51
|
Wang L, Yi J, Lu LY, Zhang YY, Wang L, Hu GS, Liu YC, Ding JC, Shen HF, Zhao FQ, Huang HH, Liu W. Estrogen-induced circRNA, circPGR, functions as a ceRNA to promote estrogen receptor-positive breast cancer cell growth by regulating cell cycle-related genes. Theranostics 2021; 11:1732-1752. [PMID: 33408778 PMCID: PMC7778588 DOI: 10.7150/thno.45302] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Estrogen and estrogen receptor (ER)-regulated gene transcriptional events have been well known to be involved in ER-positive breast carcinogenesis. Meanwhile, circular RNAs (circRNAs) are emerging as a new family of functional non-coding RNAs (ncRNAs) with implications in a variety of pathological processes, such as cancer. However, the estrogen-regulated circRNA program and the function of such program remain uncharacterized. Methods: CircRNA sequencing (circRNA-seq) was performed to identify circRNAs induced by estrogen, and cell proliferation, colony formation, wound healing, transwell and tumor xenograft experiments were applied to examine the function of estrogen-induced circRNA, circPGR. RNA sequencing (RNA-seq) and ceRNA network analysis wereperformed to identify circPGR's target genes and the microRNA (miRNA) bound to circPGR. Anti-sense oligonucleotide (ASO) was used to assess circPGR's effects on ER-positive breast cancer cell growth. Results: Genome-wide circRNA profiling by circRNA sequencing (circRNA-seq) revealed that a large number of circRNAs were induced by estrogen, and further functional screening for the several circRNAs originated from PGR revealed that one of them, which we named as circPGR, was required for ER-positive breast cancer cell growth and tumorigenesis. CircPGR was found to be localized in the cytosol of cells and functioned as a competing endogenous RNA (ceRNA) to sponge miR-301a-5p to regulate the expression of multiple cell cycle genes. The clinical relevance of circPGR was underscored by its high and specific expression in ER-positive breast cancer cell lines and clinical breast cancer tissue samples. Accordingly, anti-sense oligonucleotide (ASO) targeting circPGR was proven to be effective in suppressing ER-positive breast cancer cell growth. Conclusions: These findings reveled that, besides the well-known messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA) and enhancer RNA (eRNA) programs, estrogen also induced a circRNA program, and exemplified by circPGR, these estrogen-induced circRNAs were required for ER-positive breast cancer cell growth, providing a new class of therapeutic targets for ER-positive breast cancer.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- Estrogens/pharmacology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Prognosis
- RNA, Circular/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jia Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ling-yun Lu
- Department of Orthopedics, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, China
| | - Yue-ying Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Lan Wang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Dongxia North Road, Shantou, Guangdong 515041, China
| | - Guo-sheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jian-cheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hai-feng Shen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Fang-qing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-hua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Dongxia North Road, Shantou, Guangdong 515041, China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
52
|
Pinkney HR, Wright BM, Diermeier SD. The lncRNA Toolkit: Databases and In Silico Tools for lncRNA Analysis. Noncoding RNA 2020; 6:E49. [PMID: 33339309 PMCID: PMC7768357 DOI: 10.3390/ncrna6040049] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a rapidly expanding field of research, with many new transcripts identified each year. However, only a small subset of lncRNAs has been characterized functionally thus far. To aid investigating the mechanisms of action by which new lncRNAs act, bioinformatic tools and databases are invaluable. Here, we review a selection of computational tools and databases for the in silico analysis of lncRNAs, including tissue-specific expression, protein coding potential, subcellular localization, structural conformation, and interaction partners. The assembled lncRNA toolkit is aimed primarily at experimental researchers as a useful starting point to guide wet-lab experiments, mainly containing multi-functional, user-friendly interfaces. With more and more new lncRNA analysis tools available, it will be essential to provide continuous updates and maintain the availability of key software in the future.
Collapse
Affiliation(s)
| | | | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (B.M.W.)
| |
Collapse
|
53
|
Xu LB, Bo BX, Xiong J, Ren YJ, Han D, Wei SH, Ren XP. Long non-coding RNA LINC00887 promotes progression of lung carcinoma by targeting the microRNA-206/NRP1 axis. Oncol Lett 2020; 21:87. [PMID: 33376520 PMCID: PMC7751375 DOI: 10.3892/ol.2020.12348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to participate in multiple biological processes, including tumorigenesis. In the current study, the function of a novel lncRNA LINC00887 was investigated in lung carcinoma. For this purpose, LINC00887 expression was assessed by reverse-transcription quantitative PCR. Cell viability was determined by the CCK-8 and EdU assays. Cell invasion, migration were assessed by the transwell and wound healing assays, respectively. A dual luciferase assay was used for analysis of the interaction between LINC00887 and miR-206, as well as the relationship of miR-206 with NRP1. A tumor xenograft study was performed to investigate the LINC00887-miR-206-NRP1 axis in vivo. The expression levels of LINC00887 were upregulated in lung carcinoma tissues and cells compared with adjacent tissues or normal cells (BEAS-2B). Knockdown LINC00887 significantly inhibited the proliferation, migration and invasion of lung carcinoma A549 and NCI-H460 cells. Furthermore, LINC00887 was identified as a competing endogenous RNA and to directly interact with miR-206. Mechanistically, miR-206 was demonstrated to regulate neuropilin-1 (NRP1) expression by targeting the NRP1 3'-untranslated region. The results of the present study suggested that the LINC00887-miR-206-NRP1 axis served a critical role in regulating lung carcinoma cell proliferation, migration and invasion. In addition, xenograft tumor model experiments revealed that silencing LINC00887 suppressed lung carcinoma tumor growth of in vivo. In summary, our results suggest that LINC00887 may serve an oncogenic role in lung carcinoma by targeting the miR-206/NRP1 axis, providing a potential therapeutic target for patients with lung carcinoma.
Collapse
Affiliation(s)
- Ling-Bin Xu
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Bian-Xin Bo
- Department of Critical Care Medicine, Zhouzhi Country People's Hospital, Xi'an, Shaanxi 710407, P.R. China
| | - Jie Xiong
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ya-Juan Ren
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Dong Han
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Sheng-Hong Wei
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiao-Ping Ren
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
54
|
Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers (Basel) 2020; 12:E3657. [PMID: 33291485 PMCID: PMC7762117 DOI: 10.3390/cancers12123657] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
Collapse
Affiliation(s)
- Subhasree Kumar
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| |
Collapse
|
55
|
An integrative atlas of chicken long non-coding genes and their annotations across 25 tissues. Sci Rep 2020; 10:20457. [PMID: 33235280 PMCID: PMC7686352 DOI: 10.1038/s41598-020-77586-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (LNC) regulate numerous biological processes. In contrast to human, the identification of LNC in farm species, like chicken, is still lacunar. We propose a catalogue of 52,075 chicken genes enriched in LNC (http://www.fragencode.org/), built from the Ensembl reference extended using novel LNC modelled here from 364 RNA-seq and LNC from four public databases. The Ensembl reference grew from 4,643 to 30,084 LNC, of which 59% and 41% with expression ≥ 0.5 and ≥ 1 TPM respectively. Characterization of these LNC relatively to the closest protein coding genes (PCG) revealed that 79% of LNC are in intergenic regions, as in other species. Expression analysis across 25 tissues revealed an enrichment of co-expressed LNC:PCG pairs, suggesting co-regulation and/or co-function. As expected LNC were more tissue-specific than PCG (25% vs. 10%). Similarly to human, 16% of chicken LNC hosted one or more miRNA. We highlighted a new chicken LNC, hosting miR155, conserved in human, highly expressed in immune tissues like miR155, and correlated with immunity-related PCG in both species. Among LNC:PCG pairs tissue-specific in the same tissue, we revealed an enrichment of divergent pairs with the PCG coding transcription factors, as for example LHX5, HXD3 and TBX4, in both human and chicken.
Collapse
|
56
|
Yang X, Li J, Wang Y, Li P, Zhao Y, Duan W, Ariston Gabriel AN, Chen Y, Mao H, Wang Y, Du L, Wang C. Individualized Prediction of Survival by a 10-Long Non-coding RNA-Based Prognostic Model for Patients With Breast Cancer. Front Oncol 2020; 10:515421. [PMID: 33194577 PMCID: PMC7604500 DOI: 10.3389/fonc.2020.515421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Deregulations of long non-coding RNAs (lncRNAs) have been implicated in the progression of breast cancer (BC). However, the prognostic values of those lncRNAs in BC remain elusive. This study aimed at constructing a lncRNA-based prognostic model to improve the clinical management of BC. Systematic investigation of lncRNA expression profiles and clinical data from The Cancer Genome Atlas (TCGA) database were utilized to establish a 10-lncRNA signature. The prognostic signature efficiently discriminated patients with significantly different prognosis regardless of intrinsic molecular subtypes and tumor-node-metastasis (TNM) stage. A combined model was constructed by multivariate Cox proportional hazards regression (CPHR) analysis, which combined the lncRNA-based signature with certain clinical risk factors (TNM stage, age, and human epidermal growth factor receptor 2 status). This model predicted a survival probability that closely corresponds to the actual survival probability. With respect to the entire set, the time-dependent receiver-operating characteristic curves revealed that the area under the curve of this model was the highest than any of the clinical risk factors. Moreover, functional enrichment analysis indicated that the molecular signature was mainly involved in DNA replication, which was firmly related to BC tumorigenesis. Consistent with the discovery, the knockdown of LHX1-DT, one of the 10 prognostic lncRNAs, attenuated the proliferation of BC cells in vitro and in vivo. Taken together, our study constructed a novel 10-lncRNA signature for prediction prognosis, and the signature-based model could provide new insight into accurate management of BC patients.
Collapse
Affiliation(s)
- Xuemei Yang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Yifan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Weili Duan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | | | - Yingjie Chen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China.,The Clinical Research Center of Shandong Province for Clinical Laboratory, Jinan, China
| |
Collapse
|
57
|
Zagorac S, de Giorgio A, Dabrowska A, Kalisz M, Casas-Vila N, Cathcart P, Yiu A, Ottaviani S, Degani N, Lombardo Y, Tweedie A, Nissan T, Vance KW, Ulitsky I, Stebbing J, Castellano L. SCIRT lncRNA Restrains Tumorigenesis by Opposing Transcriptional Programs of Tumor-Initiating Cells. Cancer Res 2020; 81:580-593. [PMID: 33172932 DOI: 10.1158/0008-5472.can-20-2612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/05/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
In many tumors, cells transition reversibly between slow-proliferating tumor-initiating cells (TIC) and their differentiated, faster-growing progeny. Yet, how transcriptional regulation of cell-cycle and self-renewal genes is orchestrated during these conversions remains unclear. In this study, we show that as breast TIC form, a decrease in cell-cycle gene expression and increase in self-renewal gene expression are coregulated by SOX2 and EZH2, which colocalize at CpG islands. This pattern was negatively controlled by a novel long noncoding RNA (lncRNA) that we named Stem Cell Inhibitory RNA Transcript (SCIRT), which was markedly upregulated in tumorspheres but colocalized with and counteracted EZH2 and SOX2 during cell-cycle and self-renewal regulation to restrain tumorigenesis. SCIRT specifically interacted with EZH2 to increase EZH2 affinity to FOXM1 without binding the latter. In this manner, SCIRT induced transcription at cell-cycle gene promoters by recruiting FOXM1 through EZH2 to antagonize EZH2-mediated effects at target genes. Conversely, on stemness genes, FOXM1 was absent and SCIRT antagonized EZH2 and SOX2 activity, balancing toward repression. These data suggest that the interaction of an lncRNA with EZH2 can alter the affinity of EZH2 for its protein-binding partners to regulate cancer cell state transitions. SIGNIFICANCE: These findings show that a novel lncRNA SCIRT counteracts breast tumorigenesis by opposing transcriptional networks associated with cell cycle and self-renewal.See related commentary by Pardini and Dragomir, p. 535.
Collapse
Affiliation(s)
- Sladjana Zagorac
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, United Kingdom
| | - Alex de Giorgio
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, United Kingdom
| | - Aleksandra Dabrowska
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, United Kingdom
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | | | - Paul Cathcart
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, United Kingdom
| | - Angela Yiu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, United Kingdom
| | - Silvia Ottaviani
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, United Kingdom
| | - Neta Degani
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Ylenia Lombardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, United Kingdom.,Nature Communications, The Macmillan Campus, London, United Kingdom
| | - Alistair Tweedie
- University of Sussex, School of life Sciences, John Maynard Smith Building, Falmer, Brighton, United Kingdom
| | - Tracy Nissan
- University of Sussex, School of life Sciences, John Maynard Smith Building, Falmer, Brighton, United Kingdom
| | - Keith W Vance
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Igor Ulitsky
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, United Kingdom
| | - Leandro Castellano
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, United Kingdom. .,University of Sussex, School of life Sciences, John Maynard Smith Building, Falmer, Brighton, United Kingdom
| |
Collapse
|
58
|
Cross-talk between the ER pathway and the lncRNA MAFG-AS1/miR-339-5p/ CDK2 axis promotes progression of ER+ breast cancer and confers tamoxifen resistance. Aging (Albany NY) 2020; 12:20658-20683. [PMID: 33098638 PMCID: PMC7655217 DOI: 10.18632/aging.103966] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Hormone receptor-positive breast cancer accounts for around 75% of breast cancers. The estrogen receptor pathway promotes tumor progression and endocrine resistance. Recently, the cross-talk between the ER signaling pathway and cell cycle regulation has been identified. It is necessary to determine the underlying molecular mechanisms involved in the ER signaling pathway and find new target genes for prognosis and drug resistance in ER+ breast cancer. In this study, lncRNA MAFG-AS1 was shown to be up-regulated and associated with poor prognosis in ER+ breast cancer. Functionally, down-regulation of MAFG-AS1 could inhibit cell proliferation and promote apoptosis. In addition, MAFG-AS1 which contained an estrogen-responsive element could promote CDK2 expression by sponging miR-339-5p. Subsequently, MAFG-AS1 and CDK2 were found to be up-regulated in tamoxifen-resistant MCF-7 cells. Cross-talk between the ER signaling pathway and cell cycle conducted by MAFG-AS1 and CDK2 could promote tamoxifen resistance. In conclusion, our study indicated that estrogen-responsive lncRNA MAFG-AS1 up-regulated CDK2 by sponging miR-339-5p, which promoted ER+ breast cancer proliferation. Cross-talk between the ER signaling pathway and cell cycle suggested that lncRNA MAFG-AS1 is a potential biomarker and therapeutic target in ER+ breast cancer. CDK2 inhibitors may be applied to endocrine resistance therapy.
Collapse
|
59
|
LncRNA-OBFC2A targeted to Smad3 regulated Cyclin D1 influences cell cycle arrest induced by 1,4-benzoquinone. Toxicol Lett 2020; 332:74-81. [DOI: 10.1016/j.toxlet.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 07/05/2020] [Indexed: 02/03/2023]
|
60
|
Competitive endogenous network of lncRNA, miRNA, and mRNA in the chemoresistance of gastrointestinal tract adenocarcinomas. Biomed Pharmacother 2020; 130:110570. [PMID: 32763816 DOI: 10.1016/j.biopha.2020.110570] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is one of the main therapeutic strategies used for gastrointestinal tract adenocarcinomas (GTAs), but resistance to anticancer drugs is a substantial obstacle in successful chemotherapy. Accumulating evidence shows that non-coding RNAs, especially long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), can affect the drug resistance of tumor cells by forming a ceRNA regulatory network with mRNAs. The efficiency of the competing endogenous RNAs (ceRNAs) network can be affected by the number and integrality of miRNA recognition elements (MREs). Dynamic factors such as RNA editing, alternative splicing, single nucleotide polymorphism (SNP), RNA-binding proteins and RNA secondary structure can influence the MRE activity, which may in turn be involved in the regulation of chemoresistance-associated ceRNA network by prospective approaches. Besides activities in a single tumor cell, the components of the tumor micoenvironment (TME) also affect the ceRNA network by regulating the expression of non-coding RNA directly or indirectly. The alternation of the ceRNA network often has an impact on the malignant phenotype of tumor including chemoresistance. In this review, we focused on how MRE-associated dynamic factors and components of TME affected the ceRNA network and speculated the potential association of ceRNA network with chemoresistance. We also summarized the ceRNA network of lncRNAs, miRNAs, and mRNAs which efficiently triggers chemoresistance in the specific types of GTAs and analyzed the role of each RNA as a "promoter" or "suppressor" of chemoresistance.
Collapse
|
61
|
Gaertner B, van Heesch S, Schneider-Lunitz V, Schulz JF, Witte F, Blachut S, Nguyen S, Wong R, Matta I, Hübner N, Sander M. A human ESC-based screen identifies a role for the translated lncRNA LINC00261 in pancreatic endocrine differentiation. eLife 2020; 9:e58659. [PMID: 32744504 PMCID: PMC7423336 DOI: 10.7554/elife.58659] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a heterogenous group of RNAs, which can encode small proteins. The extent to which developmentally regulated lncRNAs are translated and whether the produced microproteins are relevant for human development is unknown. Using a human embryonic stem cell (hESC)-based pancreatic differentiation system, we show that many lncRNAs in direct vicinity of lineage-determining transcription factors (TFs) are dynamically regulated, predominantly cytosolic, and highly translated. We genetically ablated ten such lncRNAs, most of them translated, and found that nine are dispensable for pancreatic endocrine cell development. However, deletion of LINC00261 diminishes insulin+ cells, in a manner independent of the nearby TF FOXA2. One-by-one disruption of each of LINC00261's open reading frames suggests that the RNA, rather than the produced microproteins, is required for endocrine development. Our work highlights extensive translation of lncRNAs during hESC pancreatic differentiation and provides a blueprint for dissection of their coding and noncoding roles.
Collapse
Affiliation(s)
- Bjoern Gaertner
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Sebastiaan van Heesch
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Valentin Schneider-Lunitz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Jana Felicitas Schulz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Franziska Witte
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Susanne Blachut
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Steven Nguyen
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Regina Wong
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Ileana Matta
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- DZHK (German Centre for Cardiovascular Research), Partner Site BerlinBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
- Charité -UniversitätsmedizinBerlinGermany
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
62
|
Che J, Yao X, Wang C, Zheng J, Guo C. Hypoxia promoted renal cell carcinoma cell migration through regulating lncRNA-ENST00000574654.1. Am J Transl Res 2020; 12:3884-3894. [PMID: 32774742 PMCID: PMC7407743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hypoxia is common in solid tumor masses that has functional consequences for tumor progression. Previous studies demonstrated that nearly 80% renal cell carcinoma (RCC) are under hypoxia. However, effect and its mechanism of hypoxia on RCC cell invasion remains to be defined. METHODS The shRNA expression vectors, which were constructed to express a short hairpin RNA against lncRNA and overexpression of lncRNA, were transfected into the RCC cell lines (SW839 and OSRC-2). Levels of lncRNA-ENST00000574654.1, VEGF-A and VEGF-C mRNA and protein were examined by real-time quantitative-fluorescent PCR and Western blot analysis, respectively. The effects of lncRNA silencing and overexpression on cell invasion of SW839 and OSRC-2 cells were evaluated with cell migration assay. RESULTS Hypoxia significantly stimulated cell invasion in both RCC cell lines (SW839: 2.38 ± 0.19 of normoxia vs 7.83 ± 0.38 of hypoxia, P < 0.05; and OSRC-2: 1.00 ± 0.08 of normoxia vs 5.88 ± 0.32 of hypoxia, P < 0.05). LncRNA microarray analysis found that lncRNA-ENST00000574654.1 was down-regulated under hypoxia. Consistently, over-expression of lncRNA-ENST00000574654.1 resulted in significant blockade of hypoxia-induced RCC migration. Furthermore, expression of lncRNA-ENST00000574654.1 was regulated by HIF-1α and VEGA-A through interacting with hnRNP, which in turn regulated the RCC cell invasion. CONCLUSIONS These findings suggested that hypoxia promoted RCC cell invasion through HIF-1α/lncRNA (ENST00000574654.1)/hnRNP/VEGF-A pathway. Targeting this pathway could potentially improve therapeutic outcomes of renal cell carcinoma.
Collapse
Affiliation(s)
- Jianping Che
- Department of Urology, The Affiliated Shanghai Tenth People’s Hospital, Nanjing Medical UniversityShanghai 200072, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, China
| | - Chunguang Wang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, China
| | - Junhua Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong UniversityShanghai 200080, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, China
| |
Collapse
|
63
|
Amelio I, Bernassola F, Candi E. Emerging roles of long non-coding RNAs in breast cancer biology and management. Semin Cancer Biol 2020; 72:36-45. [PMID: 32619506 DOI: 10.1016/j.semcancer.2020.06.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/08/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023]
Abstract
Breast cancer is the most common cancer in women with the highest mortality among this gender. Despite treatment strategies including surgery, hormone therapy and targeted therapy have recently advanced, innovative biomarkers are needed for the early detection, treatment and prognosis. An increasing number of non-coding RNAs (ncRNAs) have shown great potential as crucial players in different stages of the breast cancer tumorigenesis, influencing cell death, metabolism, epithelial-mesenchymal transition (EMT), metastasis and drug resistance. Long non-coding RNAs (lncRNAs), specifically, are a class of RNA transcripts with a length greater than 200 nucleotides, which have also been shown to exerts oncogenic or tumour suppressive roles in the pathogenesis of breast cancer. LncRNAs are implicated in different molecular mechanisms by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. Here, we aim to briefly discuss the latest existing body of knowledge regarding the key functions and the molecular mechanisms of some of the most relevant lncRNAs in the pathogenesis, treatment and prognosis of breast cancer.
Collapse
Affiliation(s)
- I Amelio
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy; School of Life Sciences, University of Nottingham, Nottingham, UK
| | - F Bernassola
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - E Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy; Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy.
| |
Collapse
|
64
|
Zhang Y, Fan K, Xu X, Wang A. The TGF-β1 Induces the Endothelial-to-Mesenchymal Transition via the UCA1/miR-455/ZEB1 Regulatory Axis in Human Umbilical Vein Endothelial Cells. DNA Cell Biol 2020; 39:1264-1273. [PMID: 32584608 DOI: 10.1089/dna.2019.5194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-beta 1 (TGF-β1) plays important roles in the endothelial-to-mesenchymal transition (EndMT). Recently, long noncoding RNAs (lncRNAs) have been identified to be involved in the physiological and pathological processes of human diseases. However, the role of endothelial lncRNAs in the TGF-β1-mediated control of angiogenesis and its underlying mechanism remains largely unclear. In this study, we first demonstrated that TGF-β1 induced EndMT; promoted cell viability, proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). Second, our study displayed that TGF-β1 upregulated the lncRNA UCA1 expression in HUVECs, knocked down UCA1 with small interfering RNAs, and inhibited the function of TGF-β1 in HUVECs. Third, our study showed that UCA1 was located in the cytoplasm and absorbed miR-455 in TGF-β1-treated HUVECs. Further, the miR-455 inhibitor restored the role of the inhibited UCA1 in HUVECs treated with TGF-β1. Fourth, our study revealed that miR-455 inhibited ZEB1 expression, and overexpression of ZEB1 restored the role of miR-455 in HUVECs treated with TGF-β1. Finally, our study revealed that UCA1 exerted its role via regulating the UCA1/miR-455/ZEB1 regulatory axis in HUVECs treated with TGF-β1. Collectively, our study identified the role of the UCA1/miR-455/ZEB1 pathway in HUVECs treated with TGF-β1 and indicated the potential therapeutic role of this regulatory axis in angiogenesis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Kun Fan
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaotao Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
65
|
Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH, Alcaro S, Di Martino MT, Tagliaferri P, Tassone P. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic "dark matter". J Exp Clin Cancer Res 2020; 39:117. [PMID: 32563270 PMCID: PMC7305591 DOI: 10.1186/s13046-020-01622-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
The discovery of the role of non-coding RNAs (ncRNAs) in the onset and progression of malignancies is a promising frontier of cancer genetics. It is clear that ncRNAs are candidates for therapeutic intervention, since they may act as biomarkers or key regulators of cancer gene network. Recently, profiling and sequencing of ncRNAs disclosed deep deregulation in human cancers mostly due to aberrant mechanisms of ncRNAs biogenesis, such as amplification, deletion, abnormal epigenetic or transcriptional regulation. Although dysregulated ncRNAs may promote hallmarks of cancer as oncogenes or antagonize them as tumor suppressors, the mechanisms behind these events remain to be clarified. The development of new bioinformatic tools as well as novel molecular technologies is a challenging opportunity to disclose the role of the "dark matter" of the genome. In this review, we focus on currently available platforms, computational analyses and experimental strategies to investigate ncRNAs in cancer. We highlight the differences among experimental approaches aimed to dissect miRNAs and lncRNAs, which are the most studied ncRNAs. These two classes indeed need different investigation taking into account their intrinsic characteristics, such as length, structures and also the interacting molecules. Finally, we discuss the relevance of ncRNAs in clinical practice by considering promises and challenges behind the bench to bedside translation.
Collapse
Affiliation(s)
- Katia Grillone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Caterina Riillo
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Francesca Scionti
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Roberta Rocca
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Giuseppe Tradigo
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Department of Health Sciences, Magna Græcia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Maria Teresa Di Martino
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierfrancesco Tassone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| |
Collapse
|
66
|
Zhang Z, Yu W, Tang D, Zhou Y, Bi M, Wang H, Zheng Y, Chen M, Li L, Xu X, Zhang W, Tao H, Jin VX, Liu Z, Chen L. Epigenomics-based identification of oestrogen-regulated long noncoding RNAs in ER+ breast cancer. RNA Biol 2020; 17:1590-1602. [PMID: 32506995 DOI: 10.1080/15476286.2020.1777769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is one of the most prevalent cancers in women worldwide. Through the regulation of many coding and non-coding target genes, oestrogen (E2 or 17β-oestradiol) and its nuclear receptor ERα play important roles in breast cancer development and progression. Despite the astounding advances in our understanding of oestrogen-regulated coding genes over the past decades, our knowledge on oestrogen-regulated non-coding targets has just begun to expand. Here we leverage epigenomic approaches to systematically analyse oestrogen-regulated long non-coding RNAs (lncRNAs). Similar to the coding targets of ERα, the transcription of oestrogen-regulated lncRNAs correlates with the activation status of ERα enhancers, measured by eRNA production, chromatin accessibility, and the occupancy of the enhancer regulatory components including P300, MED1, and ARID1B. Our 3D chromatin architecture analyses suggest that lncRNAs and their neighbouring E2-resonsive coding genes, exemplified by LINC00160 and RUNX1, might be regulated as a 3D structural unit resulted from enhancer-promoter interactions. Finally, we evaluated the expression levels of LINC00160 and RUNX1 in various types of breast cancer and found that their expression positively correlated with the survival rate in ER+ breast cancer patients, implying that the oestrogen-regulated LINC00160 and its neighbouring RUNX1 might represent potential biomarkers for ER+ breast cancers.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA
| | - Wei Yu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA.,Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang, China
| | - Dan Tang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA.,Department of General Practice, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Yufan Zhou
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA
| | - Mingjun Bi
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA
| | - Hu Wang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA
| | - Yan Zheng
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA
| | - Mingqiu Chen
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University , Fuzhou, China
| | - Li Li
- Department of Oncology, The Second People's Hospital of Jiaozuo , Jiaozuo City, Henan, China
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, the Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Wei Zhang
- Jiangxi Institute of Respiratory Disease, the Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang, China
| | - Victor X Jin
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA
| | - Lizhen Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA.,Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio , San Antonio, TX, USA
| |
Collapse
|
67
|
Sun F, Wu K, Yao Z, Mu X, Zheng Z, Sun M, Wang Y, Liu Z, Zhu Y. Long noncoding RNA LINC00963 induces NOP2 expression by sponging tumor suppressor miR-542-3p to promote metastasis in prostate cancer. Aging (Albany NY) 2020; 12:11500-11516. [PMID: 32554858 PMCID: PMC7343457 DOI: 10.18632/aging.103236] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Metastatic disease caused by castration-resistant prostate cancer (CRPC) is the principal cause of prostate cancer (PCa)-related mortality. CRPC occurs within 2-3 years of initiation of androgen deprivation therapy (ADT), which is an important factor of influencing PCa metastasis. Recent studies have revealed that non-coding RNAs in PCa can enhance metastasis and progression, while the mechanisms are still unclear. In this study, we reported that the long noncoding RNA-LINC00963 was increased in CRPC tissues and promoted migration of PCa cells in vitro and their metastasis in vivo. High levels of LINC00963 significantly decreased tumor suppressor miR-542-3p, whose levels in metastasis tissues were low compared to those in non-metastasis tissues. LINC00963 promotes and miR-542-3p inhibits metastasis. Furthermore, the expression levels of LINC00963 and miR-542-3p were positively and negatively associated with the expression of NOP2. We demonstrated that NOP2 promoted PCa by activating the epithelial-mesenchymal transition (EMT) pathway. For specific mechanism, dual luciferase reporter assays showed that miR-542-3p directly binds to both 3'-untranslated region (UTR) of LINC00963 and NOP2 mRNA. Taken together, our results show that LINC00963 acts as an inducer of PCa metastasis by binding miR-542-3p, thereby promoting NOP2. This axis may have diagnostic and therapeutic potential for advanced PCa.
Collapse
Affiliation(s)
- Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhixian Yao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhong Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Menghao Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yong Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yiyong Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
68
|
Choudhari R, Yang B, Rotwein P, Gadad SS. Structure and expression of the long noncoding RNA gene MIR503 in humans and non-human primates. Mol Cell Endocrinol 2020; 510:110819. [PMID: 32311422 DOI: 10.1016/j.mce.2020.110819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
Abstract
Recent technical and other advances in genomics provide unique opportunities to improve our understanding of human physiology and disease predisposition through a detailed analysis of gene structure and expression by examining data in public genome and gene-expression repositories. Yet, the vast majority of human genes remain understudied. This is particularly true of genes for long noncoding RNAs (lncRNAs). Here, we describe the detailed characterization of MIR503HG, a lncRNA gene found on the X chromosome in humans. Using information extracted from public databases, we show that human MIR503HG is a 5-exon gene, and that it is highly conserved among 5 non-human primates spanning over 85 million years ago of evolutionary diversification. MIR503HG is transcribed and processed into multiple distinct RNAs in each of these species through differential exon use and alternative RNA splicing, with a higher abundance of transcripts being found in reproductive tissues, especially during the early stages of ovary and testis development, indicating a possible role in reproductive biology. Furthermore, in select reproductive system cancers, MIR503HG transcripts are downregulated, with higher levels of RNA expression being associated with clinical outcomes. Collectively, these investigations show how the use of genomic, gene expression, and other genetic resources can lead to new insights about human biology and disease, and argue that MIR503HG is worthy of additional study.
Collapse
Affiliation(s)
- Ramesh Choudhari
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States.
| | - Barbara Yang
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States.
| | - Peter Rotwein
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States.
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States; Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States; Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States.
| |
Collapse
|
69
|
J. Sedano M, I. Ramos E, Choudhari R, L. Harrison A, Subramani R, Lakshmanaswamy R, Zilaie M, Gadad SS. Hypoxanthine Phosphoribosyl Transferase 1 Is Upregulated, Predicts Clinical Outcome and Controls Gene Expression in Breast Cancer. Cancers (Basel) 2020; 12:cancers12061522. [PMID: 32532008 PMCID: PMC7352670 DOI: 10.3390/cancers12061522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxanthine phosphoribosyl transferase 1 (HPRT1) is traditionally believed to be a housekeeping gene; however, recent reports suggest that it is upregulated in several cancers and is associated with clinical outcomes. HPRT1 is located on chromosome X and encodes the HPRT enzyme, which functions in recycling nucleotides to supply for DNA and RNA synthesis in actively dividing cells. Here, we used transcriptomic analyses to interrogate its expression across all known cancer types and elucidated its role in regulating gene expression in breast cancer. We observed elevated HPRT1 RNA levels in malignant tissues when compared to normal controls, indicating its potential as a diagnostic and prognostic marker. Further, in breast cancer, the subtype-specific analysis showed that its expression was highest in basal and triple-negative breast cancer, and HPRT1 knockdown in breast cancer cells suggested that HPRT1 positively regulates genes related to cancer pathways. Collectively, our results essentially highlight the importance of and change the way in which HPRT1's function is studied in biology, warranting careful examination of its role in cancer.
Collapse
Affiliation(s)
- Melina J. Sedano
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.J.S.); (E.I.R.); (R.C.); (A.L.H.); (R.S.); (R.L.)
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Enrique I. Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.J.S.); (E.I.R.); (R.C.); (A.L.H.); (R.S.); (R.L.)
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ramesh Choudhari
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.J.S.); (E.I.R.); (R.C.); (A.L.H.); (R.S.); (R.L.)
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Alana L. Harrison
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.J.S.); (E.I.R.); (R.C.); (A.L.H.); (R.S.); (R.L.)
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ramadevi Subramani
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.J.S.); (E.I.R.); (R.C.); (A.L.H.); (R.S.); (R.L.)
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.J.S.); (E.I.R.); (R.C.); (A.L.H.); (R.S.); (R.L.)
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Mina Zilaie
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.J.S.); (E.I.R.); (R.C.); (A.L.H.); (R.S.); (R.L.)
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Correspondence: ; Tel.: +1-(915)-215-6431
| |
Collapse
|
70
|
Emerging Roles of Estrogen-Regulated Enhancer and Long Non-Coding RNAs. Int J Mol Sci 2020; 21:ijms21103711. [PMID: 32466143 PMCID: PMC7279485 DOI: 10.3390/ijms21103711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.
Collapse
|
71
|
Boone DN, Warburton A, Som S, Lee AV. SNHG7 is a lncRNA oncogene controlled by Insulin-like Growth Factor signaling through a negative feedback loop to tightly regulate proliferation. Sci Rep 2020; 10:8583. [PMID: 32444795 PMCID: PMC7244715 DOI: 10.1038/s41598-020-65109-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/23/2020] [Indexed: 01/07/2023] Open
Abstract
Evidence suggests Insulin-like growth factor 1 (IGF1) signaling is involved in the initiation and progression of a subset of breast cancers by inducing cell proliferation and survival. Although the signaling cascade following IGF1 receptor activation is well-studied, the key elements of the transcriptional response governing IGF1's actions are not well understood. Recent studies reveal that the majority of the genome is transcribed and that there are more long non-coding RNAs (lncRNAs) than protein coding genes, several of which are dysregulated in human cancer. However, studies on the regulation and mechanism of action of these lncRNAs are in their infancy. Here we show that IGF1 alters the expression levels of a subset of lncRNAs. SNHG7, a member of the small nucleolar host gene family, is a highly-expressed lncRNA that is consistently and significantly down-regulated by IGF1 signaling by a post-transcriptional mechanism through the MAPK pathway. SNHG7 regulates proliferation of breast cancer cell lines in a dose-dependent manner, and silencing SNHG7 expression causes cell cycle arrest in G0/G1. Intriguingly, SNHG7 alters the expression of many IGF1 signaling intermediates and IGF1-regulated genes suggesting a feedback mechanism to tightly regulate the IGF1 response. Finally, we show in clinical data that SNHG7 is overexpressed in tumors of a subset of breast cancer patients and that these patients have lower disease-free survival than patients without elevated SNHG7 expression. We propose that SNHG7 is a lncRNA oncogene that is controlled by growth factor signaling in a feedback mechanism to prevent hyperproliferation, and that this regulation can be lost in the development or progression of breast cancer.
Collapse
Affiliation(s)
- David N Boone
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, USA.
- Hillman Academy/Computer Science, Biology, and Biomedical Informatics Academy, Pittsburgh, USA.
- UPMC Hillman Cancer Center, Pittsburgh, USA.
| | - Andrew Warburton
- Hillman Academy/Computer Science, Biology, and Biomedical Informatics Academy, Pittsburgh, USA
- Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sreeroopa Som
- Hillman Academy/Computer Science, Biology, and Biomedical Informatics Academy, Pittsburgh, USA
- Stanford University, Stanford, USA
| | - Adrian V Lee
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
- UPMC Hillman Cancer Center, Pittsburgh, USA
| |
Collapse
|
72
|
Jiang X, Wang Y, Li X, He L, Yang Q, Wang W, Liu J, Zha B. Microarray profile of B cells from Graves' disease patients reveals biomarkers of proliferation. Endocr Connect 2020; 9:405-417. [PMID: 32432440 PMCID: PMC7274554 DOI: 10.1530/ec-20-0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B lymphocytes are the source of autoantibodies against the thyroid-stimulating hormone receptor (TSHR) in Graves' disease (GD). Characterization of autoimmune B-cell expression profiles might enable a better understanding of GD pathogenesis. To reveal this, the expression levels of long noncoding RNAs (lncRNAs) and mRNAs (genes) in purified B cells from patients with newly diagnosed GD and healthy individuals were compared using microarrays, which elucidated 604 differentially expressed lncRNAs (DE-lncRNAs) and 410 differentially expressed genes (DEGs). GO and pathway analyses revealed that the DEGs are mainly involved in immune response. A protein-protein interaction network presented experimentally validated interactions among the DEGs. Two independent algorithms were used to identify the DE-lncRNAs that regulate the DEGs. Functional annotation of the deregulated lncRNA-mRNA pairs identified 14 pairs with mRNAs involved in cell proliferation. The lncRNAs TCONS_00022357-XLOC_010919 and n335641 were predicted to regulate TCL1 family AKT coactivator A (TCL1A), and the lncRNA n337845 was predicted to regulate SH2 domain containing 1A (SH2D1A). TCL1A and SH2D1A are highly involved in B-cell proliferation. The differential expression of both genes was validated by qRT-PCR. In conclusion, lncRNA and mRNA expression profiles of B cells from patients with GD indicated that the lncRNA-mRNA pairs n335641-TCL1A, TCONS_00022357-XLOC_010919-TCL1A, and n337845-SH2D1A may participate in GD pathogenesis by modulating B-cell proliferation and survival. Therefore, the identified lncRNA and mRNA may represent novel biomarkers and therapeutic targets for GD.
Collapse
Affiliation(s)
- Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonghui Wang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Leqi He
- Department of Clinical Laboratory Medicine, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Qian Yang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Wei Wang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
- Correspondence should be addressed to B Zha:
| |
Collapse
|
73
|
Hou TY, Nandu T, Li R, Chae M, Murakami S, Kraus WL. Characterization of basal and estrogen-regulated antisense transcription in breast cancer cells: Role in regulating sense transcription. Mol Cell Endocrinol 2020; 506:110746. [PMID: 32035111 PMCID: PMC7089808 DOI: 10.1016/j.mce.2020.110746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 12/27/2022]
Abstract
Estrogen-responsive breast cancer cells exhibit both basal and estrogen-regulated transcriptional programs, which lead to the transcription of many different transcription units (i.e., genes), including those that produce coding and non-coding sense (e.g., mRNA, lncRNA) and antisense (i.e., asRNA) transcripts. We have previously characterized the global basal and estrogen-regulated transcriptomes in estrogen receptor alpha (ERα)-positive MCF-7 breast cancer cells. Herein, we have mined genomic data to define three classes of antisense transcription in MCF-7 cells based on where their antisense transcription termination sites reside relative to their cognate sense mRNA and lncRNA genes. These three classes differ in their response to estrogen treatment, the enrichment of a number of genomic features associated with active promoters (H3K4me3, RNA polymerase II, open chromatin architecture), and the biological functions of their cognate sense genes as analyzed by DAVID gene ontology. We further characterized two estrogen-regulated antisense transcripts arising from the MYC gene in MCF-7 cells, showing that these antisense transcripts are 5'-capped, 3'-polyadenylated, and localized to different compartments of the cell. Together, our analyses have revealed distinct classes of antisense transcription correlated to different biological processes and response to estrogen stimulation, uncovering another layer of hormone-regulated gene regulation.
Collapse
Affiliation(s)
- Tim Y Hou
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Li
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Program in Genetics, Development and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Minho Chae
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shino Murakami
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Program in Genetics, Development and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Program in Genetics, Development and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
74
|
Feng Y, Hu S, Li L, Zhang S, Liu J, Xu X, Zhang M, Du T, Du Y, Peng X, Chen F. LncRNA NR-104098 Inhibits AML Proliferation and Induces Differentiation Through Repressing EZH2 Transcription by Interacting With E2F1. Front Cell Dev Biol 2020; 8:142. [PMID: 32296698 PMCID: PMC7136616 DOI: 10.3389/fcell.2020.00142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Abundant evidence has illustrated that long non-coding RNA (lncRNA) plays a vital role in the regulation of tumor development and progression. Most lncRNAs have been proven to have biological and clinical significance in acute myeloid leukemia (AML), but further investigation remains necessary. In this study, we investigated lncRNA NR-104098 in AML and its specific mechanism. The microarray analysis was performed on NB4 cells. Based on the related analysis results, we identified that lncRNA NR-104098 is a suppressor gene that is significantly upregulated in AML cells. LncRNA NR-104098 could inhibit proliferation and induce differentiation in AML cells in vitro and also play main role in the mouse xenografts. Mechanically, it was confirmed that lncRNA NR-104098 may effectively inhibit EZH2 transcription by directly binding to E2F1 and recruiting E2F1 to the EZH2 promoter. In addition, ATPR can significantly increase the expression of lncRNA NR-104098, whereas knocking down NR104098 can inhibit the inhibitory effect of ATPR on the proliferation and induction differentiation of AML cells. Taken together, these results lead to deeper insight into the mechanism of ATPR-induced AML differentiation and prevent proliferation by inhibiting EZH2 on the transcriptional level.
Collapse
Affiliation(s)
- Yubin Feng
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuang Hu
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Lanlan Li
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | | | - Jikang Liu
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoling Xu
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Meiju Zhang
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Tianxi Du
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yan Du
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoqing Peng
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Feihu Chen
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
75
|
Liu P, Zhang B, Chen Z, He Y, Du Y, Liu Y, Chen X. m 6A-induced lncRNA MALAT1 aggravates renal fibrogenesis in obstructive nephropathy through the miR-145/FAK pathway. Aging (Albany NY) 2020; 12:5280-5299. [PMID: 32203053 PMCID: PMC7138587 DOI: 10.18632/aging.102950] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/09/2020] [Indexed: 01/15/2023]
Abstract
Renal fibrosis is a key factor in chronic kidney disease (CKD). Long non-coding RNAs (lncRNAs) play important roles in the physiological and pathological progression of human diseases. However, the roles and underlying mechanisms of lncRNAs in renal fibrosis still need to be discovered. In this study, we first displayed the increased lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression in renal fibrosis in patients with obstructive nephropathy (ON). Then we found that transforming growth factor beta 1 (TGF-β1) induced epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) protein deposition, which promoted the viability, proliferation and migration of human renal proximal tubular epithelial (HK2) cells. Next, MALAT1/miR-145/focal adhesion kinase (FAK) pathway was confirmed to play an importment role in TGF-β1-induced renal fibrosis. In addition, the MALAT1/miR-145/FAK pathway was involved in the effect of dihydroartemisinin (DHA) on TGF-β1-induced renal fibrosis in vitro and in vivo. Furthermore, m6A methyltransferase methyltransferase-like 3 (METTL3) was shown to be the main methyltransferase of m6A modification on MALAT1.
Collapse
Affiliation(s)
- Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Yongchao Du
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Yuhang Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| |
Collapse
|
76
|
Crudele F, Bianchi N, Reali E, Galasso M, Agnoletto C, Volinia S. The network of non-coding RNAs and their molecular targets in breast cancer. Mol Cancer 2020; 19:61. [PMID: 32188472 PMCID: PMC7079433 DOI: 10.1186/s12943-020-01181-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-coding RNAs are now recognized as fundamental components of the cellular processes. Non-coding RNAs are composed of different classes, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Their detailed roles in breast cancer are still under scrutiny. Main body We systematically reviewed from recent literature the many functional and physical interactions of non-coding RNAs in breast cancer. We used a data driven approach to establish the network of direct, and indirect, interactions. Human curation was essential to de-convolute and critically assess the experimental approaches in the reviewed articles. To enrol the scientific papers in our article cohort, due to the short time span (shorter than 5 years) we considered the journal impact factor rather than the citation number. The outcome of our work is the formal establishment of different sub-networks composed by non-coding RNAs and coding genes with validated relations in human breast cancer. This review describes in a concise and unbiased fashion the core of our current knowledge on the role of lncRNAs, miRNAs and other non-coding RNAs in breast cancer. Conclusions A number of coding/non-coding gene interactions have been investigated in breast cancer during recent years and their full extent is still being established. Here, we have unveiled some of the most important networks embracing those interactions, and described their involvement in cancer development and in its malignant progression.
Collapse
Affiliation(s)
- Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Area of Neuroscience, International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy. .,LTTA, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
77
|
Liu P, Tang H, Wu J, Qiu X, Kong Y, Zhang L, Xie X, Xiao X. Linc01638 Promotes Tumorigenesis in HER2+ Breast Cancer. Curr Cancer Drug Targets 2020; 19:74-80. [PMID: 29992881 PMCID: PMC6327113 DOI: 10.2174/1568009618666180709163718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 11/22/2022]
Abstract
Background Long non‐coding RNAs play crucial roles in various biological activities and diseases. The role of long intergenic non‐coding RNA01638 (linc01638) in breast cancer, espe-cially in HER2-positive breast cancer, remains largely unknown. Objective To investigate the effect of linc01638 on tumorigenesis in HER2-positive breast cancer. Methods We first used qRT-PCR to detect linc01638 expression in HER2-positive breast cancer cells and tissues. Then we analyzed the effects of linc01638 expression in HER2-positive breast cancer cells through cell apoptosis assay, cell proliferation assay, colony formation assay, and cell invasion assay. We conducted mouse xenograft model to further confirm the role of linc01638 in HER2-positive breast cancer. Moreover, we used Western blot and IHC analysis to access the effect of linc01638 on DNMTs, BRCA1 and PTEN expressions in transplanted tumors. Results Linc01638 was found to be remarkably overexpressed in HER2-positive breast cancer cells and tissues. Suppression of linc01638 enhanced cell apoptosis, as well as inhibited the growth and in-vasiveness of HER2-positive breast cancer cells in vitro and tumor progression and metastasis in vivo. Furthermore, inhibition of linc01638 by shRNA attenuated expression of DNMT1, DNMT3a, and DNMT3b, and promoted expression of BRCA1 and PTEN in HER2-positive breast cancer cells and mouse xenograft models. Conclusion Linc01638 might be a promising biomarker and therapeutic target for treatment of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Peng Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jiali Wu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xingsheng Qiu
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanan Kong
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Lijuan Zhang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiangsheng Xiao
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
78
|
Jin Y, Qin X. Comprehensive analysis of transcriptome data for identifying biomarkers and therapeutic targets in head and neck squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:282. [PMID: 32355726 PMCID: PMC7186651 DOI: 10.21037/atm.2020.03.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancy worldwide. Accumulating evidences have highlighted the importance of transcriptome data during HNSCC tumorigenesis. The aim of this study was to identify significant genes as effective biomarkers for HNSCC and constructed miRNA-mRNA regulatory network for a more comprehensive understanding of the underlying molecular mechanisms. Methods A total of four independent microarrays conducted on HNSCC samples were downloaded from the Gene Expression Omnibus (GEO) and analyzed through R software. FunRich was applied to predict potential transcription factors and targeted genes of miRNAs. Protein-protein interaction (PPI) network and miRNA-mRNA regulatory network were constructed in Cytoscape. Additionally, the database for annotation, visualization, and integrated discovery (DAVID) was utilized to perform GO and KEGG pathway enrichment analyses. Validation of gene expression levels was conducted by online databases and qPCR experiments. Results A total of 35 and 193 differentially expressed miRNAs (DEMs) and mRNAs (DEGs) were screened out by the limma package in R. The interactive network of the overlapping DEGs presented three significant modules and ten hub genes (FN1, MMP3, SPP1, STAT1, LOX, CXCL5, CXCL11, ISG15, IFIT3, and RSAD2). Predicted target genes of DEMs were visualized in Cytoscape and six miRNA-mRNA regulatory pairs were identified. Further validation demonstrated the upregulation of SLC16A1 and COL4A1 in HNSCC. Conclusions We performed an integrated and comprehensive bioinformatics analysis of miRNAs and mRNAs in HNSCC, contributing to explore the underlying regulatory mechanisms and to identify genetic biomarkers and therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Yu Jin
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200000, China
| | - Xing Qin
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200000, China.,Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
79
|
Vasquez YM, Nandu TS, Kelleher AM, Ramos EI, Gadad SS, Kraus WL. Genome-wide analysis and functional prediction of the estrogen-regulated transcriptional response in the mouse uterus†. Biol Reprod 2020; 102:327-338. [PMID: 31511857 PMCID: PMC7016285 DOI: 10.1093/biolre/ioz183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
The ovarian hormones estrogen and progesterone orchestrate the transcriptional programs required to direct functions of the uterus for initiation and maintenance of pregnancy. Estrogen, acting via estrogen receptor alpha, regulates gene expression by activating and repressing distinct genes involved in signaling pathways that regulate cellular and physiological responses including cell division, water influx, and immune cell recruitment. Historically, these transcriptional responses have been postulated to reflect a biphasic physiological response. In this study, we explored the transcriptional responses of the ovariectomized mouse uterus to 17β-estradiol (E2) by RNA-seq to obtain global expression profiles of protein-coding transcripts (mRNAs) and long noncoding RNAs (lncRNAs) following 0.5, 1, 2, and 6 hours of treatment. The E2-regulated mRNA and lncRNA expression profiles in the mouse uterus indicate an association between lncRNAs and mRNAs that regulate E2-driven pathways and reproductive phenotypes in the mouse. The transient E2-regulated transcriptome is reflected in the time-dependent shifting of biological processes regulated in the uterus in response to E2. Moreover, high expression of some conserved lncRNAs that are E2 regulated in the mouse uterus are predictive of low overall survival in endometrial carcinoma patients (e.g., H19, KCNQ1OT1, MIR17HG, and FTX). Collectively, this study (1) describes a genomic approach for identifying E2-regulated lncRNAs that may serve critical function in the uterus and (2) provides new insights into our understanding of the regulation of hormone-regulated transcriptional responses with implications in pregnancy and endometrial pathologies.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Databases, Genetic
- Estradiol/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Gene Ontology
- Genital Neoplasms, Female/genetics
- Genital Neoplasms, Female/metabolism
- Genital Neoplasms, Female/mortality
- Humans
- Mice
- Ovariectomy
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Survival Rate
- Transcriptome/drug effects
- Uterus/drug effects
- Uterus/metabolism
Collapse
Affiliation(s)
- Yasmin M Vasquez
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tulip S Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew M Kelleher
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Enrique I Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Shrikanth S Gadad
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
80
|
Liu P, Li X, Cui Y, Chen J, Li C, Li Q, Li H, Zhang X, Zu X. LncRNA-MALAT1 mediates cisplatin resistance via miR-101-3p/VEGF-C pathway in bladder cancer. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1148-1157. [PMID: 31650173 DOI: 10.1093/abbs/gmz112] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Cisplatin (CDDP)-based chemotherapy is a standard strategy for the clinical treatment of patients with bladder cancer (BC). However, the anti-tumor efficacy of cisplatin is affected by multiple chemoresistance with complex molecular mechanisms. Recent evidence highlights the crucial regulatory roles of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the progression of cancers and development of drug resistance. However, the roles and underlying molecular mechanisms of MALAT1 in cisplatin resistance of the BC cells remain largely unclear. In this study, we firstly demonstrated that MALAT1 expression was up-regulated in the BC tissues compared to the normal adjacent tissues and elevated in the cancer cells compared to the epithelial immortalized cells. Secondly, we found that suppression of MALAT1 enhanced the chemotherapeutic drug sensitivity and inhibited the cisplatin resistance of the BC cells. Thirdly, we showed that MALAT1 affected the cisplatin resistance of the BC cells via regulating the miR-101-3p/VEGF-C pathway. In summary, this study demonstrates that MALAT1, miR-101-3p and VEGF-C form a regulatory axis to affect the chemo-resistance of BC cells to CDDP, and provides novel potential targets for treatment of BC.
Collapse
Affiliation(s)
- Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaozhou Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiaqia Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiangyang Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
81
|
ESR1-Stabilizing Long Noncoding RNA TMPO-AS1 Promotes Hormone-Refractory Breast Cancer Progression. Mol Cell Biol 2019; 39:MCB.00261-19. [PMID: 31501276 DOI: 10.1128/mcb.00261-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Acquired endocrine therapy resistance is a significant clinical problem for breast cancer patients. In recent years, increasing attention has been paid to long noncoding RNA (lncRNA) as a critical modulator for cancer progression. Based on RNA-sequencing data of breast invasive carcinomas in The Cancer Genome Atlas database, we identified thymopoietin antisense transcript 1 (TMPO-AS1) as a functional lncRNA that significantly correlates with proliferative biomarkers. TMPO-AS1 positivity analyzed by in situ hybridization significantly correlates with poor prognosis of breast cancer patients. TMPO-AS1 expression was upregulated in endocrine therapy-resistant MCF-7 cells compared with levels in parental cells and was estrogen inducible. Gain and loss of TMPO-AS1 experiments showed that TMPO-AS1 promotes the proliferation and viability of estrogen receptor (ER)-positive breast cancer cells in vitro and in vivo Global expression analysis using a microarray demonstrated that TMPO-AS1 is closely associated with the estrogen signaling pathway. TMPO-AS1 could positively regulate estrogen receptor 1 (ESR1) mRNA expression by stabilizing ESR1 mRNA through interaction with ESR1 mRNA. Enhanced expression of ESR1 mRNA by TMPO-AS1 could play a critical role in the proliferation of ER-positive breast cancer. Our findings provide a new insight into the understanding of molecular mechanisms underlying hormone-dependent breast cancer progression and endocrine resistance.
Collapse
|
82
|
Wang Y, Huang T, Sun X, Wang Y. Identification of a potential prognostic lncRNA-miRNA-mRNA signature in endometrial cancer based on the competing endogenous RNA network. J Cell Biochem 2019; 120:18845-18853. [PMID: 31338870 PMCID: PMC6771803 DOI: 10.1002/jcb.29200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
Endometrial cancer is one of the most common gynecological malignant tumors. The roles of competing endogenous RNAs (ceRNAs) in this disease, however, remain unclear. In this study, we constructed a ceRNA network to reveal the core ceRNAs in endometrial cancer. Differentially expressed genes were summarized from The Cancer Genome Atlas database, whereupon 140 genes were identified for building the network. Further correlation, survival, and enrichment analyses suggested that these genes may help towards elucidating the molecular mechanisms of endometrial cancer. After validation of the findings with the GSE17025 data set, LINC00958, microRNA-761, and DOLPP1 were highlighted as the critical genes in the ceRNA network. Our work suggests that LINC00958 may regulate DOLPP1 by "sponging" miR-761 in endometrial cancer.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ting Huang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiao Sun
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yudong Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
83
|
Wu J, Peng X, Qiao M, Zhao H, Li M, Liu G, Mei S. Genome-wide analysis of long noncoding RNA and mRNA profiles in PRRSV-infected porcine alveolar macrophages. Genomics 2019; 112:1879-1888. [PMID: 31682919 DOI: 10.1016/j.ygeno.2019.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/07/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), which is caused by PRRS virus (PRRSV), is one of the most globally devastating swine diseases. It is essential to develop new strategy to control PRRS via an understanding of mechanisms that PRRSV utilizes to interfere with the host's innate immunity. In this study, we deeply sequenced and analyzed long noncoding RNA (lncRNA) and mRNA expression profiles of the porcine alveolar macrophages (PAMs) after PRRSV infection. 126 lncRNAs and 753 mRNAs were differentially expressed between PRRSV-infected and control PAMs. The co-expressed genes of down-regulated lncRNAs were significantly enriched within NF-kappa B and toll-like receptor signaling pathways. Co-expression network analysis indicated that part of the dysregulated lncRNAs associated with the interferon-induced genes. These dysregulated lncRNAs may play an important role in the host's innate immune responses to PRRSV infection. However, further research is required to characterize the function of these lncRNAs.
Collapse
Affiliation(s)
- Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Haizhong Zhao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mingbo Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guisheng Liu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
84
|
Choudhari R, Sedano MJ, Harrison AL, Subramani R, Lin KY, Ramos EI, Lakshmanaswamy R, Gadad SS. Long noncoding RNAs in cancer: From discovery to therapeutic targets. Adv Clin Chem 2019; 95:105-147. [PMID: 32122521 DOI: 10.1016/bs.acc.2019.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have recently gained considerable attention as key players in biological regulation; however, the mechanisms by which lncRNAs govern various disease processes remain mysterious and are just beginning to be understood. The ease of next-generation sequencing technologies has led to an explosion of genomic information, especially for the lncRNA class of noncoding RNAs. LncRNAs exhibit the characteristics of mRNAs, such as polyadenylation, 5' methyl capping, RNA polymerase II-dependent transcription, and splicing. These transcripts comprise more than 200 nucleotides (nt) and are not translated into proteins. Directed interrogation of annotated lncRNAs from RNA-Seq datasets has revealed dramatic differences in their expression, largely driven by alterations in transcription, the cell cycle, and RNA metabolism. The fact that lncRNAs are expressed cell- and tissue-specifically makes them excellent biomarkers for ongoing biological events. Notably, lncRNAs are differentially expressed in several cancers and show a distinct association with clinical outcomes. Novel methods and strategies are being developed to study lncRNA function and will provide researchers with the tools and opportunities to develop lncRNA-based therapeutics for cancer.
Collapse
Affiliation(s)
- Ramesh Choudhari
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Melina J Sedano
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Alana L Harrison
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ramadevi Subramani
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ken Y Lin
- The Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Enrique I Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
85
|
Niu X, Xu Y, Gao N, Li A. Weighted Gene Coexpression Network Analysis Reveals the Critical lncRNAs and mRNAs in Development of Hirschsprung's Disease. J Comput Biol 2019; 27:1115-1129. [PMID: 31647312 DOI: 10.1089/cmb.2019.0261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hirschsprung's disease (HSCR) is a common newborn defect. This study aimed to identify critical genes involved in the development of HSCR. Differently expressed genes (DEGs) of public data set GSE98502 were analyzed using paired t-test. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.8. Besides, Coexpression network of long noncoding RNAs (lncRNAs)-mRNAs (message RNA) were constructed using weighted gene coexpression network analysis. The key modules were filtered out by calculating the module-trait correlations. Then, hub genes were screened and the expression of these genes was further validated in an independent data set GSE96854. We identified 864 DEGs enriched in 19 GO biological functions such as negative regulation of growth and regulation of heart contraction; 11 KEGG pathways such as mineral absorption and protein digestion and absorption. lncRNAs-mRNAs coexpressed network was constructed, including 8 modules and 177 genes. Hub lncRNAs, including LINC00619, LINC00924, LINC00261, and DRAIC, were identified. Hub mRNAs, including CYCS, CCND1, BDKRB, ITGA6, and TNNC1, were mainly enriched in cancer pathways, p53 signaling pathway, and calcium signaling pathway. The expressions of the hub mRNAs were successfully validated by another independent GSE96854 data set. Our findings indicated the hub lncRNAs, including LINC00619, LINC00924, LINC00261, and DRAIC, as well as hub mRNAs, including CYCS, CCND1, BDKRB, ITGA6, and TNNC1, might involve in the progression of HSCR, and these genes might provide new clinical biomarkers for risk evaluation of HSCR.
Collapse
Affiliation(s)
- Xiaoguang Niu
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, China.,Department of Pediatric Surgery, Taian City Central Hospital, Taian, China
| | - Yongtao Xu
- Department of Pediatric Surgery, Taian City Central Hospital, Taian, China
| | - Ni Gao
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
86
|
Gene and lncRNA co-expression network analysis reveals novel ceRNA network for triple-negative breast cancer. Sci Rep 2019; 9:15122. [PMID: 31641220 PMCID: PMC6805880 DOI: 10.1038/s41598-019-51626-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy among women, and triple-negative breast cancer (TNBC) is a highly aggressive subtype. Increasing evidence has shown that lncRNAs are involved in tumor growth, cell-cycle, and apoptosis through interactions with miRNAs or mRNAs. However, there is still limited data on ceRNAs involved in the molecular mechanisms underlying TNBC. In this study, we applied the weighted gene co-expression network analysis to the existing microarray mRNA and lncRNA expression data obtained from the breast tissues of TNBC patients to find the hub genes and lncRNAs involved in TNBC. Functional enrichment was performed on the module that correlated with Ki-67 status the most (Turquoise module). The hub genes in the Turquoise module were found to be associated with DNA repair, cell proliferation, and the p53 signaling pathway. We performed co-expression analysis of the protein-coding and lncRNA hub genes in the Turquoise module. Analysis of the RNA-seq data obtained from The Cancer Genome Atlas database revealed that the protein-coding genes and lncRNAs that were co-expressed were also differentially expressed in the TNBC tissues compared with the normal mammary tissues. On the basis of establishing the ceRNA network, two mRNAs (RAD51AP1 and TYMS) were found to be correlated with overall survival in TNBC. These results suggest that TNBC-specific mRNA and lncRNAs may participate in a complex ceRNA network, which represents a potential therapeutic target for the treatment of TNBC.
Collapse
|
87
|
Begolli R, Sideris N, Giakountis A. LncRNAs as Chromatin Regulators in Cancer: From Molecular Function to Clinical Potential. Cancers (Basel) 2019; 11:E1524. [PMID: 31658672 PMCID: PMC6826483 DOI: 10.3390/cancers11101524] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022] Open
Abstract
During the last decade, high-throughput sequencing efforts in the fields of transcriptomics and epigenomics have shed light on the noncoding part of the transcriptome and its potential role in human disease. Regulatory noncoding RNAs are broadly divided into short and long noncoding transcripts. The latter, also known as lncRNAs, are defined as transcripts longer than 200 nucleotides with low or no protein-coding potential. LncRNAs form a diverse group of transcripts that regulate vital cellular functions through interactions with proteins, chromatin, and even RNA itself. Notably, an important regulatory aspect of these RNA species is their association with the epigenetic machinery and the recruitment of its regulatory apparatus to specific loci, resulting in DNA methylation and/or post-translational modifications of histones. Such epigenetic modifications play a pivotal role in maintaining the active or inactive transcriptional state of chromatin and are crucial regulators of normal cellular development and tissue-specific gene expression. Evidently, aberrant expression of lncRNAs that interact with epigenetic modifiers can cause severe epigenetic disruption and is thus is closely associated with altered gene function, cellular dysregulation, and malignant transformation. Here, we survey the latest breakthroughs concerning the role of lncRNAs interacting with the epigenetic machinery in various forms of cancer.
Collapse
Affiliation(s)
- Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| | - Nikos Sideris
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece.
- B.S.R.C "Alexander Fleming", 34 Fleming str, 16672 Vari, Greece.
| |
Collapse
|
88
|
Ling Y, Zheng Q, Sui M, Zhu L, Xu L, Zhang Y, Liu Y, Fang F, Chu M, Ma Y, Zhang X. Comprehensive Analysis of LncRNA Reveals the Temporal-Specific Module of Goat Skeletal Muscle Development. Int J Mol Sci 2019; 20:ijms20163950. [PMID: 31416143 PMCID: PMC6719106 DOI: 10.3390/ijms20163950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
A series of complex processes regulate muscle development, and lncRNAs play essential roles in the regulation of skeletal myogenesis. Using RNA sequencing, we profiled the lncRNA expression during goat (Capra hircus) skeletal muscle development, which included seven stages across fetal 45 (F45), 65 (F65), 90 (F90), 120 (F120), 135 (F135) days, born for 24 h (B1) and 90 (B90) days. A total of 15,079 lncRNAs were identified in the seven stages, and they were less conservative with other species (human, cow, and mouse). Among them, 547 were differentially expressed, and they divided the seven stages into three functional transition periods. Following weighted gene co-expression network analysis (WGCNA), five lncRNA modules specific for developmental stages were defined as three types: 'Early modules', 'late modules', and 'individual-stage-specific modules'. The enrichment content showed that 'early modules' were related to muscle structure formation, 'late modules' participated in the 'p53 signaling pathway' and other pathways, the F90-highly related module was involved in the 'MAPK signaling pathway', and other pathways. Furthermore, we identified hub-lncRNA in three types of modules, and LNC_011371, LNC_ 007561, and LNC_001728 may play important roles in goat skeletal muscle. These data will facilitate further exploration of skeletal muscle lncRNA functions at different developmental stages in goats.
Collapse
Affiliation(s)
- Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Menghua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Lu Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Lina Xu
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230036, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Ya Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Mingxing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuehui Ma
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaorong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| |
Collapse
|
89
|
Activation of PARP-1 by snoRNAs Controls Ribosome Biogenesis and Cell Growth via the RNA Helicase DDX21. Mol Cell 2019; 75:1270-1285.e14. [PMID: 31351877 DOI: 10.1016/j.molcel.2019.06.020] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 04/16/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
PARP inhibitors (PARPi) prevent cancer cell growth by inducing synthetic lethality with DNA repair defects (e.g., in BRCA1/2 mutant cells). We have identified an alternative pathway for PARPi-mediated growth control in BRCA1/2-intact breast cancer cells involving rDNA transcription and ribosome biogenesis. PARP-1 binds to snoRNAs, which stimulate PARP-1 catalytic activity in the nucleolus independent of DNA damage. Activated PARP-1 ADP-ribosylates DDX21, an RNA helicase that localizes to nucleoli and promotes rDNA transcription when ADP-ribosylated. Treatment with PARPi or mutation of the ADP-ribosylation sites reduces DDX21 nucleolar localization, rDNA transcription, ribosome biogenesis, protein translation, and cell growth. The salient features of this pathway are evident in xenografts in mice and human breast cancer patient samples. Elevated levels of PARP-1 and nucleolar DDX21 are associated with cancer-related outcomes. Our studies provide a mechanistic rationale for efficacy of PARPi in cancer cells lacking defects in DNA repair whose growth is inhibited by PARPi.
Collapse
|
90
|
Sun L, Zhou R, Dong J, Liu S, Jiao Y, Wang L, Hu S, He P, Liu X, Zhao X, Jiang G, Zhao Y. Lnc-NA inhibits proliferation and metastasis in endometrioid endometrial carcinoma through regulation of NR4A1. J Cell Mol Med 2019; 23:4699-4710. [PMID: 31050196 PMCID: PMC6584524 DOI: 10.1111/jcmm.14345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 02/09/2019] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
Endometrioid endometrial carcinoma (EEC) is the most common gynaecologic malignancy worldwide. Long non-coding RNAs have previously been demonstrated to play important roles in regulating human diseases, particularly cancer. However, the biological functions and molecular mechanisms of long non-coding RNAs in EEC have not been extensively studied. Here, we describe the discovery of Lnc-NA from the promoter of the transcription factor nuclear receptor subfamily 4 group A member 1 (NR4A1) gene. The role and function of Lnc-NA in EEC remain unknown. In this study, we used quantitative real-time polymerase chain reactions to confirm that Lnc-NA expression was down-regulated in 30 EEC cases (90%) and in EEC cell lines compared with that in the paired adjacent tissues and normal endometrial cells. In vitro experiments further demonstrated that overexpressing Lnc-NA decreased EEC cell proliferation, migration and invasion and promoted apoptosis via inactivation of the apoptosis signalling pathway. Moreover, the results show that Lnc-NA expression was positively correlated with NR4A1. Furthermore, Lnc-NA regulated NR4A1 expression and activated the apoptosis signalling pathway to inhibit tumour progression. In summary, our results demonstrate that the Lnc-NA-NR4A1 axis could be a useful tumour suppressor and a promising therapeutic target for EEC.
Collapse
Affiliation(s)
- Linying Sun
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
- Institute of Public HealthTaishan Medical UniversityTaianChina
| | - Rongfang Zhou
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Jing Dong
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Shuang Liu
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Yulian Jiao
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Laicheng Wang
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Shengnan Hu
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Pengjuan He
- Department of Gynaecology and ObstetricsShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Xiaowen Liu
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Xingbo Zhao
- Department of Gynaecology and ObstetricsShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Guosheng Jiang
- Department of ImmunologyBinzhou Medical UniversityYantaiChina
| | - Yueran Zhao
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| |
Collapse
|
91
|
Rabajante JF, Del Rosario RCH. Modeling Long ncRNA-Mediated Regulation in the Mammalian Cell Cycle. Methods Mol Biol 2019; 1912:427-445. [PMID: 30635904 DOI: 10.1007/978-1-4939-8982-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that are not translated into proteins. They have recently gained widespread attention due to the finding that tens of thousands of lncRNAs reside in the human genome, and due to an increasing number of lncRNAs that are found to be associated with disease. Some lncRNAs, including disease-associated ones, play different roles in regulating the cell cycle. Mathematical models of the cell cycle have been useful in better understanding this biological system, such as how it could be robust to some perturbations and how the cell cycle checkpoints could act as a switch. Here, we discuss mathematical modeling techniques for studying lncRNA regulation of the mammalian cell cycle. We present examples on how modeling via network analysis and differential equations can provide novel predictions toward understanding cell cycle regulation in response to perturbations such as DNA damage.
Collapse
Affiliation(s)
- Jomar F Rabajante
- Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, Laguna, Philippines.
| | - Ricardo C H Del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
92
|
Kong Y, Lu Z, Liu P, Liu Y, Wang F, Liang EY, Hou FF, Liang M. Long Noncoding RNA: Genomics and Relevance to Physiology. Compr Physiol 2019; 9:933-946. [PMID: 31187897 DOI: 10.1002/cphy.c180032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian cell expresses thousands of long noncoding RNAs (lncRNAs) that are longer than 200 nucleotides but do not encode any protein. lncRNAs can change the expression of protein-coding genes through both cis and trans mechanisms, including imprinting and other types of transcriptional regulation, and posttranscriptional regulation including serving as molecular sponges. Deep sequencing, coupled with analysis of sequence characteristics, is the primary method used to identify lncRNAs. Physiological roles of specific lncRNAs can be examined using genetic targeting or knockdown with modified oligonucleotides. Identification of nucleic acids or proteins with which an lncRNA interacts is essential for understanding the molecular mechanism underlying its physiological role. lncRNAs have been reported to contribute to the regulation of physiological functions and disease development in several organ systems, including the cardiovascular, renal, muscular, endocrine, digestive, nervous, respiratory, and reproductive systems. The physiological role of the majority of lncRNAs, many of which are species and tissue specific, remains to be determined. © 2019 American Physiological Society. Compr Physiol 9:933-946, 2019.
Collapse
Affiliation(s)
- Yiwei Kong
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zeyuan Lu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Sir Run Run Shaw Hospital, Institute of Translational Medicine, Zhejiang University, Zhejiang, China
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Feng Wang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Eugene Y Liang
- Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Fan Fan Hou
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou Regenerative Medicine and Health - Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
93
|
Wang J, Zhang X, Chen W, Hu X, Li J, Liu C. Regulatory roles of long noncoding RNAs implicated in cancer hallmarks. Int J Cancer 2019; 146:906-916. [PMID: 30873588 DOI: 10.1002/ijc.32277] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/18/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
Cancer cells acquire numerous biological properties (designated "cancer hallmarks"), such as cell survival and energy metabolism, that facilitate tumor growth and metastatic dissemination during development. To date, eight hallmarks of cancer have been identified that provide a logical framework for understanding the remarkable diversity of neoplastic diseases, as proposed by Douglas Hanahan and Robert A. Weinberg. Long noncoding RNAs (lncRNAs), a category of transcripts widely demonstrated to exert significant regulatory effects on biological processes, have attracted considerable research attention due to their association with the occurrence and development of cancer. The mechanisms by which lncRNAs exert their functions require elucidation to optimize their potential utility as alternative biomarkers and therapeutic targets during tumor occurrence and progression. In this review, we have discussed recent research progress on lncRNAs involved in various cancer hallmarks and their related mechanisms of action, with a view to providing an updated picture of their immense therapeutic potential in the fight against cancer.
Collapse
Affiliation(s)
- Jun Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
94
|
Lei T, Zhu X, Zhu K, Jia F, Li S. EGR1-induced upregulation of lncRNA FOXD2-AS1 promotes the progression of hepatocellular carcinoma via epigenetically silencing DKK1 and activating Wnt/β-catenin signaling pathway. Cancer Biol Ther 2019; 20:1007-1016. [PMID: 30929558 DOI: 10.1080/15384047.2019.1595276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are regarded as a group of biomarkers in the initiation and development of various cancers, including hepatocellular carcinoma (HCC). LncRNA FOXD2-AS1 has been studied in human colorectal cancer and glioma as an oncogene. However, the function and mechanism of lncRNA FOXD2-AS1 in hepatocellular carcinoma are marked. In this study, we found that high expression of FOXD2-AS1 predicted poor prognosis of HCC patients in the TCGA database. The dysregulation of FOXD2-AS1 was determined in HCC tissues and cell lines by qRT-PCR. Functionally, silenced FOXD2-AS1 efficiently suppressed HCC progression by regulating cell proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). Mechanistically, FOXD2-AS1 was found to be activated by the transcription factor EGR1. Furthermore, FOXD2-AS1 could activate the Wnt/β-catenin signaling pathway. The mechanism contributed to the interaction between FOXD2-AS1 and Wnt/β-catenin signaling pathway was analyzed. It was uncovered that FOXD2-AS1 enhanced the activity of Wnt/β-catenin signaling pathway by epigenetically silencing the inhibitor of Wnt/β-catenin signaling pathway (DKK1). Rescue assays demonstrated that DKK1 and Wnt/β-catenin signaling pathway involved in FOXD2-AS1-mediated HCC progression. In conclusion, our study demonstrated that EGR1-induced upregulation of lncRNA FOXD2-AS1 promotes the progression of hepatocellular carcinoma via epigenetically silencing DKK1 and activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ting Lei
- a Department of hepatobiliary and pancreatic surgery , Luoyang Central Hospital, affiliated with Zhengzhou University , Luoyang city , Henan Province China
| | - Xiaodong Zhu
- b Department of liver surgery and Transplantation , Liver Cancer Institute, Zhongshan Hospital, Fudan University , Shanghai China
| | - Kai Zhu
- b Department of liver surgery and Transplantation , Liver Cancer Institute, Zhongshan Hospital, Fudan University , Shanghai China
| | - Fuxin Jia
- a Department of hepatobiliary and pancreatic surgery , Luoyang Central Hospital, affiliated with Zhengzhou University , Luoyang city , Henan Province China
| | - Siqiao Li
- a Department of hepatobiliary and pancreatic surgery , Luoyang Central Hospital, affiliated with Zhengzhou University , Luoyang city , Henan Province China
| |
Collapse
|
95
|
Tiessen I, Abildgaard MH, Lubas M, Gylling HM, Steinhauer C, Pietras EJ, Diederichs S, Frankel LB, Lund AH. A high-throughput screen identifies the long non-coding RNA DRAIC as a regulator of autophagy. Oncogene 2019; 38:5127-5141. [DOI: 10.1038/s41388-019-0783-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/15/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022]
|
96
|
Perreault AA, Sprunger DM, Venters BJ. Epigenetic and transcriptional profiling of triple negative breast cancer. Sci Data 2019; 6:190033. [PMID: 30835260 PMCID: PMC6400101 DOI: 10.1038/sdata.2019.33] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
The human HCC1806 cell line is frequently used as a preclinical model for triple negative breast cancer (TNBC). Given that dysregulated epigenetic mechanisms are involved in cancer pathogenesis, emerging therapeutic strategies target chromatin regulators, such as histone deacetylases. A comprehensive understanding of the epigenome and transcription profiling in HCC1806 provides the framework for evaluating efficacy and molecular mechanisms of epigenetic therapies. Thus, to study the interplay of transcription and chromatin in the HCC1806 preclinical model, we performed nascent transcription profiling using Precision Run-On coupled to sequencing (PRO-seq). Additionally, we mapped the genome-wide locations for RNA polymerase II (Pol II), the histone variant H2A.Z, seven histone modifications, and CTCF using ChIP-exo. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq with near base pair precision mapping of protein-DNA interactions. In this Data Descriptor, we present detailed information on experimental design, data generation, quality control analysis, and data validation. We discuss how these data lay the foundation for future analysis to understand the relationship between the nascent transcription and chromatin.
Collapse
Affiliation(s)
- Andrea A. Perreault
- Chemical and Physical Biology Program at Vanderbilt University, Nashville, TN, USA
| | - Danielle M. Sprunger
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Bryan J. Venters
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
97
|
Saleembhasha A, Mishra S. Long non-coding RNAs as pan-cancer master gene regulators of associated protein-coding genes: a systems biology approach. PeerJ 2019; 7:e6388. [PMID: 30809433 PMCID: PMC6387586 DOI: 10.7717/peerj.6388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/04/2019] [Indexed: 12/18/2022] Open
Abstract
Despite years of research, we are still unraveling crucial stages of gene expression regulation in cancer. On the basis of major biological hallmarks, we hypothesized that there must be a uniform gene expression pattern and regulation across cancer types. Among non-coding genes, long non-coding RNAs (lncRNAs) are emerging as key gene regulators playing powerful roles in cancer. Using TCGA RNAseq data, we analyzed coding (mRNA) and non-coding (lncRNA) gene expression across 15 and 9 common cancer types, respectively. 70 significantly differentially expressed genes common to all 15 cancer types were enlisted. Correlating with protein expression levels from Human Protein Atlas, we observed 34 positively correlated gene sets which are enriched in gene expression, transcription from RNA Pol-II, regulation of transcription and mitotic cell cycle biological processes. Further, 24 lncRNAs were among common significantly differentially expressed non-coding genes. Using guilt-by-association method, we predicted lncRNAs to be involved in same biological processes. Combining RNA-RNA interaction prediction and transcription regulatory networks, we identified E2F1, FOXM1 and PVT1 regulatory path as recurring pan-cancer regulatory entity. PVT1 is predicted to interact with SYNE1 at 3′-UTR; DNAJC9, RNPS1 at 5′-UTR and ATXN2L, ALAD, FOXM1 and IRAK1 at CDS sites. The key findings are that through E2F1, FOXM1 and PVT1 regulatory axis and possible interactions with different coding genes, PVT1 may be playing a prominent role in pan-cancer development and progression.
Collapse
Affiliation(s)
- Asanigari Saleembhasha
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Seema Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
98
|
Xie H, Wang H, Li X, Ji H, Xu Y. ZEA exerts toxic effects on reproduction and development by mediating Dio3os in mouse endometrial stromal cells. J Biochem Mol Toxicol 2019; 33:e22310. [PMID: 30790392 DOI: 10.1002/jbt.22310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/09/2019] [Accepted: 01/29/2019] [Indexed: 11/07/2022]
Abstract
Zearalenone (ZEA) and imprinted long noncoding RNAs (lncRNAs) are both closely related to reproduction and development. However, whether they have connections in regulating reproduction and development is not clear yet. The aim of this research is to investigate their relationship. lncRNA microarray was performed to analyze differentially expressed genes, and real-time quantitative polymerase chain reaction (PCR) was used to verify the accuracy of microarray analysis. Meanwhile, the technologies of rapid amplification of cDNA ends, RNA fluorescence in situ hybridization and bioinformatics were adopted to characterize the selected lncRNA. Analysis of lncRNA microarray showed lncRNAs and messenger RNAs related to reproduction and development were significantly differently expressed, and Dio3os was probably the target lncRNA. Then, the experiment of real-time quantitative PCR verified the accuracy of microarray data. Characterization of Dio3os showed Dio3os, an antisense lncRNA with 2312 bp and 15 open reading frames, was enriched in the cytoplasm. Our findings suggest ZEA probably exerts toxic effects on reproduction and development by mediating Dio3os.
Collapse
Affiliation(s)
- Haiqiang Xie
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huan Wang
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaodan Li
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haijing Ji
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yinxue Xu
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
99
|
Gupta P, Peter S, Jung M, Lewin A, Hemmrich-Stanisak G, Franke A, von Kleist M, Schütte C, Einspanier R, Sharbati S, Bruegge JZ. Analysis of long non-coding RNA and mRNA expression in bovine macrophages brings up novel aspects of Mycobacterium avium subspecies paratuberculosis infections. Sci Rep 2019; 9:1571. [PMID: 30733564 PMCID: PMC6367368 DOI: 10.1038/s41598-018-38141-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Paratuberculosis is a major disease in cattle that severely affects animal welfare and causes huge economic losses worldwide. Development of alternative diagnostic methods is of urgent need to control the disease. Recent studies suggest that long non-coding RNAs (lncRNAs) play a crucial role in regulating immune function and may confer valuable information about the disease. However, their role has not yet been investigated in cattle with respect to infection towards Paratuberculosis. Therefore, we investigated the alteration in genomic expression profiles of mRNA and lncRNA in bovine macrophages in response to Paratuberculosis infection using RNA-Seq. We identified 397 potentially novel lncRNA candidates in macrophages of which 38 were differentially regulated by the infection. A total of 820 coding genes were also significantly altered by the infection. Co-expression analysis of lncRNAs and their neighbouring coding genes suggest regulatory functions of lncRNAs in pathways related to immune response. For example, this included protein coding genes such as TNIP3, TNFAIP3 and NF-κB2 that play a role in NF-κB2 signalling, a pathway associated with immune response. This study advances our understanding of lncRNA roles during Paratuberculosis infection.
Collapse
Affiliation(s)
- Pooja Gupta
- Department of Mathematics and Informatics, Freie Universität Berlin, Berlin, Germany. .,Department of Mathematics for Life and Materials Sciences, Zuse Institute Berlin, Berlin, Germany.
| | - Sarah Peter
- Institute for the Reproduction of Farm Animals Schönow Inc, Bernau, Germany
| | - Markus Jung
- Institute for the Reproduction of Farm Animals Schönow Inc, Bernau, Germany
| | - Astrid Lewin
- Robert Koch-Institute, Department Infectious Diseases, Berlin, Germany
| | | | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Max von Kleist
- Department of Mathematics and Informatics, Freie Universität Berlin, Berlin, Germany
| | - Christof Schütte
- Department of Mathematics and Informatics, Freie Universität Berlin, Berlin, Germany.,Department of Mathematics for Life and Materials Sciences, Zuse Institute Berlin, Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jennifer Zur Bruegge
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
100
|
Zhou P, Liu P, Zhang J. Long noncoding RNA RUSC1‑AS‑N promotes cell proliferation and metastasis through Wnt/β‑catenin signaling in human breast cancer. Mol Med Rep 2018; 19:861-868. [PMID: 30569097 PMCID: PMC6323231 DOI: 10.3892/mmr.2018.9763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is one of the most frequently diagnosed cancers among females worldwide. Long noncoding RNAs (lncRNAs) have been revealed to serve significant roles in diagnosis and treatment of breast cancer. In the present study, the novel lncRNA RUSC1-AS-N was demonstrated to promote cell viability and metastasis. A total of 100 patients with breast cancer were recruited for this study and it was revealed that RUSC1-AS-N was upregulated in tumor tissues compared with in adjacent non-cancerous counterparts. In addition, using several breast cancer cell lines, it was demonstrated that the mRNA levels of RUSC1-AS-N were highest in the notably metastatic cell lines MDA-MB-231 and MDA-MB-468. Knockdown of RUSC1-AS-N in breast cancer cells inhibited cell proliferation in the colony formation and cell proliferation assays. Furthermore, depletion of RUSC1-AS-N suppressed cell metastasis, as revealed by wound-healing and western blot assays. In addition, the protein levels of Wnt1 and β-catenin were significantly decreased when RUSC1-AS-N was knocked down. However, Wnt signaling pathway activator Wnt agonist 1 reversed the effects of RUSC1-AS-N knockdown on cell proliferation and metastasis. The present study demonstrated that lncRNA RUSC1-AS-N promoted cell viability and metastasis via Wnt/β-catenin signaling in human breast cancer, which may indicate novel targets for the treatment of breast cancer in clinic.
Collapse
Affiliation(s)
- Peng Zhou
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Peng Liu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Jin Zhang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|