudoknot I of the IRES occupies the ribosomal decoding center at the aminoacyl (A) site in a manner resembling that of the tRNA anticodon-mRNA codon. The structures reveal that the TSV IRES initiates translation by a previously unseen mechanism, which is conceptually distinct from initiator tRNA-dependent mechanisms. Specifically, the ORF of the IRES-driven mRNA is established by the placement of the preceding tRNA-mRNA-like structure in the A site, whereas the 40S P site remains unoccupied during this initial step.
Collapse
|
87
|
Lareau LF, Hite DH, Hogan GJ, Brown PO. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. eLife 2014; 3:e01257. [PMID: 24842990 PMCID: PMC4052883 DOI: 10.7554/elife.01257] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During translation elongation, the ribosome ratchets along its mRNA template, incorporating each new amino acid and translocating from one codon to the next. The elongation cycle requires dramatic structural rearrangements of the ribosome. We show here that deep sequencing of ribosome-protected mRNA fragments reveals not only the position of each ribosome but also, unexpectedly, its particular stage of the elongation cycle. Sequencing reveals two distinct populations of ribosome footprints, 28–30 nucleotides and 20–22 nucleotides long, representing translating ribosomes in distinct states, differentially stabilized by specific elongation inhibitors. We find that the balance of small and large footprints varies by codon and is correlated with translation speed. The ability to visualize conformational changes in the ribosome during elongation, at single-codon resolution, provides a new way to study the detailed kinetics of translation and a new probe with which to identify the factors that affect each step in the elongation cycle. DOI:http://dx.doi.org/10.7554/eLife.01257.001 To make a protein from a gene, the gene is first transcribed to produce a molecule of messenger RNA (mRNA), which then passes through a molecular machine called a ribosome. The ribosome reads the genetic code in the mRNA in groups of three letters at a time, and each triplet of letters (or codon) represents an amino acid. The ribosome then joins the relevant amino acids together to build a protein. The ribosome processes about six amino acids per second, on average, but the mRNA is not fed through at a constant rate. Instead, the ribosome changes its shape to ratchet along the mRNA from one codon to the next: it then reads the new codon and adds another amino acid to the protein. However, many of the details of this ratcheting process are not fully understood. In this study, Lareau, Hite et al. have used a technique called ‘ribosome profiling’ to explore the movement of ribosomes along mRNA molecules. First, all of the pieces of mRNA molecules that are not protected inside a ribosome were chemically destroyed. The sequences of the protected fragments were then read and matched to the full-length gene sequences. The protected fragments came in two different sizes: some were about 28–30 letters long, and others were about 20–22 letters long. Lareau, Hite et al. suggest that these different fragment sizes occur because the ribosome switches between two shapes at each codon as it ratchets along the mRNA, and so it protects different lengths of mRNA. In previous ribosome-profiling experiments, the fragments had all been about 28 letters long; but these experiments had used a chemical to halt the progress of the ribosomes along the mRNAs before measuring the length of the fragments. Lareau, Hite et al. argue that this chemical locks the ribosome in the same shape when it brings the ribosome to a halt, and so the protected fragments always have the same length. Further, other chemicals that halt ribosomes appear to lock this molecular machine in the other shape, and so it can only protect the shorter fragments. The findings of Lareau, Hite et al. show that ribosomal profiling experiments can reveal much more than simply where a ribosome is on an mRNA molecule. Further study into the different stages of the ribosome ratcheting process will help uncover how the speed that a ribosome translates an mRNA into a protein can be encoded in the mRNA sequence itself. DOI:http://dx.doi.org/10.7554/eLife.01257.002
Collapse
Affiliation(s)
- Liana F Lareau
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Dustin H Hite
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Gregory J Hogan
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Patrick O Brown
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
88
|
Fernández IS, Bai XC, Murshudov G, Scheres SHW, Ramakrishnan V. Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome. Cell 2014; 157:823-31. [PMID: 24792965 PMCID: PMC4017093 DOI: 10.1016/j.cell.2014.04.015] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/14/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
The cricket paralysis virus internal ribosome entry site (CrPV-IRES) is a folded structure in a viral mRNA that allows initiation of translation in the absence of any host initiation factors. By using recent advances in single-particle electron cryomicroscopy, we have solved the structure of CrPV-IRES bound to the ribosome of the yeast Kluyveromyces lactis in both the canonical and rotated states at overall resolutions of 3.7 and 3.8 Å, respectively. In both states, the pseudoknot PKI of the CrPV-IRES mimics a tRNA/mRNA interaction in the decoding center of the A site of the 40S ribosomal subunit. The structure and accompanying factor-binding data show that CrPV-IRES binding mimics a pretranslocation rather than initiation state of the ribosome. Translocation of the IRES by elongation factor 2 (eEF2) is required to bring the first codon of the mRNA into the A site and to allow the start of translation. The high-resolution structure of CrPV-IRES bound to the ribosome was solved by cryoEM Pseudoknot I of CrPV-IRES binds in the decoding center, thus blocking the A site CrPV-IRES mimics a pretranslocation rather than initiation complex of the ribosome Translocation of CrPV-IRES by eEF2 is required for the start of translation
Collapse
Affiliation(s)
- Israel S Fernández
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Xiao-Chen Bai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Garib Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
89
|
Holtkamp W, Cunha CE, Peske F, Konevega AL, Wintermeyer W, Rodnina MV. GTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits. EMBO J 2014; 33:1073-85. [PMID: 24614227 DOI: 10.1002/embj.201387465] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Elongation factor G (EF-G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF-G and GTP hydrolysis control these movements is still unclear. We used fluorescence labels that specifically monitor movements on either 30S or 50S subunits in combination with EF-G mutants and translocation-specific antibiotics to investigate timing and energetics of translocation. We show that EF-G-GTP facilitates synchronous movements of peptidyl-tRNA on the two subunits into an early post-translocation state, which resembles a chimeric state identified by structural studies. EF-G binding without GTP hydrolysis promotes only partial tRNA movement on the 50S subunit. However, rapid 30S translocation and the concomitant completion of 50S translocation require GTP hydrolysis and a functional domain 4 of EF-G. Our results reveal two distinct modes for utilizing the energy of EF-G binding and GTP hydrolysis and suggest that coupling of GTP hydrolysis to translocation is mediated through rearrangements of the 30S subunit.
Collapse
Affiliation(s)
- Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
The ribosome is one of the main antibiotic targets in the bacterial cell. Crystal structures of naturally produced antibiotics and their semi-synthetic derivatives bound to ribosomal particles have provided unparalleled insight into their mechanisms of action, and they are also facilitating the design of more effective antibiotics for targeting multidrug-resistant bacteria. In this Review, I discuss the recent structural insights into the mechanism of action of ribosome-targeting antibiotics and the molecular mechanisms of bacterial resistance, in addition to the approaches that are being pursued for the production of improved drugs that inhibit bacterial protein synthesis.
Collapse
|
91
|
Chen B, Boël G, Hashem Y, Ning W, Fei J, Wang C, Gonzalez RL, Hunt JF, Frank J. EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA dynamics. Nat Struct Mol Biol 2014; 21:152-9. [PMID: 24389465 PMCID: PMC4143144 DOI: 10.1038/nsmb.2741] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 11/21/2013] [Indexed: 01/12/2023]
Abstract
Cells express many ribosome-interacting factors whose functions and molecular mechanisms remain unknown. Here, we elucidate the mechanism of a newly characterized regulatory translation factor, energy-dependent translational throttle A (EttA), which is an Escherichia coli representative of the ATP-binding cassette F (ABC-F) protein family. Using cryo-EM, we demonstrate that the ATP-bound form of EttA binds to the ribosomal tRNA-exit site, where it forms bridging interactions between the ribosomal L1 stalk and the tRNA bound in the peptidyl-tRNA-binding site. Using single-molecule fluorescence resonance energy transfer, we show that the ATP-bound form of EttA restricts ribosome and tRNA dynamics required for protein synthesis. This work represents the first example, to our knowledge, in which the detailed molecular mechanism of any ABC-F family protein has been determined and establishes a framework for elucidating the mechanisms of other regulatory translation factors.
Collapse
Affiliation(s)
- Bo Chen
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Grégory Boël
- 1] Department of Biological Sciences, Columbia University, New York, New York, USA. [2] Northeast Structural Genomics Consortium, Columbia University, New York, New York, USA. [3]
| | - Yaser Hashem
- 1] Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA. [2]
| | - Wei Ning
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Jingyi Fei
- 1] Department of Chemistry, Columbia University, New York, New York, USA. [2]
| | - Chi Wang
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, New York, USA
| | - John F Hunt
- 1] Department of Biological Sciences, Columbia University, New York, New York, USA. [2] Northeast Structural Genomics Consortium, Columbia University, New York, New York, USA
| | - Joachim Frank
- 1] Department of Biological Sciences, Columbia University, New York, New York, USA. [2] Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| |
Collapse
|
92
|
Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc Natl Acad Sci U S A 2013; 110:20994-9. [PMID: 24324137 DOI: 10.1073/pnas.1311423110] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, tRNAs and their associated mRNA codons move sequentially on the ribosome from the A (aminoacyl) site to the P (peptidyl) site to the E (exit) site in a process catalyzed by a universally conserved ribosome-dependent GTPase [elongation factor G (EF-G) in prokaryotes and elongation factor 2 (EF-2) in eukaryotes]. Although the high-resolution structure of EF-G bound to the posttranslocation ribosome has been determined, the pretranslocation conformation of the ribosome bound with EF-G and A-site tRNA has evaded visualization owing to the transient nature of this state. Here we use electron cryomicroscopy to determine the structure of the 70S ribosome with EF-G, which is trapped in the pretranslocation state using antibiotic viomycin. Comparison with the posttranslocation ribosome shows that the small subunit of the pretranslocation ribosome is rotated by ∼12° relative to the large subunit. Domain IV of EF-G is positioned in the cleft between the body and head of the small subunit outwardly of the A site and contacts the A-site tRNA. Our findings suggest a model in which domain IV of EF-G promotes the translocation of tRNA from the A to the P site as the small ribosome subunit spontaneously rotates back from the hybrid, rotated state into the nonrotated posttranslocation state.
Collapse
|
93
|
Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc Natl Acad Sci U S A 2013; 110:20964-9. [PMID: 24324168 DOI: 10.1073/pnas.1320387110] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA.
Collapse
|
94
|
Yao L, Li Y, Tsai TW, Xu S, Wang Y. Noninvasive Measurement of the Mechanical Force Generated by Motor Protein EF-G during Ribosome Translocation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
95
|
Yao L, Li Y, Tsai TW, Xu S, Wang Y. Noninvasive Measurement of the Mechanical Force Generated by Motor Protein EF-G during Ribosome Translocation. Angew Chem Int Ed Engl 2013; 52:14041-4. [DOI: 10.1002/anie.201307419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/23/2013] [Indexed: 01/13/2023]
|
96
|
Bock LV, Blau C, Schröder GF, Davydov II, Fischer N, Stark H, Rodnina MV, Vaiana AC, Grubmüller H. Energy barriers and driving forces in tRNA translocation through the ribosome. Nat Struct Mol Biol 2013; 20:1390-6. [DOI: 10.1038/nsmb.2690] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/06/2013] [Indexed: 12/31/2022]
|
97
|
Seo S, Jang Y, Qian P, Liu WK, Choi JB, Lim BS, Kim MK. Efficient prediction of protein conformational pathways based on the hybrid elastic network model. J Mol Graph Model 2013; 47:25-36. [PMID: 24296313 DOI: 10.1016/j.jmgm.2013.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Various computational models have gained immense attention by analyzing the dynamic characteristics of proteins. Several models have achieved recognition by fulfilling either theoretical or experimental predictions. Nonetheless, each method possesses limitations, mostly in computational outlay and physical reality. These limitations remind us that a new model or paradigm should advance theoretical principles to elucidate more precisely the biological functions of a protein and should increase computational efficiency. With these critical caveats, we have developed a new computational tool that satisfies both physical reality and computational efficiency. In the proposed hybrid elastic network model (HENM), a protein structure is represented as a mixture of rigid clusters and point masses that are connected with linear springs. Harmonic analyses based on the HENM have been performed to generate normal modes and conformational pathways. The results of the hybrid normal mode analyses give new physical insight to the 70S ribosome. The feasibility of the conformational pathways of hybrid elastic network interpolation (HENI) was quantitatively evaluated by comparing three different overlap values proposed in this paper. A remarkable observation is that the obtained mode shapes and conformational pathways are consistent with each other. Our timing results show that HENM has some advantage in computational efficiency over a coarse-grained model, especially for large proteins, even though it takes longer to construct the HENM. Consequently, the proposed HENM will be one of the best alternatives to the conventional coarse-grained ENMs and all-atom based methods (such as molecular dynamics) without loss of physical reality.
Collapse
Affiliation(s)
- Sangjae Seo
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yunho Jang
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Pengfei Qian
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Wing Kam Liu
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jae-Boong Choi
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea; School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Byeong Soo Lim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Moon Ki Kim
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea; School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
98
|
Peske F, Wintermeyer W. Antibiotics Inhibiting the Translocation Step of Protein Elongation on the Ribosome. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
99
|
Structure of EF-G-ribosome complex in a pretranslocation state. Nat Struct Mol Biol 2013; 20:1077-84. [PMID: 23912278 DOI: 10.1038/nsmb.2645] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/09/2013] [Indexed: 11/08/2022]
Abstract
In protein synthesis, elongation factor G (EF-G) facilitates movement of tRNA-mRNA by one codon, which is coupled to the ratchet-like rotation of the ribosome complex and is triggered by EF-G-mediated GTP hydrolysis. Here we report the structure of a pretranslocational ribosome bound to Thermus thermophilus EF-G trapped with a GTP analog. The positioning of the catalytic His87 into the active site coupled to hydrophobic-gate opening involves the 23S rRNA sarcin-ricin loop and domain III of EF-G and provides a structural basis for the GTPase activation of EF-G. Interactions of the hybrid peptidyl-site-exit-site tRNA with ribosomal elements, including the entire L1 stalk and proteins S13 and S19, shed light on how formation and stabilization of the hybrid tRNA is coupled to head swiveling and body rotation of the 30S as well as to closure of the L1 stalk.
Collapse
|
100
|
Zhou J, Lancaster L, Donohue JP, Noller HF. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science 2013; 340:1236086. [PMID: 23812722 DOI: 10.1126/science.1236086] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Translocation of messenger and transfer RNA (mRNA and tRNA) through the ribosome is a crucial step in protein synthesis, whose mechanism is not yet understood. The crystal structures of three Thermus ribosome-tRNA-mRNA-EF-G complexes trapped with β,γ-imidoguanosine 5'-triphosphate (GDPNP) or fusidic acid reveal conformational changes occurring during intermediate states of translocation, including large-scale rotation of the 30S subunit head and body. In all complexes, the tRNA acceptor ends occupy the 50S subunit E site, while their anticodon stem loops move with the head of the 30S subunit to positions between the P and E sites, forming chimeric intermediate states. Two universally conserved bases of 16S ribosomal RNA that intercalate between bases of the mRNA may act as "pawls" of a translocational ratchet. These findings provide new insights into the molecular mechanism of ribosomal translocation.
Collapse
Affiliation(s)
- Jie Zhou
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|