51
|
Di Bella D, Ferreira JPS, Silva RDNO, Echem C, Milan A, Akamine EH, Carvalho MH, Rodrigues SF. Gold nanoparticles reduce inflammation in cerebral microvessels of mice with sepsis. J Nanobiotechnology 2021; 19:52. [PMID: 33608025 PMCID: PMC7893894 DOI: 10.1186/s12951-021-00796-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Background Sepsis is an emergency medical condition that can lead to death and it is defined as a life-threatening organ dysfunction caused by immune dysregulation in response to an infection. It is considered the main killer in intensive care units. Sepsis associated-encephalopathy (SAE) is mostly caused by a sepsis-induced systemic inflammatory response. Studies report SAE in 14–63% of septic patients. Main SAE symptoms are not specific and usually include acute impairment of consciousness, delirium and/or coma, along with electroencephalogram (EEG) changes. For those who recover from sepsis and SAE, impaired cognitive function, mobility and quality of life are often observed months to years after hospital discharge, and there is no treatment available today to prevent that. Inflammation and oxidative stress are key players for the SAE pathophysiology. Gold nanoparticles have been demonstrated to own important anti-inflammatory properties. It was also reported 20 nm citrate-covered gold nanoparticles (cit-AuNP) reduce oxidative stress. In this context, we tested whether 20 nm cit-AuNP could alleviate the acute changes caused by sepsis in brain of mice, with focus on inflammation. Sepsis was induced in female C57BL/6 mice by cecal ligation and puncture (CLP), 20 nm cit-AuNP or saline were intravenously (IV) injected 2 h after induction of sepsis and experiments performed 6 h after induction. Intravital microscopy was used for leukocyte and platelet adhesion study in brain, blood brain barrier (BBB) permeability carried out by Evans blue assay, cytokines measured by ELISA and real time PCR, cell adhesion molecules (CAMs) by flow cytometry and immunohistochemistry, and transcription factors, by western blotting. Results 20 nm cit-AuNP treatment reduced leukocyte and platelet adhesion to cerebral blood vessels, prevented BBB failure, reduced TNF- concentration in brain, and ICAM-1 expression both in circulating polymorphonuclear (PMN) leukocytes and cerebral blood vessels of mice with sepsis. Furthermore, 20 nm cit-AuNP did not interfere with the antibiotic effect on the survival rate of mice with sepsis. Conclusions Cit-AuNP showed important anti-inflammatory properties in the brain of mice with sepsis, being a potential candidate to be used as adjuvant drug along with antibiotics in the treatment of sepsis to avoid SAE ![]()
Collapse
Affiliation(s)
- Davide Di Bella
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, ICB I, sala 205, 2º andar, Butanta, 05508-900, Sao Paulo, Brazil
| | - João P S Ferreira
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, ICB I, sala 205, 2º andar, Butanta, 05508-900, Sao Paulo, Brazil
| | - Renee de Nazare O Silva
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, ICB I, sala 205, 2º andar, Butanta, 05508-900, Sao Paulo, Brazil
| | - Cinthya Echem
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, ICB I, sala 205, 2º andar, Butanta, 05508-900, Sao Paulo, Brazil
| | - Aline Milan
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, ICB I, sala 205, 2º andar, Butanta, 05508-900, Sao Paulo, Brazil
| | - Eliana H Akamine
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, ICB I, sala 205, 2º andar, Butanta, 05508-900, Sao Paulo, Brazil
| | - Maria H Carvalho
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, ICB I, sala 205, 2º andar, Butanta, 05508-900, Sao Paulo, Brazil
| | - Stephen F Rodrigues
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, ICB I, sala 205, 2º andar, Butanta, 05508-900, Sao Paulo, Brazil. .,Laboratory of Vascular Nanopharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, ICB I, sala 319, 3º andar, Butanta, 05508-900, Sao Paulo, Brazil.
| |
Collapse
|
52
|
Alomari G, Hamdan S, Al-Trad B. Gold nanoparticles as a promising treatment for diabetes and its complications: Current and future potentials. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000419040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ghada Alomari
- Universiti Teknologi Malaysia, Malaysia; Yarmouk University, Jordan
| | | | | |
Collapse
|
53
|
Flores-Cuadra JA, Madrid A, Fernández PL, Pérez-Lao AR, Oviedo DC, Britton GB, Carreira MB. Critical Review of the Alzheimer's Disease Non-Transgenic Models: Can They Contribute to Disease Treatment? J Alzheimers Dis 2020; 82:S227-S250. [PMID: 33216029 DOI: 10.3233/jad-200870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a growing neurodegenerative disease without effective treatments or therapies. Despite the use of different approaches and an extensive variety of genetic amyloid based models, therapeutic strategies remain elusive. AD is characterized by three main pathological hallmarks that include amyloid-β plaques, neurofibrillary tangles, and neuroinflammatory processes; however, many other pathological mechanisms have been described in the literature. Nonetheless, the study of the disease and the screening of potential therapies is heavily weighted toward the study of amyloid-β transgenic models. Non-transgenic models may aid in the study of complex pathological states and provide a suitable complementary alternative to evaluating therapeutic biomedical and intervention strategies. In this review, we evaluate the literature on non-transgenic alternatives, focusing on the use of these models for testing therapeutic strategies, and assess their contribution to understanding AD. This review aims to underscore the need for a shift in preclinical research on intervention strategies for AD from amyloid-based to alternative, complementary non-amyloid approaches.
Collapse
Affiliation(s)
- Julio A Flores-Cuadra
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Alanna Madrid
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Ambar R Pérez-Lao
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Diana C Oviedo
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá.,Escuela de Psicología, Facultad de Ciencias Sociales, Universidad Católica Santa María La Antigua (USMA), Panamá
| | - Gabrielle B Britton
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Maria B Carreira
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| |
Collapse
|
54
|
Transport of ultrasmall gold nanoparticles (2 nm) across the blood-brain barrier in a six-cell brain spheroid model. Sci Rep 2020; 10:18033. [PMID: 33093563 PMCID: PMC7581805 DOI: 10.1038/s41598-020-75125-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
The blood–brain barrier (BBB) is an efficient barrier for molecules and drugs. Multicellular 3D spheroids display reproducible BBB features and functions. The spheroids used here were composed of six brain cell types: Astrocytes, pericytes, endothelial cells, microglia cells, oligodendrocytes, and neurons. They form an in vitro BBB that regulates the transport of compounds into the spheroid. The penetration of fluorescent ultrasmall gold nanoparticles (core diameter 2 nm; hydrodynamic diameter 3–4 nm) across the BBB was studied as a function of time by confocal laser scanning microscopy, with the dissolved fluorescent dye (FAM-alkyne) as a control. The nanoparticles readily entered the interior of the spheroid, whereas the dissolved dye alone did not penetrate the BBB. We present a model that is based on a time-dependent opening of the BBB for nanoparticles, followed by a rapid diffusion into the center of the spheroid. After the spheroids underwent hypoxia (0.1% O2; 24 h), the BBB was more permeable, permitting the uptake of more nanoparticles and also of dissolved dye molecules. Together with our previous observations that such nanoparticles can easily enter cells and even the cell nucleus, these data provide evidence that ultrasmall nanoparticle can cross the blood brain barrier.
Collapse
|
55
|
Mendes C, Dos Santos Haupenthal DP, Zaccaron RP, de Bem Silveira G, Corrêa MEAB, de Roch Casagrande L, de Sousa Mariano S, de Souza Silva JI, de Andrade TAM, Feuser PE, Machado-de-Ávila RA, Silveira PCL. Effects of the Association between Photobiomodulation and Hyaluronic Acid Linked Gold Nanoparticles in Wound Healing. ACS Biomater Sci Eng 2020; 6:5132-5144. [PMID: 33455264 DOI: 10.1021/acsbiomaterials.0c00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Healing is the process responsible for restoring the integrity of the body's internal or external structures when they rupture. Photobiomodulation (PBM) stands out as one of the most efficient resources in the treatment of epithelial lesions, as well as hyaluronic acid (HA), which has been emerging as a new molecule for the treatment of dermal and epidermal lesions. The biological application of gold nanoparticles (GNPs) shows promising results. This study aimed to investigate the possible anti-inflammatory and antioxidant effects of the association between PBM and GNPs-linked HA in an epithelial lesion model. Fifty Wistar rats were randomly distributed in the Control Group (CG); (PBM); (PBM + HA); (PBM + GNPs); (PBM + GNPs-HA). The animals were anesthetized, trichotomized, and induced to a surgical incision in the dorsal region. Topical treatment with HA (0.9%) and/or GNPs (30 mg/kg) occurred daily associated with 904 nm laser irradiation, dose of 5 J/cm2, which started 24 h after the lesion and was performed daily until the seventh day. The levels of proinflammatory (IL1 and TNFα), anti-inflammatory (IL10 and IL4) and growth factors (FGF and TGFβ) cytokines and oxidative stress parameters were evaluated, besides histological analysis through inflammatory infiltrate, fibroblasts, new vessels, and collagen production area. Finally, for the analysis of wound size reduction, digital images were performed and subsequently analyzed by the IMAGEJ software. The treated groups showed a decrease in proinflammatory cytokine levels and an increase in anti-inflammatory cytokines. TGFβ and FGF levels also increased in the treated groups, especially in the combination therapy group (PBM + GNPs-HA). Regarding the oxidative stress parameters, MPO, DCF, and Nitrite levels decreased in the treated groups, as well as the oxidative damage (Carbonyl and Thiol groups). In contrast, antioxidant defense increased in the groups with the appropriate therapies proposed compared to the control group. Histological sections were analyzed where the inflammatory infiltrate was lower in the PBM + GNPs-HA group. The number of fibroblasts was higher in the PBM and PBM + HA treated groups, whereas collagen production was higher in all treated groups. Finally, in the analysis of the wound area contraction, the injury group presented a larger area in cm2 compared to the other groups. Taken together, these results allow us to observe that the combination of PBM + GNPs-HA optimized the secretion of anti-inflammatory cytokines, proliferation and cell differentiation growth factors, and made an earlier transition to the chronic phase, contributing to the repair process.
Collapse
Affiliation(s)
- Carolini Mendes
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina Brazil
| | - Daniela Pacheco Dos Santos Haupenthal
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina Brazil
| | - Maria Eduarda Anastácio Borges Corrêa
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina Brazil
| | - Samara de Sousa Mariano
- Graduate Program of Biomedical Science, University Center of Herminio Ometto Foundation, 13607-339 Araras São Paolo Brazil
| | - Jennyffer Ione de Souza Silva
- Graduate Program of Biomedical Science, University Center of Herminio Ometto Foundation, 13607-339 Araras São Paolo Brazil
| | | | - Paulo Emilio Feuser
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina Brazil
| |
Collapse
|
56
|
Akhtar A, Bishnoi M, Sah SP. Sodium orthovanadate improves learning and memory in intracerebroventricular-streptozotocin rat model of Alzheimer's disease through modulation of brain insulin resistance induced tau pathology. Brain Res Bull 2020; 164:83-97. [PMID: 32784004 DOI: 10.1016/j.brainresbull.2020.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Sporadic Alzheimer's disease (sAD) is the most common type of dementia and progressive neurodegenerative disease. To establish the sAD model, intracerebroventricular (ICV) streptozotocin (STZ) at a dose of 3 mg/kg was administered bilaterally in rats on a stereotaxic apparatus. Behavioral tests such as Morris water maze (MWM), novel object recognition (NOR) and open field test were performed to evaluate cognitive and locomotor functions. Two treatment doses (5 mg/kg and 10 mg/kg) of sodium orthovanadate (SOV) and rivastigmine (2 mg/kg) were given orally to ICV-STZ induced rats for 21 days. Cortical and hippocampal tissues were dissected. Estimation of oxidative stress, mitochondrial dysfunction as complex I, II, III, IV activity, cholinergic function as acetylcholinesterase activity, ELISA for phosphorylated tau protein and insulin degrading enzyme (IDE), neuroinflammation as NF-κB gene expression and insulin signaling functioning as Q-RT-PCR for IR, IRS-1, PI3K, AKT, GSK-3β gene expression were performed. Behavioral results with SOV and rivastigmine treatment revealed decreased escape latency and increased discrimination index in MWM and NOR respectively. Treatment results with SOV also demonstrated attenuation of oxidative imbalance, improved mitochondrial activity, and reversed IDE and tau pathology. SOV treatment upregulated gene expression of IR, IRS-1, PI3K, and AKT, and downregulated that of GSK-3β. SOV results were compared with standard drug rivastigmine. Conclusively, the memory enhancement by SOV was mediated through oxidative balance, mitochondrial enzyme complex activation, and improved insulin signaling regulation. However, the primary mechanism of SOV remained attenuation of tau pathology by the upregulation of IRS-1/PI3K/AKT/GSK-3β pathway and reversal of insulin resistance in terms of IDE. Hence, in sAD paradigm, SOV contributed to memory improvement evident with the findings of behavioral studies, which can further potentially have clinical significance in AD.
Collapse
Affiliation(s)
- Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali 140306, Punjab, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
57
|
Feng L, Wang H, Xue X. Recent Progress of Nanomedicine in the Treatment of Central Nervous System Diseases. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Leyan Feng
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy, Nankai University Haihe Education Park, 38 Tongyan Road Tianjin 300353 P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy, Nankai University Haihe Education Park, 38 Tongyan Road Tianjin 300353 P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy, Nankai University Haihe Education Park, 38 Tongyan Road Tianjin 300353 P. R. China
| |
Collapse
|
58
|
Vilar CJF, Ribeiro SB, de Araújo AA, Guerra GCB, de Araújo Júnior RF, Brito GADC, Leitão RFC, Pontes DDL, Gasparotto LHDS, Oliveira MMB, Viana AD, de Medeiros WMTQ, Bezerra BGP, de Medeiros CACX. Effect of Gold Nanoparticle on 5-Fluorouracil-Induced Experimental Oral Mucositis in Hamsters. Pharmaceutics 2020; 12:pharmaceutics12040304. [PMID: 32230975 PMCID: PMC7238277 DOI: 10.3390/pharmaceutics12040304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Oral mucositis (OM) is a severe inflammation of the oral mucosal cells associated with chemotherapy and/or radiotherapy-induced toxicity, resulting in epithelial ulcers and higher risk of death from sepsis. The aim of the present study was to evaluate the nanoparticle (AuNp) effect on OM induced in hamsters. MATERIALS AND METHODS 5-fluorouracil (5FU) was used on the first and second day of the experimental model in Golden sirian hamsters, and on the fourth day, mechanical trauma was applied to induce OM. The animals were divided into groups, i.e., polyvinylpyrrolidone (PVP), mechanical trauma (MT), 5FU, and groups treated with gold nanoparticles (AuNps) (62.5, 125, and 250 μg/kg). On the 10th day, animals were euthanized for macroscopic, histopathological, immunohistochemical, western blot, quantitative polymerase chain reaction (qRT-PCR), and AuNp quantification. RESULTS AuNp (250 μg/kg) reduced TNF-α, IL-1β, COX-2, NF-κB, TGF-β, and SMAD 2/3; increased glutathione levels; decreased the expression of Kelch ECH-associated protein 1 (KEAP1); and induced heme oxygenase 1 (HMOX-1) and NAD (P) H quinone oxidoreductase 1 (NQO1) genes. CONCLUSIONS AuNp (250 μg/kg) prevented 5-FU-induced OM in hamsters and improved the parameters of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Carmem Jane Ferreira Vilar
- Post Graduation Program in Biological Sciences, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil;
| | - Susana Barbosa Ribeiro
- Post Graduation Program in Biotechnology-RENORBIO, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil; (S.B.R.); (M.M.B.O.)
| | - Aurigena Antunes de Araújo
- Post Graduation Program in Dental Sciences/Post Graduation Program in Pharmaceutical Science/Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil;
| | - Gerlane Coelho Bernardo Guerra
- Post Graduation Program in Biological Sciences/Post Graduation Program in Pharmaceutical Science/Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil;
| | - Raimundo Fernandes de Araújo Júnior
- Post Graduation Program in Functional and Structural Biology/Post Graduation Program Health Science/Department of Morphology, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil;
| | - Gerly Anne de Castro Brito
- Post Graduation Program in Morphofunctional Sciences/Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias s/n, Rodolfo Teófilo, Fortaleza/CE 60416030, Brazil; (G.A.d.C.B.); (R.F.C.L.)
| | - Renata Ferreira Carvalho Leitão
- Post Graduation Program in Morphofunctional Sciences/Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias s/n, Rodolfo Teófilo, Fortaleza/CE 60416030, Brazil; (G.A.d.C.B.); (R.F.C.L.)
| | - Daniel de Lima Pontes
- Post Graduation Program of Chemistry/Institute of Chemistry, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil; (D.d.L.P.); (L.H.D.S.G.); (A.D.V.); (W.M.T.Q.d.M.); (B.G.P.B.)
| | - Luiz Henrique Da Silva Gasparotto
- Post Graduation Program of Chemistry/Institute of Chemistry, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil; (D.d.L.P.); (L.H.D.S.G.); (A.D.V.); (W.M.T.Q.d.M.); (B.G.P.B.)
| | - Maisie Mitchele Barbosa Oliveira
- Post Graduation Program in Biotechnology-RENORBIO, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil; (S.B.R.); (M.M.B.O.)
| | - Anderson Dias Viana
- Post Graduation Program of Chemistry/Institute of Chemistry, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil; (D.d.L.P.); (L.H.D.S.G.); (A.D.V.); (W.M.T.Q.d.M.); (B.G.P.B.)
| | - Wendy Marina Toscano Queiroz de Medeiros
- Post Graduation Program of Chemistry/Institute of Chemistry, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil; (D.d.L.P.); (L.H.D.S.G.); (A.D.V.); (W.M.T.Q.d.M.); (B.G.P.B.)
| | - Breno Gustavo Porfírio Bezerra
- Post Graduation Program of Chemistry/Institute of Chemistry, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil; (D.d.L.P.); (L.H.D.S.G.); (A.D.V.); (W.M.T.Q.d.M.); (B.G.P.B.)
| | - Caroline Addison Carvalho Xavier de Medeiros
- Post Graduation Program in Biological Sciences, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil;
- Post Graduation Program in Biotechnology-RENORBIO, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho 3000, Lagoa Nova, Natal/RN 59078970, Brazil; (S.B.R.); (M.M.B.O.)
- Correspondence: or ; Tel.: +55-84-33422256
| |
Collapse
|
59
|
Chiang MC, Nicol CJB, Cheng YC, Yen C, Lin CH, Chen SJ, Huang RN. Nanogold Neuroprotection in Human Neural Stem Cells Against Amyloid-beta-induced Mitochondrial Dysfunction. Neuroscience 2020; 435:44-57. [PMID: 32229231 DOI: 10.1016/j.neuroscience.2020.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a neuronal dementia with progressive memory loss. Amyloid-beta (Aβ) peptides has major effect in the neurodegenerative disorder, which are thought to promote mitochondrial dysfunction in AD brains. Anti-AD drugs acting upon the brain are generally difficult to develop, often cause serious side effects or lack therapeutic efficacy. Numerous studies have shown the beneficial therapeutic applications of gold nanoparticles (AuNPs), including for neuroprotective events and AD. The aim of this study is to understand how AuNPs could exert their neuroprotective role in AD, for which cell model have chosen human neural stem cells (hNSCs) as the experimental tool. We hypothesize AuNPs protect against Aβ-induced cellular impairment and mitochondrial dysfunction in hNSCs. Here, we show AuNPs increase the survival of hNSCs treated with Aβ via downregulation of caspase 3 and 9 activities. Moreover, AuNPs abrogated the Aβ-mediated decrease neuroprotective (CREB and Bcl-2) and mitochondrial (PGC1α, NRF-1 and Tfam) gene expressions in treated hNSCs. Importantly, co-treatment with AuNPs significantly rescued hNSCs from Aβ-mediated mitochondrial function and morphology. AuNPs also significantly normalizes the immunostaining of mitochondrial marker and mass in differentiated hNSCs with Aβ. The effects may be exerted by the AuNPs, as supported by its protective reversal of Aβ-induced cellular impairment and mitochondrial dysfunction in hNSCs. In fact, the results presented extend our understanding of the mechanisms through which AuNPs could exert their neuroprotective role in hNSCs treated with Aβ.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao Yuan 333, Taiwan
| | - Chiahui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Chien-Hung Lin
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Pediatrics, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
60
|
Alomari G, Al-Trad B, Hamdan S, Aljabali A, Al-Zoubi M, Bataineh N, Qar J, Tambuwala MM. Gold nanoparticles attenuate albuminuria by inhibiting podocyte injury in a rat model of diabetic nephropathy. Drug Deliv Transl Res 2020; 10:216-226. [PMID: 31637677 PMCID: PMC6978433 DOI: 10.1007/s13346-019-00675-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several recent studies have reported that gold nanoparticles (AuNPs) attenuate hyperglycemia in diabetic animal models without any observed side effects. The present study was intended to provide insight into the effects of 50-nm AuNPs on diabetic kidney disease. Adult male rats were divided into three groups (n = 7/group): control (non-diabetic, ND), diabetic (D), and diabetic treated intraperitoneally with 50-nm AuNPs (AuNPs + D; 2.5 mg/kg/day) for 7 weeks. Diabetes was induced by a single-dose injection of 55 mg/kg streptozotocin. The result showed that AuNP treatment prevented diabetes-associated increases in the blood glucose level. Reduction in 24-h urinary albumin excretion rate, glomerular basement membrane thickness, foot process width, and renal oxidative stress markers was also demonstrated in the AuNP-treated group. In addition, the results showed downregulation effect of AuNPs in renal mRNA or protein expression of transforming growth factor β1 (TGF-β1), fibronectin, collagen IV, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor-A (VEGF-A). Moreover, the protein expression of nephrin and podocin, podocyte markers, in glomeruli was increased in the AuNPs + D group compared with the D group. These results provide evidence that 50-nm AuNPs can ameliorate renal damage in experimental models of diabetic nephropathy through improving the renal function and downregulating extracellular matrix protein accumulation, along with inhibiting renal oxidative stress and amelioration of podocyte injury.
Collapse
Affiliation(s)
- Ghada Alomari
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
- Department of Biological Sciences, Yarmouk University, Irbid, 21163, Jordan.
| | - Bahaa Al-Trad
- Department of Biological Sciences, Yarmouk University, Irbid, 21163, Jordan.
| | - Salehhuddin Hamdan
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Alaa Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Mazhar Al-Zoubi
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Nesreen Bataineh
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Janti Qar
- Department of Biological Sciences, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, County Londonderry, Northern Ireland, UK.
| |
Collapse
|
61
|
Dos Santos Haupenthal DP, Zortea D, Zaccaron RP, de Bem Silveira G, Corrêa MEAB, Mendes C, de Roch Casagrande L, Duarte MB, Pinho RA, Feuser PE, Machado-de-Ávila RA, Silveira PCL. Effects of phonophoresis with diclofenac linked gold nanoparticles in model of traumatic muscle injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110681. [PMID: 32204109 DOI: 10.1016/j.msec.2020.110681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/31/2022]
Abstract
The use of nanotechnology for administering drugs is a recent development that presents promising results. Therapeutic Pulsed Ultrasound (TPU) is one such therapeutic option and is widely used for treating soft tissue lesions. Thus, the objective of this study was to investigate the therapeutic effect of phonophoresis using diclofenac (DC) linked to gold nanoparticles (GNPs) in the skeletal muscle of rats used as a model of traumatic muscular injury. Wistar rats were divided into eight groups (N = 10): Sham, Muscle injury (MI), MI + TPU, MI + DC, MI + GNPs, MI + TPU + DC, MI + TPU + GNPs, and MI + TPU + DC-GNPs. The traumatic injury was performed in the gastrocnemius with a single direct traumatic impact via an injuring press. The animals received daily treatment for 5 consecutive days with TPU and gel with DC and/or GNPs. Two hours after the last treatment session, animals were euthanized and the gastrocnemius muscle surgically removed for histological and biochemical analysis. The groups exposed to some therapies (MI + TPU + DC, MI + TPU + GNPs and MI + TPU + DC-GNPs) showed reduced levels of pro-inflammatory cytokines, whereas an increase in anti-inflammatory cytokine levels was observed in the group exposed to all therapies combined (MI + TPU + DC-GNPs). Reactive species production and protein damage resulting from oxidative damage was lower for the group exposed to all tested therapies had lower production. Lower protein damage was also observed in the TPU + GNPs group. The group that underwent all tested therapies combined showed a significant increase in antioxidants compared to the MI group. During histological analysis, the MI group showed large amounts of cell infiltration and centralized nuclei, whereas the MI + TPU + DC-GNPs group showed structural improvements. Pain levels in the MI + TPU + DC-GNPs group were lower than those of the MI group. We believe that the association of TPU with DC linked to GNPs decreases the inflammation caused by traumatic muscle injury and accelerates tissue repair.
Collapse
Affiliation(s)
- Daniela Pacheco Dos Santos Haupenthal
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Diogo Zortea
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Maria Eduarda Anastácio Borges Corrêa
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Mariane Bernardo Duarte
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Paulo Emilio Feuser
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Santa Catarina State, Brazil.
| |
Collapse
|
62
|
Gold Nanoparticles Treatment Reverses Brain Damage in Alzheimer’s Disease Model. Mol Neurobiol 2019; 57:926-936. [DOI: 10.1007/s12035-019-01780-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
|
63
|
Dos Santos Haupenthal DP, Mendes C, de Bem Silveira G, Zaccaron RP, Corrêa MEAB, Nesi RT, Pinho RA, da Silva Paula MM, Silveira PCL. Effects of treatment with gold nanoparticles in a model of acute pulmonary inflammation induced by lipopolysaccharide. J Biomed Mater Res A 2019; 108:103-115. [PMID: 31502356 DOI: 10.1002/jbm.a.36796] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The bacterial lipopolysaccharide (LPS) is a highly toxic molecule derived from the outer membrane of gram-negative bacteria. LPS endotoxin affects the lungs and is used as a model of acute pulmonary inflammation affecting the cellular morphology of the organ. Previously, gold nanoparticles (GNPs) have been shown to demonstrate anti-inflammatory and antioxidative activity in muscle and epithelial injury models. The objective of this study was to investigate the effect of the intraperitoneal treatment using GNPs on the inflammatory response and pulmonary oxidative stress induced by LPS. Wistar rats were divided into four groups (N = 10): Sham; Sham + GNPs 2.5 mg/kg; LPS; and LPS + GNPs 2.5 mg/kg. Treatment with LPS upregulated the levels of markers of cellular and hepatic damage (CK, LDH, AST, and alanine aminotransferase); however, the group treated with only GNPs exhibited no toxicity. Treatment with GNPs reversed LPS-induced changes with respect to total peritoneal leukocyte count and the pulmonary levels of pro-inflammatory cytokines (IFN-γ and IL-6). Histological analysis revealed that treatment with GNPs reversed the increase in alveolar septum thickness due to LPS-induced fibrosis. In addition, treatment with GNPs decreased production of oxidants (nitrite and DCFH), reduced oxidative damage (carbonyl and sulfhydryl), and downregulated activities of superoxide dismutase and catalase. Treatment with GNPs did not showed toxicity; however, it exhibited anti-inflammatory and antioxidative activity that reversed morphological alterations induced by LPS.
Collapse
Affiliation(s)
- Daniela Pacheco Dos Santos Haupenthal
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Maria Eduarda Anastácio Borges Corrêa
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Renata Tiscoski Nesi
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
64
|
Haupenthal DPDS, Possato JC, Zaccaron RP, Mendes C, Rodrigues MS, Nesi RT, Pinho RA, Feuser PE, Machado-de-Ávila RA, Comim CM, Silveira PCL. Effects of chronic treatment with gold nanoparticles on inflammatory responses and oxidative stress in Mdx mice. J Drug Target 2019; 28:46-54. [PMID: 31046473 DOI: 10.1080/1061186x.2019.1613408] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive hereditary myopathy characterised by progressive muscle degeneration in male children. As a consequence of DMD, increased inflammation and oxidative stress occur in muscle tissue along with morphological changes. Several studies have reported anti-inflammatory and antioxidant effects of gold nanoparticles (GNP) in muscle injury models. The objective of this study was to evaluate these effects along with the impacts of the disease on histopathological changes following chronic administration of GNP to Mdx mice. Two-month-old Mdx mice were separated into five groups of eight individuals each, as follows: wild-type (WT), Mdx-modified without treatment, Mdx + 2.5 mg/kg GNP, Mdx + 7.0 mg/kg GNP and Mdx + 21 mg/kg GNP. GNP with a mean diameter of 20 nm were injected subcutaneously at concentrations of 2.5, 7.0 and 21 mg/kg. Treatments continued for 30 d with injections administered at 48-h intervals. Twenty-four hours after the last injection, the animals were killed and the central region of the gastrocnemius muscle was surgically removed. Chronic administration of GNP reduced inflammation in the gastrocnemius muscle of Mdx mice and reduced morphological alterations due to inflammatory responses to muscular dystrophy. In addition, GNP also demonstrated antioxidant potential by reducing the production of reactive oxygen and nitrogen species, reducing oxidative damage and improving antioxidant activity.
Collapse
Affiliation(s)
| | - Jonathann Corrêa Possato
- Laboratory of Experimental Phisiopatology, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Phisiopatology, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Renata Tiscoski Nesi
- Laboratory of Exercise Biochemistry in Health, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry in Health, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Paulo Emilio Feuser
- Laboratory of Experimental Phisiopatology, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Clarissa M Comim
- Research Group of Experimental Neuropathology, Laboratory of Experimental Neuroscience, University of South Santa Catarina, Palhoça, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| |
Collapse
|
65
|
Lopes TS, Alves GG, Pereira MR, Granjeiro JM, Leite PEC. Advances and potential application of gold nanoparticles in nanomedicine. J Cell Biochem 2019; 120:16370-16378. [DOI: 10.1002/jcb.29044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Talíria Silva Lopes
- Graduate Program in Sciences and Biotechnology, Fluminense Federal University – UFF Niteroi RJ Brazil
| | - Gutemberg Gomes Alves
- Cell and Molecular Biology Department Biology Institute, Fluminense Federal University – UFF Niteroi RJ Brazil
| | | | - Jose Mauro Granjeiro
- Dental School – Fluminense Federal University – UFF Niteroi RJ Brazil
- Laboratory of Bioengineering and in Vitro Toxicology Directory of Metrology Applied to Life Sciences – Dimav, National Institute of Metrology Quality and Technology – INMETRO Duque de Caxias RJ Brazil
| | - Paulo Emílio Corrêa Leite
- Laboratory of Bioengineering and in Vitro Toxicology Directory of Metrology Applied to Life Sciences – Dimav, National Institute of Metrology Quality and Technology – INMETRO Duque de Caxias RJ Brazil
| |
Collapse
|
66
|
Intrinsic Effects of Gold Nanoparticles on Oxygen-Glucose Deprivation/Reperfusion Injury in Rat Cortical Neurons. Neurochem Res 2019; 44:1549-1566. [PMID: 31093902 DOI: 10.1007/s11064-019-02776-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/14/2023]
Abstract
This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen-glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.
Collapse
|
67
|
Pandey S, Mishra A. Rational approaches for toxicological assessments of nanobiomaterials. J Biochem Mol Toxicol 2019; 33:e22335. [DOI: 10.1002/jbt.22335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/09/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Shalabh Pandey
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER‐R)Lucknow Uttar Pradesh India
| | - Awanish Mishra
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER‐R)Lucknow Uttar Pradesh India
| |
Collapse
|
68
|
Khan HA, Alamery S, Ibrahim KE, El-Nagar DM, Al-Harbi N, Rusop M, Alrokayan SH. Size and time-dependent induction of proinflammatory cytokines expression in brains of mice treated with gold nanoparticles. Saudi J Biol Sci 2019; 26:625-631. [PMID: 30899181 PMCID: PMC6408702 DOI: 10.1016/j.sjbs.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/08/2023] Open
Abstract
Gold nanoparticles (GNPs) are among the ideal nano-sized materials for medical applications such as imaging and drug delivery. Considering the significance of recent reports on acute phase induction of inflammatory mediators by GNPs, we studied the effect of GNPs on proinflammatory cytokines gene expression in mouse brain. Group 1 served as control whereas groups 2-4 were given only one intraperitoneal dose of 5, 20 and 50 nm GNPs, respectively and sacrificed after 24 h. The animals in groups 5-7 also received the same treatment but sacrificed after 7 days. Groups 8-10 received two injections of GNPs (5, 20 and 50 nm, respectively), first at the beginning of study and second on day 6, and sacrificed on day 7. Total RNA was extracted from the cerebral tissue and analyzed for the gene expressions of IL-1β, IL-6 and TNF-α. A single injection of 5 nm diameter GNPs significantly increased the mRNA expression of IL-1β and IL-6 in mouse brain on day 7, which was not augmented by the second dose of the same GNPs. Larger size GNPs (20 nm and 50 nm) did not cause any significant change in the expression of proinflammatory cytokines in mouse brain. In conclusion, systemic administration of small sized GNPs (5 nm) induced a proinflammatory cascade in mouse brain indicating a crucial role of GNPs size on immune response. It is important to use the right sized GNPs in order to avoid an acute phase inflammatory response that could be cytotoxic or interfere with the bioavailability of nanomaterials.
Collapse
Affiliation(s)
- Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E. Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Doaa M. El-Nagar
- Department of Zoology, College of Girls for Science, Arts and Education, Ain Shams University, Cairo, Egypt
| | - Najla Al-Harbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamad Rusop
- NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
69
|
Niu X, Chen J, Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J Pharm Sci 2018; 14:480-496. [PMID: 32104476 PMCID: PMC7032222 DOI: 10.1016/j.ajps.2018.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/26/2018] [Accepted: 09/01/2018] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington disease and amyotrophic lateral sclerosis throw a heavy burden on families and society. Related scientific researches make tardy progress. One reason is that the known pathogeny is just the tip of the iceberg. Another reason is that various physiological barriers, especially blood-brain barrier (BBB), hamper effective therapeutic substances from reaching site of action. Drugs in clinical treatment of neurodegenerative diseases are basically administered orally. And generally speaking, the brain targeting efficiency is pretty low. Nano-delivery technology brings hope for neurodegenerative diseases. The use of nanocarriers encapsulating molecules such as peptides and genomic medicine may enhance drug transport through the BBB in neurodegenerative disease and target relevant regions in the brain for regenerative processes. In this review, we discuss BBB composition and applications of nanocarriers -liposomes, nanoparticles, nanomicelles and new emerging exosomes in neurodegenerative diseases. Furthermore, the disadvantages and the potential neurotoxicity of nanocarriers according pharmacokinetics theory are also discussed.
Collapse
Affiliation(s)
- Xiaoqian Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiejian Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Cancer Prevention and Intervention, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
70
|
Ibrahim KE, Al-Mutary MG, Bakhiet AO, Khan HA. Histopathology of the Liver, Kidney, and Spleen of Mice Exposed to Gold Nanoparticles. Molecules 2018; 23:E1848. [PMID: 30044410 PMCID: PMC6222535 DOI: 10.3390/molecules23081848] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
Gold nanoparticles (GNPs) are biocompatible nanomaterials that are currently researched for biomedical applications such as imaging and targeted drug delivery. In this investigation, we studied the effects of a single dose (injected on day 1) as well as a priming dose (two injections with a gap of one week) of 5 nm, 20 nm, and 50 nm diameter GNPs on the structural and biochemical changes in the liver, kidney, and spleen of mice. The results showed that small sized GNPs (5 nm) produced significant pathological changes in the liver on day 2 that gradually reduced on day 8. The medium (20 nm) and large (50 nm) sized GNPs preferentially targeted the spleen and caused significant pathological changes to the spleen architecture on day 2 that persisted on day 8 as well. There were minimal and insignificant pathological changes to the kidneys irrespective of the GNPs size. The animals that were primed with the pre-exposure of GNPs did not show any aggravation of histological changes after the second dose of the same GNPs. None of the dose regimens of the GNPs were able to significantly affect the markers of oxidative stress including glutathione (GSH) and malondialdehyde (MDA) in all of the organs that were studied. In conclusion, the size of GNPs plays an important role in their pathological effects on different organs of mice. Moreover, the primed animals become refractory to further pathological changes after the second dose of GNPs, suggesting the importance of a priming dose in medical applications of GNPs.
Collapse
Affiliation(s)
- Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohsen Ghaleb Al-Mutary
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Amel Omer Bakhiet
- Deanship of Scientific Research, Sudan University of Science and Technology, Khartoum 11111, Sudan.
| | - Haseeb Ahmad Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|