51
|
Lappin KM, Barros EM, Jhujh SS, Irwin GW, McMillan H, Liberante FG, Latimer C, LaBonte MJ, Mills KI, Harkin DP, Stewart GS, Savage KI. CANCER-ASSOCIATED SF3B1 MUTATIONS CONFER A BRCA-LIKE CELLULAR PHENOTYPE AND SYNTHETIC LETHALITY TO PARP INHIBITORS. Cancer Res 2022; 82:819-830. [DOI: 10.1158/0008-5472.can-21-1843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
|
52
|
Xie J, Wen M, Zhang J, Wang Z, Wang M, Qiu Y, Zhao W, Zhu F, Yao M, Rong ZX, Hu W, Pei Q, Sun X, Li J, Mao Z, Sun L, Tan R. The roles of RNA helicases in DNA damage repair and tumorigenesis reveal precision therapeutic strategies. Cancer Res 2022; 82:872-884. [PMID: 34987058 DOI: 10.1158/0008-5472.can-21-2187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/04/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022]
Abstract
DEAD-box RNA helicases belong to a large group of RNA processing factors and play vital roles unwinding RNA helices and in ribosomal RNA biogenesis. Emerging evidence indicates that RNA helicases are associated with genome stability, yet the mechanisms behind this association remain poorly understood. In this study, we performed a comprehensive analysis of RNA helicases using multiplatform proteogenomic databases. Over 50% (28/49) of detected RNA helicases were highly expressed in multiple tumor tissues, and more than 60% (17/28) of tumor-associated members were directly involved in DNA damage repair (DDR). Analysis of repair dynamics revealed that these RNA helicases are engaged in an extensively broad range of DDR pathways. Among these factors is DDX21, which was prominently upregulated in colorectal cancer. The high expression of DDX21 gave rise to frequent chromosome exchange and increased genome fragmentation. Mechanistically, aberrantly high expression of DDX21 triggered inappropriate repair processes by delaying homologous recombination repair and increasing replication stress, leading to genome instability and tumorigenesis. Treatment with distinct chemotherapeutic drugs caused higher lethality to cancer cells with genome fragility induced by DDX21, providing a perspective for treatment of tumors with high DDX21 expression. This study revealed the role of RNA helicases in DNA damage and their associations with cancer, which could expand therapeutic strategies and improve precision treatments for cancer patients with high expression of RNA helicases.
Collapse
Affiliation(s)
- Jinru Xie
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University
| | - Ming Wen
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University
| | - Jiao Zhang
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University
| | - Zheng Wang
- Department of Geriatrics, Central South University
| | - Meng Wang
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University
| | - Yanfang Qiu
- Center for Molecular Medicine, Central South University
| | - Wenchao Zhao
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University
| | - Fang Zhu
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University
| | - Mianfeng Yao
- Department of Stomatology, Xiangya Hospital Central South University
| | - Zhuo-Xian Rong
- Center for Molecular Medicine, Key Laboratory of Molecular Radiation Oncology, Hunan Province, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Wenfeng Hu
- Center for Molecular Medicine, Xiangya Hospital Central South University
| | - Qian Pei
- Xiangya Hospital Central South University
| | - Xiaoxiang Sun
- School of Life Sciences and Technology, Tongji University
| | - Jinchen Li
- Department of Geriatrics, Central South University
| | - Zhiyong Mao
- School of Life Sciences and Technology, Tongji University
| | | | - Rong Tan
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University
| |
Collapse
|
53
|
Ghaleb A, Roa L, Marchenko N. Low-dose but not high-dose γ-irradiation elicits the dominant-negative effect of mutant p53 in vivo. Cancer Lett 2022; 530:128-141. [DOI: 10.1016/j.canlet.2022.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
|
54
|
Martinez-Pastor B, Silveira GG, Clarke TL, Chung D, Gu Y, Cosentino C, Davidow LS, Mata G, Hassanieh S, Salsman J, Ciccia A, Bae N, Bedford MT, Megias D, Rubin LL, Efeyan A, Dellaire G, Mostoslavsky R. Assessing kinetics and recruitment of DNA repair factors using high content screens. Cell Rep 2021; 37:110176. [PMID: 34965416 PMCID: PMC8763642 DOI: 10.1016/j.celrep.2021.110176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/08/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022] Open
Abstract
Repair of genetic damage is coordinated in the context of chromatin, so cells dynamically modulate accessibility at DNA breaks for the recruitment of DNA damage response (DDR) factors. The identification of chromatin factors with roles in DDR has mostly relied on loss-of-function screens while lacking robust high-throughput systems to study DNA repair. In this study, we have developed two high-throughput systems that allow the study of DNA repair kinetics and the recruitment of factors to double-strand breaks in a 384-well plate format. Using a customized gain-of-function open-reading frame library ("ChromORFeome" library), we identify chromatin factors with putative roles in the DDR. Among these, we find the PHF20 factor is excluded from DNA breaks, affecting DNA repair by competing with 53BP1 recruitment. Adaptable for genetic perturbations, small-molecule screens, and large-scale analysis of DNA repair, these resources can aid our understanding and manipulation of DNA repair.
Collapse
Affiliation(s)
- Barbara Martinez-Pastor
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain.
| | - Giorgia G Silveira
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas L Clarke
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yuchao Gu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Claudia Cosentino
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Lance S Davidow
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Gadea Mata
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Sylvana Hassanieh
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Narkhyun Bae
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D.Anderson Cancer Center, University of Texas, Smithville, TX 78957, USA
| | - Diego Megias
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Alejo Efeyan
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada.
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
55
|
Liu F, Pan R, Ding H, Gu L, Yang Y, Li C, Xu Y, Hu R, Chen H, Zhang X, Nie Y. UBQLN4 is an ATM substrate that stabilizes the anti-apoptotic proteins BCL2A1 and BCL2L10 in mesothelioma. Mol Oncol 2021; 15:3738-3752. [PMID: 34245648 PMCID: PMC8637560 DOI: 10.1002/1878-0261.13058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
ATM serine/threonine kinase (ATM; previously known as ataxia-telangiectasia mutated) plays a critical role in maintaining genomic stability and regulates multiple downstream pathways, such as DNA repair, cell cycle arrest, and apoptosis. As a serine/threonine kinase, ATM has an array of downstream phosphorylation substrates, including checkpoint effector checkpoint kinase 2 (CHK2). ATM inhibits cell cycle progression by phosphorylating and activating CHK2, which plays an important role in the formation and development of tumors and participates in DNA repair responses after double-stranded DNA breaks. In this study, we used a recently developed mammalian functional genetic screening system to explore a series of ATM substrates and their role in DNA damage to enhance our understanding of the DNA damage response. Ubiquilin 4 (UBQLN4), which belongs to the ubiquilin family characterized by its ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains, was identified as a new substrate for ATM. UBQLN4 is involved in various intracellular processes, such as autophagosome maturation, p21 regulation, and motor axon morphogenesis. However, the biological function of UBQLN4 remains to be elucidated. In this study, we not only identified UBQLN4 as a substrate for ATM, but also found that UBQLN4 interacts with and stabilizes the anti-apoptotic proteins Bcl-2-related protein A1 (BCL2A1) and Bcl-2-like protein 10 (BCL2L10) and prevents mesothelioma cell apoptosis in response to DNA damage. These findings expand our understanding of the role of UBQLN4 in mesothelioma and provide new insights into potential mesothelioma treatments targeting substrates for ATM.
Collapse
Affiliation(s)
- Fang Liu
- Medical CollegeGuizhou UniversityGuiyangChina
| | - RunSang Pan
- GuiYang Maternal and Child HospitalGuiyangChina
| | - HongYu Ding
- State Key Laboratory of Systems BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - LiLing Gu
- Medical CollegeGuizhou UniversityGuiyangChina
- Department of RehabilitationGuizhou Provincial People’s HospitalGuiyangChina
- NHC Key Laboratory of Pulmonary Immune‐related DiseasesGuizhou Provincial People’s HospitalGuiyangChina
| | - Yun Yang
- Medical CollegeGuizhou UniversityGuiyangChina
| | - ChuanYin Li
- State Key Laboratory of Systems BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - YongJie Xu
- NHC Key Laboratory of Pulmonary Immune‐related DiseasesGuizhou Provincial People’s HospitalGuiyangChina
| | - Ronggui Hu
- State Key Laboratory of Systems BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - Hui Chen
- NHC Key Laboratory of Pulmonary Immune‐related DiseasesGuizhou Provincial People’s HospitalGuiyangChina
| | - XiangYan Zhang
- NHC Key Laboratory of Pulmonary Immune‐related DiseasesGuizhou Provincial People’s HospitalGuiyangChina
| | - YingJie Nie
- NHC Key Laboratory of Pulmonary Immune‐related DiseasesGuizhou Provincial People’s HospitalGuiyangChina
| |
Collapse
|
56
|
Tandem Mass Tag labelling quantitative acetylome analysis of differentially modified proteins during mycoparasitism of Clonostachys chloroleuca 67-1. Sci Rep 2021; 11:22383. [PMID: 34789861 PMCID: PMC8599485 DOI: 10.1038/s41598-021-01956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
Lysine acetylation (Kac) is an important post-translational modification (PTM) of proteins in all organisms, but its functions have not been extensively explored in filamentous fungi. In this study, a Tandem Mass Tag (TMT) labelling lysine acetylome was constructed, and differentially modified Kac proteins were quantified during mycoparasitism and vegetative growth in the biocontrol fungus Clonostachys chloroleuca 67–1, using liquid chromatography-tandem mass spectrometry (LC–MS/MS). A total of 1448 Kac sites were detected on 740 Kac proteins, among which 126 sites on 103 proteins were differentially regulated. Systematic bioinformatics analyses indicate that the modified Kac proteins were from multiple subcellular localizations and involved in diverse functions including chromatin assembly, glycometabolism and redox activities. All Kac sites were characterized by 10 motifs, including the novel CxxKac motif. The results suggest that Kac proteins may have effects of broadly regulating protein interaction networks during C. chloroleuca parasitism to Sclerotinia sclerotiorum sclerotia. This is the first report of a correlation between Kac events and the biocontrol activity of C. chloroleuca. Our findings provide insight into the molecular mechanisms underlying C. chloroleuca control of plant fungal pathogens regulated by Kac proteins.
Collapse
|
57
|
Baker M, Petasny M, Taqatqa N, Bentata M, Kay G, Engal E, Nevo Y, Siam A, Dahan S, Salton M. KDM3A regulates alternative splicing of cell-cycle genes following DNA damage. RNA (NEW YORK, N.Y.) 2021; 27:1353-1362. [PMID: 34321328 PMCID: PMC8522690 DOI: 10.1261/rna.078796.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Changes in the cellular environment result in chromatin structure alteration, which in turn regulates gene expression. To learn about the effect of the cellular environment on the transcriptome, we studied the H3K9 demethylase KDM3A. Using RNA-seq, we found that KDM3A regulates the transcription and alternative splicing of genes associated with cell cycle and DNA damage. We showed that KDM3A undergoes phosphorylation by PKA at serine 265 following DNA damage, and that the phosphorylation is important for proper cell-cycle regulation. We demonstrated that SAT1 alternative splicing, regulated by KDM3A, plays a role in cell-cycle regulation. Furthermore we found that KDM3A's demethylase activity is not needed for SAT1 alternative splicing regulation. In addition, we identified KDM3A's protein partner ARID1A, the SWI/SNF subunit, and SRSF3 as regulators of SAT1 alternative splicing and showed that KDM3A is essential for SRSF3 binding to SAT1 pre-mRNA. These results suggest that KDM3A serves as a sensor of the environment and an adaptor for splicing factor binding. Our work reveals chromatin sensing of the environment in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Mai Baker
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mayra Petasny
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nadeen Taqatqa
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Eden Engal
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Yuval Nevo
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ahmad Siam
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sara Dahan
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
58
|
Kang HJ, Eom HJ, Kim H, Myung K, Kwon HM, Choi JH. Thrap3 promotes R-loop resolution via interaction with methylated DDX5. Exp Mol Med 2021; 53:1602-1611. [PMID: 34697388 PMCID: PMC8569202 DOI: 10.1038/s12276-021-00689-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
Transcription-replication conflicts lead to DNA damage and genomic instability, which are closely related to human diseases. A major source of these conflicts is the formation of R-loops, which consist of an RNA-DNA hybrid and a displaced single-stranded DNA. Although these structures have been studied, many aspects of R-loop biology and R-loop-mediated genome instability remain unclear. Here, we demonstrate that thyroid hormone receptor-associated protein 3 (Thrap3) plays a critical role in regulating R-loop resolution. In cancer cells, Thrap3 interacts with DEAD-box helicase 5 (DDX5) and localizes to R-loops. Arginine-mediated methylation of DDX5 is required for its interaction with Thrap3, and the Thrap3-DDX5 axis induces the recruitment of 5'-3' exoribonuclease 2 (XRN2) into R-loops. Loss of Thrap3 increases R-loop accumulation and DNA damage. These findings suggest that Thrap3 mediates resistance to cell death by preventing R-loop accumulation in cancer cells.
Collapse
Affiliation(s)
- Hyun Je Kang
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hye-jin Eom
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hongtae Kim
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Kyungjae Myung
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea ,grid.42687.3f0000 0004 0381 814XCenter for Genomic Integrity (CGI), Institute for Basic Science (IBS), Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hyug Moo Kwon
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Jang Hyun Choi
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| |
Collapse
|
59
|
Spegg V, Altmeyer M. Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair (Amst) 2021; 106:103179. [PMID: 34311273 PMCID: PMC7612016 DOI: 10.1016/j.dnarep.2021.103179] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
Protein recruitment to DNA break sites is an integral part of the DNA damage response (DDR). Elucidation of the hierarchy and temporal order with which DNA damage sensors as well as repair and signaling factors assemble around chromosome breaks has painted a complex picture of tightly regulated macromolecular interactions that build specialized compartments to facilitate repair and maintenance of genome integrity. While many of the underlying interactions, e.g. between repair factors and damage-induced histone marks, can be explained by lock-and-key or induced fit binding models assuming fixed stoichiometries, structurally less well defined interactions, such as the highly dynamic multivalent interactions implicated in phase separation, also participate in the formation of multi-protein assemblies in response to genotoxic stress. Although much remains to be learned about these types of cooperative and highly dynamic interactions and their functional roles, the rapidly growing interest in material properties of biomolecular condensates and in concepts from polymer chemistry and soft matter physics to understand biological processes at different scales holds great promises. Here, we discuss nuclear condensates in the context of genome integrity maintenance, highlighting the cooperative potential between clustered stoichiometric binding and phase separation. Rather than viewing them as opposing scenarios, their combined effects can balance structural specificity with favorable physicochemical properties relevant for the regulation and function of multilayered nuclear condensates.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
60
|
Bader AS, Bushell M. Damage-Net: A program for DNA repair meta-analysis identifies a network of novel repair genes that facilitate cancer evolution. DNA Repair (Amst) 2021; 105:103158. [PMID: 34147942 PMCID: PMC8385418 DOI: 10.1016/j.dnarep.2021.103158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
The advent of genome-wide methods for identifying novel components in biological processes including CRISPR screens and proteomic studies, has transformed the research landscape within the biological sciences. However, each study normally investigates a single aspect of a process without integration of other published datasets. Here, we present Damage-Net, a program with a curated database of published results from a broad range of studies investigating DNA repair, that facilitates simple and quick meta-analysis. Users can incorporate their own datasets for analysis, and query genes of interest in the database. Importantly, this program also allows users to examine the correlation of genes of interest with pan-cancer patient survival and mutational burden effects. Interrogating these datasets revealed a network of genes that associated with cancer progression in adrenocortical carcinoma via facilitating mutational burden, ultimately contributing substantially to adrenocortical carcinoma's poor prognosis. Download at www.damage-net.co.uk.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
61
|
Xiong DL, Li Q, Wang H, Jin WL, Fan XM, Ma YY. High expression of PPM1G is associated with the progression and poor prognosis of hepatocellular carcinoma. Cancer Biomark 2021; 34:13-22. [PMID: 34366322 DOI: 10.3233/cbm-203248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND PPM1G, a member of the serine/threonine protease family, dephosphorylates various proteins and may be involved in cancer development. The role and mechanism of PPM1G in HCC still needs to be verified. OBJECTIVE This study aims to explore the role of PPM1G in the occurrence, development and prognosis of HCC. METHODS Using bioinformatics (UALCAN, cBioPortal, Linkedomics, STRING and GSEA) to analyze the expression of PPM1G mRNA in HCC, its clinical relevance and possible involved signaling pathways. The expression of PPM1G protein was determined by immunohistochemistry in 311 cases of HCC to evaluate the association between PPM1G and clinical features and prognosis. RESULTS The expression of PPM1G was significantly upregulated in HCC (P< 0.001), correlated with the metastasis (P= 0.020), pathological grade of HCC (P= 0.032), microvascular invasion (P= 0.040), and HBV infection (P= 0.041). Cox multivariate regression showed high expression of PPM1G was an independent prognostic factor for HCC. Its role in HCC may relate to methylation and frequency mutation. Furthermore, the database showed PPM1G is involved in the signal pathway such as cell cycle, WNT pathway, and mTOR pathway in HCC. CONCLUSION PPM1G showed an essential function involving in tumor-related pathways in HCC, providing a biological basis for targeted treatment of HCC clinically.
Collapse
Affiliation(s)
- Dan-Lei Xiong
- Department of Ultrasound, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of Ultrasound, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qian Li
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China.,Department of Ultrasound, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Heng Wang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Wei-Li Jin
- Department of Gastroenterology, Nanxun People's Hospital (Zhejiang Provincial People's Hospital Nanxun Branch), Huzhou, Zhejiang, China
| | - Xiao-Ming Fan
- Department of Ultrasound, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying-Yu Ma
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
62
|
Chen D, Zhao Z, Chen L, Li Q, Zou J, Liu S. PPM1G promotes the progression of hepatocellular carcinoma via phosphorylation regulation of alternative splicing protein SRSF3. Cell Death Dis 2021; 12:722. [PMID: 34290239 PMCID: PMC8295330 DOI: 10.1038/s41419-021-04013-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Emerging evidence has demonstrated that alternative splicing has a vital role in regulating protein function, but how alternative splicing factors can be regulated remains unclear. We showed that the PPM1G, a protein phosphatase, regulated the phosphorylation of SRSF3 in hepatocellular carcinoma (HCC) and contributed to the proliferation, invasion, and metastasis of HCC. PPM1G was highly expressed in HCC tissues compared to adjacent normal tissues, and higher levels of PPM1G were observed in adverse staged HCCs. The higher levels of PPM1G were highly correlated with poor prognosis, which was further validated in the TCGA cohort. The knockdown of PPM1G inhibited the cell growth and invasion of HCC cell lines. Further studies showed that the knockdown of PPM1G inhibited tumor growth in vivo. The mechanistic analysis showed that the PPM1G interacted with proteins related to alternative splicing, including SRSF3. Overexpression of PPM1G promoted the dephosphorylation of SRSF3 and changed the alternative splicing patterns of genes related to the cell cycle, the transcriptional regulation in HCC cells. In addition, we also demonstrated that the promoter of PPM1G was activated by multiple transcription factors and co-activators, including MYC/MAX and EP300, MED1, and ELF1. Our study highlighted the essential role of PPM1G in HCC and shed new light on unveiling the regulation of alternative splicing in malignant transformation.
Collapse
Affiliation(s)
- Dawei Chen
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital, School of Medicine, Southeast University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China
| | - Zhenguo Zhao
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital, School of Medicine, Southeast University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China
| | - Lu Chen
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital, School of Medicine, Southeast University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China
| | - Qinghua Li
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital, School of Medicine, Southeast University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China
| | - Jixue Zou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| | - Shuanghai Liu
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital, School of Medicine, Southeast University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China.
| |
Collapse
|
63
|
The human nucleoporin Tpr protects cells from RNA-mediated replication stress. Nat Commun 2021; 12:3937. [PMID: 34168151 PMCID: PMC8225803 DOI: 10.1038/s41467-021-24224-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understood. Here we show that Tpr depletion generates transcription-dependent replication stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy visualization of replication intermediates show that Tpr deficient cells exhibit slow and asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of Tpr-interacting proteins mediating RNA processing, such as MATR3 and SUGP2, and functional experiments confirm that their depletion trigger cellular phenotypes shared with Tpr deficiency. Mechanistic studies reveal the interplay of Tpr with GANP, a component of the TREX-2 complex. The Tpr-GANP interaction is supported by their shared protein level alterations in a cohort of ovarian carcinomas. Our results reveal links between nucleoporins, DNA transcription and replication, and the existence of a network physically connecting replication forks with transcription, splicing, and mRNA export machinery.
Collapse
|
64
|
Banday S, Pandita RK, Mushtaq A, Bacolla A, Mir US, Singh DK, Jan S, Bhat KP, Hunt CR, Rao G, Charaka VK, Tainer JA, Pandita TK, Altaf M. Autism-Associated Vigilin Depletion Impairs DNA Damage Repair. Mol Cell Biol 2021; 41:e0008221. [PMID: 33941620 PMCID: PMC8224237 DOI: 10.1128/mcb.00082-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Vigilin (Vgl1) is essential for heterochromatin formation, chromosome segregation, and mRNA stability and is associated with autism spectrum disorders and cancer: vigilin, for example, can suppress proto-oncogene c-fms expression in breast cancer. Conserved from yeast to humans, vigilin is an RNA-binding protein with 14 tandemly arranged nonidentical hnRNP K-type homology (KH) domains. Here, we report that vigilin depletion increased cell sensitivity to cisplatin- or ionizing radiation (IR)-induced cell death and genomic instability due to defective DNA repair. Vigilin depletion delayed dephosphorylation of IR-induced γ-H2AX and elevated levels of residual 53BP1 and RIF1 foci, while reducing Rad51 and BRCA1 focus formation, DNA end resection, and double-strand break (DSB) repair. We show that vigilin interacts with the DNA damage response (DDR) proteins RAD51 and BRCA1, and vigilin depletion impairs their recruitment to DSB sites. Transient hydroxyurea (HU)-induced replicative stress in vigilin-depleted cells increased replication fork stalling and blocked restart of DNA synthesis. Furthermore, histone acetylation promoted vigilin recruitment to DSBs preferentially in the transcriptionally active genome. These findings uncover a novel vigilin role in DNA damage repair with implications for autism and cancer-related disorders.
Collapse
Affiliation(s)
- Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Raj K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Ulfat Syed Mir
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | | | - Sadaf Jan
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Krishna P. Bhat
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Ganesh Rao
- Baylor College of Medicine, Houston, Texas, USA
| | | | - John A. Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
65
|
Dai X, Bu X, Gao Y, Guo J, Hu J, Jiang C, Zhang Z, Xu K, Duan J, He S, Zhang J, Wan L, Liu T, Zhou X, Hung MC, Freeman GJ, Wei W. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol Cell 2021; 81:2317-2331.e6. [PMID: 33909988 PMCID: PMC8178223 DOI: 10.1016/j.molcel.2021.03.037] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/26/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Aberrant energy status contributes to multiple metabolic diseases, including obesity, diabetes, and cancer, but the underlying mechanism remains elusive. Here, we report that ketogenic-diet-induced changes in energy status enhance the efficacy of anti-CTLA-4 immunotherapy by decreasing PD-L1 protein levels and increasing expression of type-I interferon (IFN) and antigen presentation genes. Mechanistically, energy deprivation activates AMP-activated protein kinase (AMPK), which in turn, phosphorylates PD-L1 on Ser283, thereby disrupting its interaction with CMTM4 and subsequently triggering PD-L1 degradation. In addition, AMPK phosphorylates EZH2, which disrupts PRC2 function, leading to enhanced IFNs and antigen presentation gene expression. Through these mechanisms, AMPK agonists or ketogenic diets enhance the efficacy of anti-CTLA-4 immunotherapy and improve the overall survival rate in syngeneic mouse tumor models. Our findings reveal a pivotal role for AMPK in regulating the immune response to immune-checkpoint blockade and advocate for combining ketogenic diets or AMPK agonists with anti-CTLA4 immunotherapy to combat cancer.
Collapse
Affiliation(s)
- Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yang Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jia Hu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jinzhi Duan
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaohui He
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
66
|
Evaluating Mechanisms of IDH1 Regulation through Site-Specific Acetylation Mimics. Biomolecules 2021; 11:biom11050740. [PMID: 34065652 PMCID: PMC8157008 DOI: 10.3390/biom11050740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Isocitrate dehydrogenase (IDH1) catalyzes the reversible NADP+-dependent oxidation of isocitrate to α-ketoglutarate (αKG). IDH1 mutations, primarily R132H, drive > 80% of low-grade gliomas and secondary glioblastomas and facilitate the NADPH-dependent reduction of αKG to the oncometabolite D-2-hydroxyglutarate (D2HG). While the biochemical features of human WT and mutant IDH1 catalysis have been well-established, considerably less is known about mechanisms of regulation. Proteomics studies have identified lysine acetylation in WT IDH1, indicating post-translational regulation. Here, we generated lysine to glutamine acetylation mimic mutants in IDH1 to evaluate the effects on activity. We show that mimicking lysine acetylation decreased the catalytic efficiency of WT IDH1, with less severe catalytic consequences for R132H IDH1.
Collapse
|
67
|
Klaric JA, Wüst S, Panier S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front Mol Biosci 2021; 8:668821. [PMID: 34026839 PMCID: PMC8138124 DOI: 10.3389/fmolb.2021.668821] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Julie A Klaric
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stas Wüst
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stephanie Panier
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
68
|
Ayati M, Chance MR, Koyutürk M. Co-phosphorylation networks reveal subtype-specific signaling modules in breast cancer. Bioinformatics 2021; 37:221-228. [PMID: 32730576 DOI: 10.1093/bioinformatics/btaa678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Protein phosphorylation is a ubiquitous mechanism of post-translational modification that plays a central role in cellular signaling. Phosphorylation is particularly important in the context of cancer, as downregulation of tumor suppressors and upregulation of oncogenes by the dysregulation of associated kinase and phosphatase networks are shown to have key roles in tumor growth and progression. Despite recent advances that enable large-scale monitoring of protein phosphorylation, these data are not fully incorporated into such computational tasks as phenotyping and subtyping of cancers. RESULTS We develop a network-based algorithm, CoPPNet, to enable unsupervised subtyping of cancers using phosphorylation data. For this purpose, we integrate prior knowledge on evolutionary, structural and functional association of phosphosites, kinase-substrate associations and protein-protein interactions with the correlation of phosphorylation of phosphosites across different tumor samples (a.k.a co-phosphorylation) to construct a context-specific-weighted network of phosphosites. We then mine these networks to identify subnetworks with correlated phosphorylation patterns. We apply the proposed framework to two mass-spectrometry-based phosphorylation datasets for breast cancer (BC), and observe that (i) the phosphorylation pattern of the identified subnetworks are highly correlated with clinically identified subtypes, and (ii) the identified subnetworks are highly reproducible across datasets that are derived from different studies. Our results show that integration of quantitative phosphorylation data with network frameworks can provide mechanistic insights into the differences between the signaling mechanisms that drive BC subtypes. Furthermore, the reproducibility of the identified subnetworks suggests that phosphorylation can provide robust classification of disease response and markers. AVAILABILITY AND IMPLEMENTATION CoPPNet is available at http://compbio.case.edu/coppnet/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marzieh Ayati
- Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Mark R Chance
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA.,Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mehmet Koyutürk
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
69
|
Zhou D, Park JG, Wu Z, Huang H, Fiches GN, Biswas A, Li TW, Ma Q, Martinez-Sobrido L, Santoso N, Zhu J. FACT subunit SUPT16H associates with BRD4 and contributes to silencing of antiviral interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.21.440833. [PMID: 33907746 PMCID: PMC8077571 DOI: 10.1101/2021.04.21.440833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
FACT ( FA cilitates C hromatin T ranscription) is a heterodimeric protein complex composed of SUPT16H and SSRP1, and a histone chaperone participating in chromatin remodeling during gene transcription. FACT complex is profoundly regulated, and contributes to both gene activation and suppression. Here we reported that SUPT16H, a subunit of FACT, is acetylated at lysine 674 (K674) of middle domain (MD), which involves TIP60 histone acetyltransferase. Such acetylation of SUPT16H is recognized by bromodomain protein BRD4, which promotes protein stability of SUPT16H. We further demonstrated that SUPT16H-BRD4 associates with histone modification enzymes (EZH2, HDAC1) and affects histone marks (H3K9me3, H3K27me3 and H3ac). BRD4 is known to profoundly regulate interferon (IFN) signaling, while such function of SUPT16H has never been explored. Surprisingly, our results revealed that SUPT16H genetic knockdown via RNAi or pharmacological inhibition by using its inhibitor, curaxin 137 (CBL0137), results in the induction of IFNs and interferon-stimulated genes (ISGs). Through this mechanism, CBL0137 is shown to efficiently inhibit infection of multiple viruses, including Zika, influenza, and SARS-CoV-2. Furthermore, we demonstrated that CBL0137 also causes the remarkable activation of IFN signaling in natural killer (NK) cells, which promotes the NK-mediated killing of virus-infected cells in a co-culture system using human primary NK cells. Overall, our studies unraveled the previously un-appreciated role of FACT complex in regulating IFN signaling in both epithelial and NK cells, and also proposed the novel application of CBL0137 to treat viral infections.
Collapse
Affiliation(s)
- Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Zhenyu Wu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Huachao Huang
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Guillaume N. Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ayan Biswas
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tai-Wei Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | | | - Netty Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
70
|
Wagner SA, Szczesniak PP, Voigt A, Gräf JF, Beli P. Proteomic analysis of tyrosine phosphorylation induced by exogenous expression of oncogenic kinase fusions identified in lung adenocarcinoma. Proteomics 2021; 21:e2000283. [PMID: 33768672 DOI: 10.1002/pmic.202000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/11/2022]
Abstract
Kinase fusions are considered oncogenic drivers in numerous types of cancer. In lung adenocarcinoma 5-10% of patients harbor kinase fusions. The most frequently detected kinase fusion involves the Anaplastic Lymphoma Kinase (ALK) and Echinoderm Microtubule-associated protein-Like 4 (EML4). In addition, oncogenic kinase fusions involving the tyrosine kinases RET and ROS1 are found in smaller subsets of patients. In this study, we employed quantitative mass spectrometry-based phosphoproteomics to define the cellular tyrosine phosphorylation patterns induced by different oncogenic kinase fusions identified in patients with lung adenocarcinoma. We show that exogenous expression of the kinase fusions in HEK 293T cells leads to widespread tyrosine phosphorylation. Direct comparison of different kinase fusions demonstrates that the kinase part and not the fusion partner primarily defines the phosphorylation pattern. The tyrosine phosphorylation patterns differed between ALK, ROS1, and RET fusions, suggesting that oncogenic signaling induced by these kinases involves the modulation of different cellular processes.
Collapse
Affiliation(s)
- Sebastian A Wagner
- Department of Medicine, Hematology/Oncology, Goethe University School of Medicine, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Pawel P Szczesniak
- Department of Medicine, Hematology/Oncology, Goethe University School of Medicine, Frankfurt, Germany
| | - Andrea Voigt
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Justus F Gräf
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany.,Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
71
|
Rolfs F, Piersma SR, Dias MP, Jonkers J, Jimenez CR. Feasibility of Phosphoproteomics on Leftover Samples After RNA Extraction With Guanidinium Thiocyanate. Mol Cell Proteomics 2021; 20:100078. [PMID: 33819647 PMCID: PMC8111777 DOI: 10.1016/j.mcpro.2021.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
In daily practice, different types of biomolecules are usually extracted for large-scale "omics" analysis with tailored protocols. However, when sample material is limited, an all-in-one strategy is preferable. Although lysis of cells and tissues with urea is widely used for phosphoproteomic applications, DNA, RNA, and proteins can be simultaneously extracted from small samples using acid guanidinium thiocyanate-phenol-chloroform (AGPC). Use of AGPC for mass spectrometry-based phosphoproteomics was reported but has not yet been thoroughly evaluated against a classical phosphoproteomic protocol. Here we compared urea- with AGPC-based protein extraction, profiling phosphorylations in the DNA damage response pathway after ionizing irradiation of U2OS cells as proof of principle. On average we identified circa 9000 phosphosites per sample with both extraction methods. Moreover, we observed high similarity of phosphosite characteristics (e.g., 94% shared class 1 identifications) and deduced kinase activities (e.g., ATM, ATR, CHEK1/2, PRKDC). We furthermore extended our comparison to murine and human tissue samples yielding similar and highly correlated results for both extraction protocols. AGPC-based sample extraction can thus replace common cell lysates for phosphoproteomic workflows and may thus be an attractive way to obtain input material for multiple omics workflows, yielding several data types from a single sample.
Collapse
Key Words
- agpc, acid guanidinium thiocyanate–phenol–chloroform
- hcc, hepatocellular carcinoma
- inka, integrative inferred kinase activity
- ir, irradiated
- mbr, match between runs
- nt, untreated
- ps, phosphosite(s)
- ptm-sea, posttranslational modification signature enrichment analysis
- ptyr, phosphotyrosine
- rnab, rna-bee
- u2os, u2 osteosarcoma
Collapse
Affiliation(s)
- Frank Rolfs
- Amsterdam UMC, OncoProteomics Laboratory, Department Medical Oncology, Location VUmc, Amsterdam, the Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode institute, Amsterdam, the Netherlands
| | - Sander R Piersma
- Amsterdam UMC, OncoProteomics Laboratory, Department Medical Oncology, Location VUmc, Amsterdam, the Netherlands
| | - Mariana Paes Dias
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode institute, Amsterdam, the Netherlands.
| | - Connie R Jimenez
- Amsterdam UMC, OncoProteomics Laboratory, Department Medical Oncology, Location VUmc, Amsterdam, the Netherlands.
| |
Collapse
|
72
|
The Role of Polycomb Group Protein BMI1 in DNA Repair and Genomic Stability. Int J Mol Sci 2021; 22:ijms22062976. [PMID: 33804165 PMCID: PMC7998361 DOI: 10.3390/ijms22062976] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
The polycomb group (PcG) proteins are a class of transcriptional repressors that mediate gene silencing through histone post-translational modifications. They are involved in the maintenance of stem cell self-renewal and proliferation, processes that are often dysregulated in cancer. Apart from their canonical functions in epigenetic gene silencing, several studies have uncovered a function for PcG proteins in DNA damage signaling and repair. In particular, members of the poly-comb group complexes (PRC) 1 and 2 have been shown to recruit to sites of DNA damage and mediate DNA double-strand break repair. Here, we review current understanding of the PRCs and their roles in cancer development. We then focus on the PRC1 member BMI1, discussing the current state of knowledge of its role in DNA repair and genome integrity, and outline how it can be targeted pharmacologically.
Collapse
|
73
|
Reichlmeir M, Elias L, Schulte D. Posttranslational Modifications in Conserved Transcription Factors: A Survey of the TALE-Homeodomain Superclass in Human and Mouse. Front Cell Dev Biol 2021; 9:648765. [PMID: 33768097 PMCID: PMC7985065 DOI: 10.3389/fcell.2021.648765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) guide effector proteins like chromatin-modifying or -remodeling enzymes to distinct sites in the genome and thereby fulfill important early steps in translating the genome’s sequence information into the production of proteins or functional RNAs. TFs of the same family are often highly conserved in evolution, raising the question of how proteins with seemingly similar structure and DNA-binding properties can exert physiologically distinct functions or respond to context-specific extracellular cues. A good example is the TALE superclass of homeodomain-containing proteins. All TALE-homeodomain proteins share a characteristic, 63-amino acid long homeodomain and bind to similar sequence motifs. Yet, they frequently fulfill non-redundant functions even in domains of co-expression and are subject to regulation by different signaling pathways. Here we provide an overview of posttranslational modifications that are associated with murine and human TALE-homeodomain proteins and discuss their possible importance for the biology of these TFs.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Lena Elias
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
74
|
Schlam‐Babayov S, Bensimon A, Harel M, Geiger T, Aebersold R, Ziv Y, Shiloh Y. Phosphoproteomics reveals novel modes of function and inter-relationships among PIKKs in response to genotoxic stress. EMBO J 2021; 40:e104400. [PMID: 33215756 PMCID: PMC7809795 DOI: 10.15252/embj.2020104400] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/13/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
The DNA damage response (DDR) is a complex signaling network that relies on cascades of protein phosphorylation, which are initiated by three protein kinases of the family of PI3-kinase-related protein kinases (PIKKs): ATM, ATR, and DNA-PK. ATM is missing or inactivated in the genome instability syndrome, ataxia-telangiectasia (A-T). The relative shares of these PIKKs in the response to genotoxic stress and the functional relationships among them are central questions in the genome stability field. We conducted a comprehensive phosphoproteomic analysis in human wild-type and A-T cells treated with the double-strand break-inducing chemical, neocarzinostatin, and validated the results with the targeted proteomic technique, selected reaction monitoring. We also matched our results with 34 published screens for DDR factors, creating a valuable resource for identifying strong candidates for novel DDR players. We uncovered fine-tuned dynamics between the PIKKs following genotoxic stress, such as DNA-PK-dependent attenuation of ATM. In A-T cells, partial compensation for ATM absence was provided by ATR and DNA-PK, with distinct roles and kinetics. The results highlight intricate relationships between these PIKKs in the DDR.
Collapse
Affiliation(s)
- Sapir Schlam‐Babayov
- The David and Inez Myers Laboratory of Cancer GeneticsDepartment of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Ariel Bensimon
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Present address:
CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Michal Harel
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Tamar Geiger
- Department of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Faculty of ScienceUniversity of ZurichZurichSwitzerland
| | - Yael Ziv
- The David and Inez Myers Laboratory of Cancer GeneticsDepartment of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| | - Yosef Shiloh
- The David and Inez Myers Laboratory of Cancer GeneticsDepartment of Human Molecular Genetics and BiochemistryTel Aviv University School of MedicineTel AvivIsrael
| |
Collapse
|
75
|
Prados-Carvajal R, Rodriguez-Real G, Gutierrez-Pozo G, Huertas P. CtIP -mediated alternative mRNA splicing finetunes the DNA damage response. RNA (NEW YORK, N.Y.) 2020; 27:rna.078519.120. [PMID: 33298529 PMCID: PMC7901839 DOI: 10.1261/rna.078519.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
In order to survive to the exposure of DNA damaging agents, cells activate a complex response that coordinates the cellular metabolism, cell cycle progression and DNA repair. Among many other events, recent evidence has described global changes in mRNA splicing in cells treated with genotoxic agents. Here, we explore further this DNA damage-dependent alternative splicing. Indeed, we show that both the splicing factor SF3B2 and the repair protein CtIP contribute to the global pattern of splicing both in cells treated or not to DNA damaging agents. Additionally, we focus on a specific DNA damage- and CtIP-dependent alternative splicing event of the helicase PIF1 and explore its relevance for the survival of cells upon exposure to ionizing radiation. Indeed, we described how the nuclear, active form of PIF1 is substituted by a splicing variant, named vPIF1, in a fashion that requires both the presence of DNA damage and CtIP. Interestingly, timely expression of vPIF1 is required for optimal survival to exposure to DNA damaging agents, but early expression of this isoform delays early events of the DNA damage response. On the contrary, expression of the full length PIF1 facilitates those early events, but increases the sensitivity to DNA damaging agents if the expression is maintained long-term.
Collapse
|
76
|
Yu K, Tian H, Deng H. PPM1G restricts innate immune signaling mediated by STING and MAVS and is hijacked by KSHV for immune evasion. SCIENCE ADVANCES 2020; 6:6/47/eabd0276. [PMID: 33219031 PMCID: PMC7679160 DOI: 10.1126/sciadv.abd0276] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/07/2020] [Indexed: 05/10/2023]
Abstract
The adaptor proteins, STING and MAVS, are components of critical pathogen-sensing pathways that induce innate immunity. Phosphorylation of either adaptor results in activation of the type I interferon pathway. How this phosphorylation is regulated and how it is manipulated by pathogens remain largely unknown. Here, we identified host protein phosphatase, Mg2+/Mn2+ dependent 1G (PPM1G) as a negative regulator of innate immune pathways and showed that this host system is hijacked by Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, KSHV tegument protein ORF33 interacts with STING/MAVS and enhances recruitment of PPM1G to dephosphorylate p-STING/p-MAVS for immunosuppression. Inhibition of PPM1G expression improves the antiviral response against both DNA and RNA viruses. Collectively, our study shows that PPM1G restricts both cytosolic DNA- and RNA-sensing pathways to naturally balance the intensity of the antiviral response. Manipulation of PPM1G by KSHV provides an important strategy for immune evasion.
Collapse
Affiliation(s)
- Kuai Yu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huabin Tian
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
77
|
Yu Z, Mersaoui SY, Guitton-Sert L, Coulombe Y, Song J, Masson JY, Richard S. DDX5 resolves R-loops at DNA double-strand breaks to promote DNA repair and avoid chromosomal deletions. NAR Cancer 2020; 2:zcaa028. [PMID: 33015627 PMCID: PMC7520851 DOI: 10.1093/narcan/zcaa028] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
R-loops are three-stranded structures consisting of a DNA/RNA hybrid and a displaced DNA strand. The regulatory factors required to process this fundamental genetic structure near double-strand DNA breaks (DSBs) are not well understood. We previously reported that cellular depletion of the ATP-dependent DEAD box RNA helicase DDX5 increases R-loops genome-wide causing genomic instability. In this study, we define a pivotal role for DDX5 in clearing R-loops at or near DSBs enabling proper DNA repair to avoid aberrations such as chromosomal deletions. Remarkably, using the non-homologous end joining reporter gene (EJ5-GFP), we show that DDX5-deficient U2OS cells exhibited asymmetric end deletions on the side of the DSBs where there is overlap with a transcribed gene. Cross-linking and immunoprecipitation showed that DDX5 bound RNA transcripts near DSBs and required its helicase domain and the presence of DDX5 near DSBs was also shown by chromatin immunoprecipitation. DDX5 was excluded from DSBs in a transcription- and ATM activation-dependent manner. Using DNA/RNA immunoprecipitation, we show DDX5-deficient cells had increased R-loops near DSBs. Finally, DDX5 deficiency led to delayed exonuclease 1 and replication protein A recruitment to laser irradiation-induced DNA damage sites, resulting in homologous recombination repair defects. Our findings define a role for DDX5 in facilitating the clearance of RNA transcripts overlapping DSBs to ensure proper DNA repair.
Collapse
Affiliation(s)
- Zhenbao Yu
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Sofiane Y Mersaoui
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Laure Guitton-Sert
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Jingwen Song
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| |
Collapse
|
78
|
Jungers CF, Elliff JM, Masson-Meyers DS, Phiel CJ, Origanti S. Regulation of eukaryotic translation initiation factor 6 dynamics through multisite phosphorylation by GSK3. J Biol Chem 2020; 295:12796-12813. [PMID: 32703900 DOI: 10.1074/jbc.ra120.013324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) is essential for the synthesis of 60S ribosomal subunits and for regulating the association of 60S and 40S subunits. A mechanistic understanding of how eIF6 modulates translation in response to stress, specifically starvation-induced stress, is lacking. We here show a novel mode of eIF6 regulation by glycogen synthase kinase 3 (GSK3) that is predominantly active in response to serum starvation. Both GSK3α and GSK3β phosphorylate human eIF6. Multiple residues in the C terminus of eIF6 are phosphorylated by GSK3 in a sequential manner. In response to serum starvation, eIF6 accumulates in the cytoplasm, and this altered localization depends on phosphorylation by GSK3. Disruption of eIF6 phosphorylation exacerbates the translation inhibitory response to serum starvation and stalls cell growth. These results suggest that eIF6 regulation by GSK3 contributes to the attenuation of global protein synthesis that is critical for adaptation to starvation-induced stress.
Collapse
Affiliation(s)
- Courtney F Jungers
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Jonah M Elliff
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | | | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Colorado, USA
| | - Sofia Origanti
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA .,Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
79
|
Abstract
Fodrin and its erythroid cell-specific isoform spectrin are actin-associated fibrous proteins that play crucial roles in the maintenance of structural integrity in mammalian cells, which is necessary for proper cell function. Normal cell morphology is altered in diseases such as various cancers and certain neuronal disorders. Fodrin and spectrin are two-chain (αβ) molecules that are encoded by paralogous genes and share many features but also demonstrate certain differences. Fodrin (in humans, typically a heterodimer of the products of the SPTAN1 and SPTBN1 genes) is expressed in nearly all cell types and is especially abundant in neuronal tissues, whereas spectrin (in humans, a heterodimer of the products of the SPTA1 and SPTB1 genes) is expressed almost exclusively in erythrocytes. To fulfill a role in such a variety of different cell types, it was anticipated that fodrin would need to be a more versatile scaffold than spectrin. Indeed, as summarized here, domains unique to fodrin and its regulation by Ca2+, calmodulin, and a variety of posttranslational modifications (PTMs) endow fodrin with additional specific functions. However, how fodrin structural variations and misregulated PTMs may contribute to the etiology of various cancers and neurodegenerative diseases needs to be further investigated.
Collapse
|
80
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 730] [Impact Index Per Article: 182.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
81
|
Thingholm TE, Rönnstrand L, Rosenberg PA. Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Cell Mol Life Sci 2020; 77:3085-3102. [PMID: 32076742 PMCID: PMC7391401 DOI: 10.1007/s00018-020-03473-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Zinc is required for the regulation of proliferation, metabolism, and cell signaling. It is an intracellular second messenger, and the cellular level of ionic, mobile zinc is strictly controlled by zinc transporters. In mammals, zinc homeostasis is primarily regulated by ZIP and ZnT zinc transporters. The importance of these transporters is underscored by the list of diseases resulting from changes in transporter expression and activity. However, despite numerous structural studies of the transporters revealing both zinc binding sites and motifs important for transporter function, the exact molecular mechanisms regulating ZIP and ZnT activities are still not clear. For example, protein phosphorylation was found to regulate ZIP7 activity resulting in the release of Zn2+ from intracellular stores leading to phosphorylation of tyrosine kinases and activation of signaling pathways. In addition, sequence analyses predict all 24 human zinc transporters to be phosphorylated suggesting that protein phosphorylation is important for regulation of transporter function. This review describes how zinc transporters are implicated in a number of important human diseases. It summarizes the current knowledge regarding ZIP and ZnT transporter structures and points to how protein phosphorylation seems to be important for the regulation of zinc transporter activity. The review addresses the need to investigate the role of protein phosphorylation in zinc transporter function and regulation, and argues for a pressing need to introduce quantitative phosphoproteomics to specifically target zinc transporters and proteins involved in zinc signaling. Finally, different quantitative phosphoproteomic strategies are suggested.
Collapse
Affiliation(s)
- T E Thingholm
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, J.B. Winsløws Vej 25, 3, 5000, Odense C, Denmark.
| | - L Rönnstrand
- Division of Translational Cancer Research, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Lund Stem Cell Center, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - P A Rosenberg
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
82
|
Liu HY, Liu YY, Yang F, Zhang L, Zhang FL, Hu X, Shao ZM, Li DQ. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res 2020; 48:3638-3656. [PMID: 32112098 PMCID: PMC7144926 DOI: 10.1093/nar/gkaa130] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
MORC family CW-type zinc finger 2 (MORC2) is an oncogenic chromatin-remodeling enzyme with an emerging role in DNA repair. Here, we report a novel function for MORC2 in cell-cycle checkpoint control through an acetylation-dependent mechanism. MORC2 is acetylated by the acetyltransferase NAT10 at lysine 767 (K767Ac) and this process is counteracted by the deacetylase SIRT2 under unperturbed conditions. DNA-damaging chemotherapeutic agents and ionizing radiation stimulate MORC2 K767Ac through enhancing the interaction between MORC2 and NAT10. Notably, acetylated MORC2 binds to histone H3 phosphorylation at threonine 11 (H3T11P) and is essential for DNA damage-induced reduction of H3T11P and transcriptional repression of its downstream target genes CDK1 and Cyclin B1, thus contributing to DNA damage-induced G2 checkpoint activation. Chemical inhibition or depletion of NAT10 or expression of an acetylation-defective MORC2 (K767R) forces cells to pass through G2 checkpoint, resulting in hypersensitivity to DNA-damaging agents. Moreover, MORC2 acetylation levels are associated with elevated NAT10 expression in clinical breast tumor samples. Together, these findings uncover a previously unrecognized role for MORC2 in regulating DNA damage-induced G2 checkpoint through NAT10-mediated acetylation and provide a potential therapeutic strategy to sensitize breast cancer cells to DNA-damaging chemotherapy and radiotherapy by targeting NAT10.
Collapse
Affiliation(s)
- Hong-Yi Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying-Ying Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Yang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai 200032, China
| |
Collapse
|
83
|
Rezazadeh S, Yang D, Biashad SA, Firsanov D, Takasugi M, Gilbert M, Tombline G, Bhanu NV, Garcia BA, Seluanov A, Gorbunova V. SIRT6 mono-ADP ribosylates KDM2A to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. Aging (Albany NY) 2020; 12:11165-11184. [PMID: 32584788 PMCID: PMC7343504 DOI: 10.18632/aging.103567] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023]
Abstract
When transcribed DNA is damaged, the transcription and DNA repair machineries must interact to ensure successful DNA repair. The mechanisms of this interaction in the context of chromatin are still being elucidated. Here we show that the SIRT6 protein enhances non-homologous end joining (NHEJ) DNA repair by transiently repressing transcription. Specifically, SIRT6 mono-ADP ribosylates the lysine demethylase JHDM1A/KDM2A leading to rapid displacement of KDM2A from chromatin, resulting in increased H3K36me2 levels. Furthermore, we found that through HP1α binding, H3K36me2 promotes subsequent H3K9 tri-methylation. This results in transient suppression of transcription initiation by RNA polymerase II and recruitment of NHEJ factors to DNA double-stranded breaks (DSBs). These data reveal a mechanism where SIRT6 mediates a crosstalk between transcription and DNA repair machineries to promote DNA repair. SIRT6 functions in multiple pathways related to aging, and its novel function coordinating DNA repair and transcription is yet another way by which SIRT6 promotes genome stability and longevity.
Collapse
Affiliation(s)
- Sarallah Rezazadeh
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - David Yang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Seyed Ali Biashad
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Denis Firsanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Masaki Takasugi
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Michael Gilbert
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Gregory Tombline
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Natarajan V. Bhanu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
84
|
Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J Biol Chem 2020; 295:11099-11117. [PMID: 32527727 DOI: 10.1074/jbc.rev120.011833] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes, including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, toward regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
85
|
Bensimon A, Koch JP, Francica P, Roth SM, Riedo R, Glück AA, Orlando E, Blaukat A, Aebersold DM, Zimmer Y, Aebersold R, Medová M. Deciphering MET-dependent modulation of global cellular responses to DNA damage by quantitative phosphoproteomics. Mol Oncol 2020; 14:1185-1206. [PMID: 32336009 PMCID: PMC7266272 DOI: 10.1002/1878-0261.12696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that interference with growth factor receptor tyrosine kinase (RTK) signaling can affect DNA damage response (DDR) networks, with a consequent impact on cellular responses to DNA-damaging agents widely used in cancer treatment. In that respect, the MET RTK is deregulated in abundance and/or activity in a variety of human tumors. Using two proteomic techniques, we explored how disrupting MET signaling modulates global cellular phosphorylation response to ionizing radiation (IR). Following an immunoaffinity-based phosphoproteomic discovery survey, we selected candidate phosphorylation sites for extensive characterization by targeted proteomics focusing on phosphorylation sites in both signaling networks. Several substrates of the DDR were confirmed to be modulated by sequential MET inhibition and IR, or MET inhibition alone. Upon combined treatment, for two substrates, NUMA1 S395 and CHEK1 S345, the gain and loss of phosphorylation, respectively, were recapitulated using invivo tumor models by immunohistochemistry, with possible utility in future translational research. Overall, we have corroborated phosphorylation sites at the intersection between MET and the DDR signaling networks, and suggest that these represent a class of proteins at the interface between oncogene-driven proliferation and genomic stability.
Collapse
Affiliation(s)
- Ariel Bensimon
- Department of BiologyInstitute of Molecular Systems BiologyETH ZürichSwitzerland
- Present address:
CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Jonas P. Koch
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Paola Francica
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Selina M. Roth
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Rahel Riedo
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Astrid A. Glück
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Eleonora Orlando
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | | | - Daniel M. Aebersold
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZürichSwitzerland
- Faculty of ScienceUniversity of ZürichSwitzerland
| | - Michaela Medová
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| |
Collapse
|
86
|
Bader AS, Bushell M. DNA:RNA hybrids form at DNA double-strand breaks in transcriptionally active loci. Cell Death Dis 2020; 11:280. [PMID: 32332801 PMCID: PMC7181826 DOI: 10.1038/s41419-020-2464-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
The recent discovery of DNA:RNA hybrids, or R-loops, actively forming at DNA double-strand breaks (DSBs) has unlocked fresh insight into how RNA participates in DNA repair. However, the manner of DSB-induced R-loop formation is vital in determining its mechanism of action and is currently under debate. Here, we analyse published DNA:RNA-hybrid sequencing to elucidate the features that determine DSB-induced R-loop formation. We found that pre-existing transcriptional activity was critical for R-loop generation at break sites, suggesting that these RNAs are transcribed prior to break induction. In addition, this appeared to be a specific DSB response at the break, distinct from traditional, co-transcriptionally formed R-loops. We hypothesise that R-loop formation is orchestrated by the damage response at transcriptionally active DSB loci to specifically maintain these genomic regions. Further investigation is required to fully understand how canonical repair processes regulate R-loops at breaks and how they participate in the repair process.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
87
|
MeCP2 and Chromatin Compartmentalization. Cells 2020; 9:cells9040878. [PMID: 32260176 PMCID: PMC7226738 DOI: 10.3390/cells9040878] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a multifunctional epigenetic reader playing a role in transcriptional regulation and chromatin structure, which was linked to Rett syndrome in humans. Here, we focus on its isoforms and functional domains, interactions, modifications and mutations found in Rett patients. Finally, we address how these properties regulate and mediate the ability of MeCP2 to orchestrate chromatin compartmentalization and higher order genome architecture.
Collapse
|
88
|
Marcinkowski M, Pilžys T, Garbicz D, Steciuk J, Zugaj D, Mielecki D, Sarnowski TJ, Grzesiuk E. Human and Arabidopsis alpha-ketoglutarate-dependent dioxygenase homolog proteins-New players in important regulatory processes. IUBMB Life 2020; 72:1126-1144. [PMID: 32207231 DOI: 10.1002/iub.2276] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022]
Abstract
The family of AlkB homolog (ALKBH) proteins, the homologs of Escherichia coli AlkB 2-oxoglutarate (2OG), and Fe(II)-dependent dioxygenase are involved in a number of important regulatory processes in eukaryotic cells including repair of alkylation lesions in DNA, RNA, and nucleoprotein complexes. There are nine human and thirteen Arabidopsis thaliana ALKBH proteins described, which exhibit diversified functions. Among them, human ALKBH5 and FaT mass and Obesity-associated (FTO) protein and Arabidopsis ALKBH9B and ALKBH10B have been recognized as N6 methyladenine (N6 meA) demethylases, the most abundant posttranscriptional modification in mRNA. The FTO protein is reported to be associated with obesity and type 2 diabetes, and involved in multiple other processes, while ALKBH5 is induced by hypoxia. Arabidopsis ALKBH9B is an N6 meA demethylase influencing plant susceptibility to viral infections via m6 A/A ratio control in viral RNA. ALKBH10B has been discovered to be a functional Arabidopsis homolog of FTO; thus, it is also an RNA N6 meA demethylase involved in plant flowering and several other regulatory processes including control of metabolism. High-throughput mass spectrometry showed multiple sites of human ALKBH phosphorylation. In the case of FTO, the type of modified residue decides about the further processing of the protein. This modification may result in subsequent protein ubiquitination and proteolysis, or in the blocking of these processes. However, the impact of phosphorylation on the other ALKBH function and their downstream pathways remains nearly unexplored in both human and Arabidopsis. Therefore, the investigation of evolutionarily conserved functions of ALKBH proteins and their regulatory impact on important cellular processes is clearly called for.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Zugaj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
89
|
Chen S, Yang D, Liu Z, Li F, Liu B, Chen Y, Ye W, Zheng Y. Crucial Gene Identification in Carotid Atherosclerosis Based on Peripheral Blood Mononuclear Cell (PBMC) Data by Weighted (Gene) Correlation Network Analysis (WGCNA). Med Sci Monit 2020; 26:e921692. [PMID: 32160184 PMCID: PMC7085238 DOI: 10.12659/msm.921692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Many patients are not responsive or tolerant to medical therapies for carotid atherosclerosis. Thus, elucidating the molecular mechanism for the pathogenesis and progression of carotid atherosclerosis and identifying new potential molecular targets for medical therapies that can slow progression of carotid atherosclerosis and prevent ischemic events are quite important. Material/Methods We downloaded the expression profiling data of PBMC in Biobank of Karolinska Endarterectomy (BiKE, GSE21545) for GEO. The WGCNA and DEG screening were conducted. The co-expression pattern between patients with ischemic events (the events group) and patients without ischemic events (the no-events group) were compared. Then, we identified hub genes of each module. Finally, the DEG co-expression network was constructed and MCODE was used to identify crucial genes based on this co-expression network. Results In the study, 183 DEGs were screened and 8 and 6 modules were assessed in the events group and no-events group, respectively. Compared to the no-events group, genes associated with inflammation and immune response were clustered in the green-yellow module of the events group. The hub gene of the green-yellow module of the events group was KIR2DL5A. We obtained 1 DEG co-expression network, which has 16 nodes and 24 edges, and we detected 5 crucial genes: SIRT1, THRAP3, RBM43, PEX1, and KLHDC2. The upregulated genes (THRAP3 and RBM43) showed potential diagnostic and prognostic value for the occurrence of ischemic events. Conclusions We detected 8 modules for the events group and 6 modules for the no-events group. The hub genes for modules and crucial genes of the DEG co-expression network were also identified. These genes might serve as potential targets for medical therapies and biomarkers for diagnosis and prognosis. Further experimental and biological studies are needed to elucidate the role of these crucial genes in the progression of carotid atherosclerosis.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Zhili Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Wei Ye
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| |
Collapse
|
90
|
Bader AS, Hawley BR, Wilczynska A, Bushell M. The roles of RNA in DNA double-strand break repair. Br J Cancer 2020; 122:613-623. [PMID: 31894141 PMCID: PMC7054366 DOI: 10.1038/s41416-019-0624-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/12/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Effective DNA repair is essential for cell survival: a failure to correctly repair damage leads to the accumulation of mutations and is the driving force for carcinogenesis. Multiple pathways have evolved to protect against both intrinsic and extrinsic genotoxic events, and recent developments have highlighted an unforeseen critical role for RNA in ensuring genome stability. It is currently unclear exactly how RNA molecules participate in the repair pathways, although many models have been proposed and it is possible that RNA acts in diverse ways to facilitate DNA repair. A number of well-documented DNA repair factors have been described to have RNA-binding capacities and, moreover, screens investigating DNA-damage repair mechanisms have identified RNA-binding proteins as a major group of novel factors involved in DNA repair. In this review, we integrate some of these datasets to identify commonalities that might highlight novel and interesting factors for future investigations. This emerging role for RNA opens up a new dimension in the field of DNA repair; we discuss its impact on our current understanding of DNA repair processes and consider how it might influence cancer progression.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Ben R Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | | | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
91
|
Mallampalli RK, Li X, Jang JH, Kaminski T, Hoji A, Coon T, Chandra D, Welty S, Teng Y, Sembrat J, Rojas M, Zhao Y, Lafyatis R, Zou C, Sciurba F, Sundd P, Lan L, Nyunoya T. Cigarette smoke exposure enhances transforming acidic coiled-coil-containing protein 2 turnover and thereby promotes emphysema. JCI Insight 2020; 5:125895. [PMID: 31996486 PMCID: PMC7098723 DOI: 10.1172/jci.insight.125895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Our integrative genomic and functional analysis identified transforming acidic coiled-coil-containing protein 2 (TACC2) as a chronic obstructive pulmonary disease (COPD) candidate gene. Here, we found that smokers with COPD exhibit a marked decrease in lung TACC2 protein levels relative to smokers without COPD. Single cell RNA sequencing reveals that TACC2 is expressed primarily in lung epithelial cells in normal human lungs. Furthermore, suppression of TACC2 expression impairs the efficiency of homologous recombination repair and augments spontaneous and cigarette smoke extract-induced (CSE-induced) DNA damage and cytotoxicity in immortalized human bronchial epithelial cells. By contrast, enforced expression of TACC2 attenuates the CSE effects. We also found that CSE enhances TACC2 degradation via the ubiquitin-proteasome system mediated by the ubiquitin E3 ligase subunit, F box L7. Furthermore, cellularly expressed TACC2 proteins harboring naturally occurring mutations exhibited altered protein lifespan coupled with modified DNA damage repair and cytotoxic responses. CS triggers emphysematous changes accompanied by accumulated DNA damage, apoptosis of alveolar epithelia, and lung inflammation in Tacc2-/- compared with Tacc2+/+ mice. Our results suggest that CS destabilizes TACC2 protein in lung epithelia by the ubiquitin proteasome system, leading to subsequent DNA damage, cytotoxicity, and emphysema.
Collapse
Affiliation(s)
- Rama K. Mallampalli
- Department of Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Xiuying Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| | - Jun-Ho Jang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tomasz Kaminski
- Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aki Hoji
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tiffany Coon
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Divay Chandra
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Starr Welty
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UMPC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Yaqun Teng
- School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Beijing, China
| | - John Sembrat
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunbin Zou
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| | - Frank Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Prithu Sundd
- Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Lan
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| |
Collapse
|
92
|
Liu X, Liu R, Bai Y, Jiang H, Fu X, Ma S. Post-translational modifications of protein in response to ionizing radiation. Cell Biochem Funct 2020; 38:283-289. [PMID: 31943290 DOI: 10.1002/cbf.3467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022]
Abstract
Based on central dogma of genetics, protein is the embodiment and executor of genetic function, post-translational modifications (PTMs) of protein are particularly important and involved in almost all aspects of cell biology and pathogenesis. Studies have shown that ionizing radiation (IR) alters gene expression much more profoundly and a broad variety of cell-process pathways, lots of proteins are modified and activated. Our understanding of the protein in response to ionizing radiation is steadily increasing. Among the various biological processes known to induce radioresistance, PTMs have attracted marked attention in recent years. The present review summarizes the latest knowledge about how PTMs response to ionizing radiation and pathway analysis were conducted. The data provided insights into biological effects of IR and contributing to the development of novel IR-based strategies.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,NHC Key lab of Radiation Biology, Jilin University, Changchun, Jilin, China.,Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui Liu
- NHC Key lab of Radiation Biology, Jilin University, Changchun, Jilin, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Heya Jiang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinxin Fu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
93
|
Tessari A, Soliman SHA, Orlacchio A, Capece M, Amann JM, Visone R, Carbone DP, Palmieri D, Coppola V. RANBP9 as potential therapeutic target in non-small cell lung cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6. [PMID: 34778565 PMCID: PMC8589326 DOI: 10.20517/2394-4722.2020.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths in the Western world. Despite progress made with targeted therapies and immune checkpoint inhibitors, the vast majority of patients have to undergo chemotherapy with platinum-based drugs. To increase efficacy and reduce potential side effects, a more comprehensive understanding of the mechanisms of the DNA damage response (DDR) is required. We have shown that overexpressby live cell imaging (Incuyion of the scaffold protein RAN binding protein 9 (RANBP9) is pervasive in NSCLC. More importantly, patients with higher levels of RANBP9 exhibit a worse outcome from treatment with platinum-based drugs. Mechanistically, RANBP9 exists as a target and an enabler of the ataxia telangiectasia mutated (ATM) kinase signaling. Indeed, the depletion of RANBP9 in NSCLC cells abates ATM activation and its downstream targets such as pby live cell imaging (Incuy53 signaling. RANBP9 knockout cells are more sensitive than controls to the inhibition of the ataxia and telangiectasia-related (ATR) kinase but not to ATM inhibition. The absence of RANBP9 renders cells more sensitive to drugs inhibiting the Poly(ADP-ribose)-Polymerase (PARP) resulting in a "BRCAness-like" phenotype. In summary, as a result of increased sensitivity to DNA damaging drugs conferred by its ablation in vitro and in vivo, RANBP9 may be considered as a potential target for the treatment of NSCLC. This article aims to report the results from past and ongoing investigations focused on the role of RANBP9 in the response to DNA damage, particularly in the context of NSCLC. This review concludes with future directions and speculative remarks which will need to be addressed in the coming years.
Collapse
Affiliation(s)
- Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Shimaa H A Soliman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA.,Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti 66100, Italy.,Current address: Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Marina Capece
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Joseph M Amann
- Current address: Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rosa Visone
- Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti 66100, Italy
| | - David P Carbone
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
94
|
Nimeth BA, Riegler S, Kalyna M. Alternative Splicing and DNA Damage Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:91. [PMID: 32140165 PMCID: PMC7042379 DOI: 10.3389/fpls.2020.00091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/21/2020] [Indexed: 05/06/2023]
Abstract
Plants are exposed to a variety of abiotic and biotic stresses that may result in DNA damage. Endogenous processes - such as DNA replication, DNA recombination, respiration, or photosynthesis - are also a threat to DNA integrity. It is therefore essential to understand the strategies plants have developed for DNA damage detection, signaling, and repair. Alternative splicing (AS) is a key post-transcriptional process with a role in regulation of gene expression. Recent studies demonstrate that the majority of intron-containing genes in plants are alternatively spliced, highlighting the importance of AS in plant development and stress response. Not only does AS ensure a versatile proteome and influence the abundance and availability of proteins greatly, it has also emerged as an important player in the DNA damage response (DDR) in animals. Despite extensive studies of DDR carried out in plants, its regulation at the level of AS has not been comprehensively addressed. Here, we provide some insights into the interplay between AS and DDR in plants.
Collapse
|
95
|
The CTLH Complex in Cancer Cell Plasticity. JOURNAL OF ONCOLOGY 2019; 2019:4216750. [PMID: 31885576 PMCID: PMC6907057 DOI: 10.1155/2019/4216750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Cancer cell plasticity is the ability of cancer cells to intermittently morph into different fittest phenotypic states. Due to the intrinsic capacity to change their composition and interactions, protein macromolecular complexes are the ideal instruments for transient transformation. This review focuses on a poorly studied mammalian macromolecular complex called the CTLH (carboxy-terminal to LisH) complex. Currently, this macrostructure includes 11 known members (ARMC8, GID4, GID8, MAEA, MKLN1, RMND5A, RMND5B, RANBP9, RANBP10, WDR26, and YPEL5) and it has been shown to have E3-ligase enzymatic activity. CTLH proteins have been linked to all fundamental biological processes including proliferation, survival, programmed cell death, cell adhesion, and migration. At molecular level, the complex seems to interact and intertwine with key signaling pathways such as the PI3-kinase, WNT, TGFβ, and NFκB, which are key to cancer cell plasticity. As a whole, the CTLH complex is overexpressed in the most prevalent types of cancer and may hold the key to unlock many of the biological secrets that allow cancer cells to thrive in harsh conditions and resist antineoplastic therapy.
Collapse
|
96
|
Ge EJ, Jani KS, Diehl KL, Müller MM, Muir TW. Nucleation and Propagation of Heterochromatin by the Histone Methyltransferase PRC2: Geometric Constraints and Impact of the Regulatory Subunit JARID2. J Am Chem Soc 2019; 141:15029-15039. [PMID: 31479253 DOI: 10.1021/jacs.9b02321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polycomb Repressive Complex 2 (PRC2) catalyzes mono-, di-, and trimethylation of lysine 27 on histone H3 (H3K27me1-3) to control expression of genes important for differentiation and maintenance of cell identity. PRC2 activity is regulated by a number of different inputs, including allosteric activation by its product, H3K27me3. This positive feedback loop is thought to be important for the establishment of large domains of condensed heterochromatin. In addition to other chromatin modifications, ancillary subunits of PRC2, foremost JARID2, affect the rate of H3K27 methylation. Many gaps remain in our understanding of how PRC2 integrates these various signals to determine where and when to deposit H3K27 methyl marks. In this study, we utilize designer chromatin substrates to demonstrate that propagation of H3K27 methylation by the PRC2 core complex has geometrically defined preferences that are overridden by the presence of JARID2. Our studies also show that phosphorylation of JARID2 can partially regulate its ability to stimulate PRC2 activity. Collectively, these biochemical insights further our understanding of the mechanisms that govern PRC2 activity, and highlight a role for JARID2 in de novo deposition of H3K27me3-containing repressive domains.
Collapse
Affiliation(s)
- Eva J Ge
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Krupa S Jani
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Katharine L Diehl
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Manuel M Müller
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Tom W Muir
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
97
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
98
|
Iadevaia V, Wouters MD, Kanitz A, Matia-González AM, Laing EE, Gerber AP. Tandem RNA isolation reveals functional rearrangement of RNA-binding proteins on CDKN1B/p27Kip1 3'UTRs in cisplatin treated cells. RNA Biol 2019; 17:33-46. [PMID: 31522610 PMCID: PMC6948961 DOI: 10.1080/15476286.2019.1662268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional control of gene expression is mediated via RNA-binding proteins (RBPs) that interact with mRNAs in a combinatorial fashion. While recent global RNA interactome capture experiments expanded the repertoire of cellular RBPs quiet dramatically, little is known about the assembly of RBPs on particular mRNAs; and how these associations change and control the fate of the mRNA in drug-treatment conditions. Here we introduce a novel biochemical approach, termed tobramycin-based tandem RNA isolation procedure (tobTRIP), to quantify proteins associated with the 3ʹUTRs of cyclin-dependent kinase inhibitor 1B (CDKN1B/p27Kip1) mRNAs in vivo. P27Kip1 plays an important role in mediating a cell’s response to cisplatin (CP), a widely used chemotherapeutic cancer drug that induces DNA damage and cell cycle arrest. We found that p27Kip1 mRNA is stabilized upon CP treatment of HEK293 cells through elements in its 3ʹUTR. Applying tobTRIP, we further compared the associated proteins in CP and non-treated cells, and identified more than 50 interacting RBPs, many functionally related and evoking a coordinated response. Knock-downs of several of the identified RBPs in HEK293 cells confirmed their involvement in CP-induced p27 mRNA regulation; while knock-down of the KH-type splicing regulatory protein (KHSRP) further enhanced the sensitivity of MCF7 adenocarcinoma cancer cells to CP treatment. Our results highlight the benefit of specific in vivo mRNA-protein interactome capture to reveal post-transcriptional regulatory networks implicated in cellular drug response and adaptation.
Collapse
Affiliation(s)
- Valentina Iadevaia
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Maikel D Wouters
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Ana M Matia-González
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Emma E Laing
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
99
|
Burger K, Ketley RF, Gullerova M. Beyond the Trinity of ATM, ATR, and DNA-PK: Multiple Kinases Shape the DNA Damage Response in Concert With RNA Metabolism. Front Mol Biosci 2019; 6:61. [PMID: 31428617 PMCID: PMC6688092 DOI: 10.3389/fmolb.2019.00061] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
Our genome is constantly exposed to endogenous and exogenous sources of DNA damage resulting in various alterations of the genetic code. DNA double-strand breaks (DSBs) are considered one of the most cytotoxic lesions. Several types of repair pathways act to repair DNA damage and maintain genome stability. In the canonical DNA damage response (DDR) DSBs are recognized by the sensing kinases Ataxia-telangiectasia mutated (ATM), Ataxia-telangiectasia and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK), which initiate a cascade of kinase-dependent amplification steps known as DSB signaling. Recent evidence suggests that efficient recognition and repair of DSBs relies on the transcription and processing of non-coding (nc)RNA molecules by RNA polymerase II (RNAPII) and the RNA interference (RNAi) factors Drosha and Dicer. Multiple kinases influence the phosphorylation status of both the RNAPII carboxy-terminal domain (CTD) and Dicer in order to regulate RNA-dependent DSBs repair. The importance of kinase signaling and RNA processing in the DDR is highlighted by the regulation of p53-binding protein (53BP1), a key regulator of DSB repair pathway choice between homologous recombination (HR) and non-homologous end joining (NHEJ). Additionally, emerging evidence suggests that RNA metabolic enzymes also play a role in the repair of other types of DNA damage, including the DDR to ultraviolet radiation (UVR). RNAi factors are also substrates for mitogen-activated protein kinase (MAPK) signaling and mediate the turnover of ncRNA during nucleotide excision repair (NER) in response to UVR. Here, we review kinase-dependent phosphorylation events on RNAPII, Drosha and Dicer, and 53BP1 that modulate the key steps of the DDR to DSBs and UVR, suggesting an intimate link between the DDR and RNA metabolism.
Collapse
Affiliation(s)
| | | | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
100
|
Raghow R, Dong Q, Elam MB. Phosphorylation dependent proteostasis of sterol regulatory element binding proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1145-1156. [DOI: 10.1016/j.bbalip.2019.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/19/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
|