51
|
Loch R, Fowler K, Schmidt R, Ippolito J, Siegel C, Narra V. Prostate Magnetic Resonance Imaging: Challenges of Implementation. Curr Probl Diagn Radiol 2015; 44:26-37. [DOI: 10.1067/j.cpradiol.2014.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/13/2023]
|
52
|
Bogner W, Pinker K, Zaric O, Baltzer P, Minarikova L, Porter D, Bago-Horvath Z, Dubsky P, Helbich TH, Trattnig S, Gruber S. Bilateral Diffusion-weighted MR Imaging of Breast Tumors with Submillimeter Resolution Using Readout-segmented Echo-planar Imaging at 7 T. Radiology 2015; 274:74-84. [DOI: 10.1148/radiol.14132340] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
53
|
Hao W, Zhao B, Wang G, Wang C, Liu H. Influence of scan duration on the estimation of pharmacokinetic parameters for breast lesions: a study based on CAIPIRINHA-Dixon-TWIST-VIBE technique. Eur Radiol 2014; 25:1162-71. [DOI: 10.1007/s00330-014-3451-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/24/2014] [Accepted: 09/23/2014] [Indexed: 12/28/2022]
|
55
|
Springer CS, Li X, Tudorica LA, Oh KY, Roy N, Chui SYC, Naik AM, Holtorf ML, Afzal A, Rooney WD, Huang W. Intratumor mapping of intracellular water lifetime: metabolic images of breast cancer? NMR IN BIOMEDICINE 2014; 27:760-73. [PMID: 24798066 PMCID: PMC4174415 DOI: 10.1002/nbm.3111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 05/10/2023]
Abstract
Shutter-speed pharmacokinetic analysis of dynamic-contrast-enhanced (DCE)-MRI data allows evaluation of equilibrium inter-compartmental water interchange kinetics. The process measured here - transcytolemmal water exchange - is characterized by the mean intracellular water molecule lifetime (τi). The τi biomarker is a true intensive property not accessible by any formulation of the tracer pharmacokinetic paradigm, which inherently assumes it is effectively zero when applied to DCE-MRI. We present population-averaged in vivo human breast whole tumor τi changes induced by therapy, along with those of other pharmacokinetic parameters. In responding patients, the DCE parameters change significantly after only one neoadjuvant chemotherapy cycle: while K(trans) (measuring mostly contrast agent (CA) extravasation) and kep (CA intravasation rate constant) decrease, τi increases. However, high-resolution, (1 mm)(2), parametric maps exhibit significant intratumor heterogeneity, which is lost by averaging. A typical 400 ms τi value means a trans-membrane water cycling flux of 10(13) H2O molecules s(-1)/cell for a 12 µm diameter cell. Analyses of intratumor variations (and therapy-induced changes) of τi in combination with concomitant changes of ve (extracellular volume fraction) indicate that the former are dominated by alterations of the equilibrium cell membrane water permeability coefficient, PW, not of cell size. These can be interpreted in light of literature results showing that τi changes are dominated by a PW (active) component that reciprocally reflects the membrane driving P-type ATPase ion pump turnover. For mammalian cells, this is the Na(+), K(+)-ATPase pump. These results promise the potential to discriminate metabolic and microenvironmental states of regions within tumors in vivo, and their changes with therapy.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- *Correspondence to: C. S. Springer, Jr, Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA. E-mail:
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - Luminita A Tudorica
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Karen Y Oh
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Nicole Roy
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Stephen Y-C Chui
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Hematology/Oncology, Oregon Health and Science UniversityPortland, OR, USA
| | - Arpana M Naik
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Surgical Oncology, Oregon Health and Science UniversityPortland, OR, USA
| | - Megan L Holtorf
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Clinical Trials Office, Oregon Health and Science UniversityPortland, OR, USA
| | - Aneela Afzal
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
56
|
DeMartini WB, Rahbar H. Breast magnetic resonance imaging technique at 1.5 T and 3 T: requirements for quality imaging and American College of Radiology accreditation. Magn Reson Imaging Clin N Am 2014; 21:475-82. [PMID: 23928238 DOI: 10.1016/j.mric.2013.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although there are multiple variations in acquisition protocols for breast magnetic resonance (MR) imaging, there is agreement that components of high-quality technique include a bilateral acquisition obtained with a dedicated breast coil. Further, key pulse sequences should be included and spatial and temporal resolution should be sufficiently high to assess lesion morphology and kinetics. Artifacts must be recognized and avoided. The American College of Radiology Breast MRI Accreditation Program requirements provide minimum standards to guide facilities in technique. MR imaging at 3 T is increasingly available and offers signal-to-noise ratio advantages over 1.5 T but also some technical challenges.
Collapse
Affiliation(s)
- Wendy B DeMartini
- Department of Radiology, University of Washington School of Medicine and the Seattle Cancer Care Alliance, Seattle, WA 98109-1023, USA.
| | | |
Collapse
|
57
|
Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Transl Oncol 2014; 7:153-66. [PMID: 24772219 DOI: 10.1593/tlo.13838] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
Pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) time-course data allows estimation of quantitative parameters such as K (trans) (rate constant for plasma/interstitium contrast agent transfer), v e (extravascular extracellular volume fraction), and v p (plasma volume fraction). A plethora of factors in DCE-MRI data acquisition and analysis can affect accuracy and precision of these parameters and, consequently, the utility of quantitative DCE-MRI for assessing therapy response. In this multicenter data analysis challenge, DCE-MRI data acquired at one center from 10 patients with breast cancer before and after the first cycle of neoadjuvant chemotherapy were shared and processed with 12 software tools based on the Tofts model (TM), extended TM, and Shutter-Speed model. Inputs of tumor region of interest definition, pre-contrast T1, and arterial input function were controlled to focus on the variations in parameter value and response prediction capability caused by differences in models and associated algorithms. Considerable parameter variations were observed with the within-subject coefficient of variation (wCV) values for K (trans) and v p being as high as 0.59 and 0.82, respectively. Parameter agreement improved when only algorithms based on the same model were compared, e.g., the K (trans) intraclass correlation coefficient increased to as high as 0.84. Agreement in parameter percentage change was much better than that in absolute parameter value, e.g., the pairwise concordance correlation coefficient improved from 0.047 (for K (trans)) to 0.92 (for K (trans) percentage change) in comparing two TM algorithms. Nearly all algorithms provided good to excellent (univariate logistic regression c-statistic value ranging from 0.8 to 1.0) early prediction of therapy response using the metrics of mean tumor K (trans) and k ep (=K (trans)/v e, intravasation rate constant) after the first therapy cycle and the corresponding percentage changes. The results suggest that the interalgorithm parameter variations are largely systematic, which are not likely to significantly affect the utility of DCE-MRI for assessment of therapy response.
Collapse
|
58
|
Le Y, Kipfer H, Majidi S, Holz S, Dale B, Geppert C, Kroeker R, Lin C. Application of time-resolved angiography with stochastic trajectories (twist)-dixon in dynamic contrast-enhanced (dce) breast mri. J Magn Reson Imaging 2013; 38:1033-42. [DOI: 10.1002/jmri.24062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/10/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yuan Le
- Department of Radiology and Imaging Science; Indiana University School of Medicine; Indianapolis Indiana USA
| | - Hal Kipfer
- Department of Radiology and Imaging Science; Indiana University School of Medicine; Indianapolis Indiana USA
| | - Shadie Majidi
- Department of Radiology and Imaging Science; Indiana University School of Medicine; Indianapolis Indiana USA
| | - Stephanie Holz
- Department of Radiology and Imaging Science; Indiana University School of Medicine; Indianapolis Indiana USA
| | - Brian Dale
- Siemens Medical Solutions; USA, MR R&D, Morrisville North Carolina USA
| | | | | | - Chen Lin
- Department of Radiology and Imaging Science; Indiana University School of Medicine; Indianapolis Indiana USA
| |
Collapse
|
59
|
Ferguson PM, Feindel KW, Slocombe A, MacKay M, Wignall T, Delahunt B, Tilley RD, Hermans IF. Strongly magnetic iron nanoparticles improve the diagnosis of small tumours in the reticuloendothelial system by magnetic resonance imaging. PLoS One 2013; 8:e56572. [PMID: 23437173 PMCID: PMC3577855 DOI: 10.1371/journal.pone.0056572] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/14/2013] [Indexed: 12/03/2022] Open
Abstract
Despite advances in non-invasive medical imaging, accurate nodal staging of malignancy continues to rely on surgery. Superparamagnetic iron oxide nanoparticles (IONP) with lymphotropic qualities have shown some promise as contrast agents for MRI of the lymph nodes, but recent large-scale studies failed to show consistent detection of tumours below 5 mm. Herein we compare imaging of splenic and lymph node tissue using iron/iron oxide core/shell nanoparticles (Fe NP) that have superior magnetic qualities to IONP, to determine whether improved negative contrast in T2-weighted MRI can enhance the diagnosis of small tumours in the reticuloendothelial system. To provide an in vivo pre-clinical model of human lymph node micrometastases, breast cancer cells were injected into the spleens of mice, providing localised areas of tumour growth. MR images of groups of tumour-bearing and sham-treated animals were generated using a 1.5 T imaging system and analysed by two independent, blinded radiologists. Fe NP improved the sensitivity and specificity of MRI when compared to IONP, enabling accurate detection of tumours as small as 1–3 mm. The use of Fe NP as contrast agents have the potential to improve the diagnostic accuracy of MRI in cancer patients, leading to more rapid and effective treatment.
Collapse
Affiliation(s)
- Peter M Ferguson
- Malaghan Institute of Medical Research and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|