51
|
Ruhela A, Kasinathan GN, Rath SN, Sasikala M, Sharma CS. Electrospun freestanding hydrophobic fabric as a potential polymer semi-permeable membrane for islet encapsulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111409. [PMID: 33255012 DOI: 10.1016/j.msec.2020.111409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/04/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
Abstract
One of the significant problems associated with islet encapsulation for type 1 diabetes treatment is the loss of islet functionality or cell death after transplantation because of the unfavorable environment for the cells. In this work, we propose a simple strategy to fabricate electrospun membranes that will provide a favorable environment for proper islet function and also a desirable pore size to cease cellular infiltration, protecting the encapsulated islet from immune cells. By electrospinning the wettability of three different biocompatible polymers: cellulose acetate (CA), polyethersulfone (PES), and polytetrafluoroethylene (PTFE) was greatly modified. The contact angle of electrospun CA, PES, and PTFE increased to 136°, 126°, and 155° as compared to 55°, 71°, and 128° respectively as a thin film, making the electrospun membranes hydrophobic. Commercial porous membranes of PES and PTFE show a contact angle of 30° and 118°, respectively, confirming the hydrophobicity of electrospun membranes is due to the surface morphology induced by electrospinning. In- vivo results confirm that the induced hydrophobicity and surface morphology of electrospun membranes impede cell attachment, which would help in maintaining the 3D circular morphology of islet cell. More importantly, the pore size of 0.3-0.6 μm obtained due to the densely packed structure of nanofibers, will be able to restrict immune cells but would allow free movement of molecules like insulin and glucose. Therefore, electrospun polymer fibrous membranes as fabricated in this work, with hydrophobic and porous properties, make a strong case for successful islet encapsulation.
Collapse
Affiliation(s)
- Aakanksha Ruhela
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Gokula Nathan Kasinathan
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Subha N Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - M Sasikala
- Asian Healthcare Foundation, Gachibowli, Hyderabad 500032, Telangana, India
| | - Chandra S Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India.
| |
Collapse
|
52
|
Wang K, Wang P, Wang M, Yu DG, Wan F, Bligh SA. Comparative study of electrospun crystal-based and composite-based drug nano depots. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110988. [DOI: 10.1016/j.msec.2020.110988] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
|
53
|
Chen H, Shi Y, Sun L, Ni S. Electrospun composite nanofibers with all-trans retinoic acid and MWCNTs-OH against cancer stem cells. Life Sci 2020; 258:118152. [PMID: 32735881 DOI: 10.1016/j.lfs.2020.118152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 01/22/2023]
Abstract
AIMS Cancer stem cells (CSCs) are the source of tumors and play a key role in the resistance of cancer to therapies. To improve the current therapies against CSCs, in this work we developed a novel system of electrospun polycaprolactone (PCL) nanofibers containing hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) and all-trans retinoic acid (ATRA). MATERIALS AND METHODS The nanofiber membranes were forged by electrospinning, and the physical and chemical properties of the nanofiber membranes were evaluated by scanning electron microscopy, XRD and Raman etc. The photothermal properties of nanofiber membranes and their effects on CSCs differentiation and cytotoxicity were investigated. Finally, the anti-tumor effect of nanofiber membranes in vivo was evaluated. KEY FINDINGS The nanofibers formed under optimal conditions were smooth without beads. The nanofibrous membranes with MWCNTs-OH could increase temperature of the medium under near-infrared (NIR) illumination to suppress the viability of glioma stem cells (GSCs). Meanwhile, the added ATRA could further induce the differentiation of GSCs to destroy their stemness and reduce their resistance to heat treatment. Compared with no NIR irradiation, after 2min NIR irradiation, the membranes reduced the in-vitro viability of GSCs by 13.41%, 14.83%, and 26.71% after 1, 2, and 3 days, respectively. After 3 min daily illumination for 3 days, the viability of GSCs was only 22.75%, and similar results were observed in vivo. SIGNIFICANCE These results showed efficiently cytotoxicity to CSCs by combining heat therapy and differentiation therapy. The nanofiber membranes if inserted at the site after surgical tumor removal, may hinder tumor recurrence.
Collapse
Affiliation(s)
- Haijun Chen
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yue Shi
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
54
|
Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydr Polym 2020; 247:116705. [PMID: 32829833 DOI: 10.1016/j.carbpol.2020.116705] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/29/2022]
Abstract
Electrospinning has garnered significant attention in view of its many advantages such as feasibility for various polymers, scalability required for mass production, and ease of processing. Extensive studies have been devoted to the use of electrospinning to fabricate various electrospun nanofibers derived from carbohydrate gum polymers in combination with synthetic polymers and/or additives of inorganic or organic materials with gums. In view of the versatility and the widespread choice of precursors that can be deployed for electrospinning, various gums from both, the plants and microbial-based gum carbohydrates are holistically and/or partially included in the electrospinning solution for the preparation of functional composite nanofibers. Moreover, our strategy encompasses a combination of natural gums with other polymers/inorganic or nanoparticles to ensue distinct properties. This early established milestone in functional carbohydrate gum polymer-based composite nanofibers may be deployed by specialized researchers in the field of nanoscience and technology, and especially for exploiting electrospinning of natural gums composites for diverse applications.
Collapse
|
55
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Dinarvand R, Tavakolizadeh M, Ahmadi S, Rabiee M, Bagherzadeh M, Pourjavadi A, Farhadnejad H, Tahriri M, Webster TJ, Tayebi L. Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review. Int J Nanomedicine 2020; 15:4363-4392. [PMID: 32606683 PMCID: PMC7314622 DOI: 10.2147/ijn.s252237] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
With continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and in vivo. These compounds come with a number of effective benefits for improving problems of targeted or controlled drug and gene delivery systems; thus, they have been extensively used in medical and pharmaceutical applications. Additionally, they are quite attractive for wound dressings, textiles, tissue engineering, and biomedical prostheses. In this sense, some important and workable natural polymers (namely, chitosan (CS), starch and cellulose) and some applicable synthetic ones (such as poly-lactic-co-glycolic acid (PLGA), poly(lactic acid) (PLA) and poly-glycolic acid (PGA)) have played an indispensable role over the last two decades for their therapeutic effects owing to their appealing and renewable biological properties. According to our data, this is the first review article highlighting CDDSs composed of diverse natural and synthetic nano biopolymers, blended for biological purposes, mostly over the past five years; other reviews have just briefly mentioned the use of such blended polymers. We, additionally, try to make comparisons between various nano blending systems in terms of improved sustained and controlled drug release behavior.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Tavakolizadeh
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI53233, USA
| |
Collapse
|
56
|
Biodegradable Polylactide-Poly(3-Hydroxybutyrate) Compositions Obtained via Blending under Shear Deformations and Electrospinning: Characterization and Environmental Application. Polymers (Basel) 2020; 12:polym12051088. [PMID: 32397628 PMCID: PMC7284690 DOI: 10.3390/polym12051088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
Compositions of polylactide (PLA) and poly(3-hydroxybutyrate) (PHB) thermoplastic polyesters originated from the nature raw have been obtained by blending under shear deformations and electrospinning methods in the form of films and nanofibers as well as unwoven nanofibrous materials, respectively. The degrees of crystallinity calculated on the base of melting enthalpies and thermal transition temperatures for glassy state, cold crystallization, and melting point for individual biopolymers and ternary polymer blends PLA-PHB- poly(ethyleneglycol) (PEG) have been evaluated. It has been shown that the mechanical properties of compositions depend on the presence of plasticizers PEG with different molar masses in interval of 400-1000. The experiments on the action of mold fungi on the films have shown that PHB is a fully biodegradable polymer unlike PLA, whereas the biodegradability of the obtained composites is determined by their composition. The sorption activity of PLA-PHB nanofibers and unwoven nanofibrous PLA-PHB composites relative to water and oil has been studied and the possibility of their use as absorbents in wastewater treatment from petroleum products has been demonstrated.
Collapse
|
57
|
Design of 3D multi-layered electrospun membranes embedding iron-based layered double hydroxide for drug storage and control of sustained release. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
58
|
Stent coating by electrospinning with chitosan/poly-cyclodextrin based nanofibers loaded with simvastatin for restenosis prevention. Eur J Pharm Biopharm 2020; 150:156-167. [PMID: 32179100 DOI: 10.1016/j.ejpb.2019.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 12/31/2022]
Abstract
The main cause of failure of angioplasty stenting is restenosis due to neointimal hyperplasia, a too high proliferation of smooth muscle cells (SMC). The local and sustained delivery of selective pleiotropic drugs to limit SMC proliferation seems to be the hopeful solution to minimize this post surgery complication. The aim of this study is to develop a stent covered by nanofibers (NFs) produced by electrospinning, loaded with simvastatin (SV), a drug commonly used for restenosis prevention. NFs were prepared from the electrospinning of a solution containing SV and a mixture of chitosan (cationic) and β-cyclodextrin (CD) polymer (anionic) which form together a polyelectrolyte complex that makes up the NFs matrix. First, the SV/CD interactions were studied by phase solubility diagram, DRX and DSC. The electrospinning process was then optimized to cover a self-expandable NiTiNOL stent and the mechanical resistance of the NFs sheath upon its introduction inside the delivery catheter was considered, using a crimper apparatus. The morphology, coating thicknesses and diameters of nanofibers were studied by scanning electron microscopy. The SV loading rates on the stents were controlled by the electrospinning time, and the presence of SV in the NFs was confirmed by FTIR. NFs stability in PBS pH 7.4 buffer could be improved after thermal post-treatment of NFs and in vitro release of SV in dynamic conditions demonstrated that the release profiles were influenced by the presence of CD polymer in NFs and by the thickness of the NFs sheath. Finally, a covered stent delivering 3 µg/mm2 of SV within 6 h was obtained, whose efficiency will be investigated in a further in vivo study.
Collapse
|
59
|
Shokrollahi M, Bahrami SH, Nazarpak MH, Solouk A. Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl alcohol) and polycaprolactone as a potential wound dressing. Int J Biol Macromol 2020; 147:547-559. [DOI: 10.1016/j.ijbiomac.2020.01.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/11/2023]
|
60
|
Fabrication of electrospun hydrogels loaded with Ipomoea pes-caprae (L.) R. Br extract for infected wound. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
61
|
Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers (Basel) 2019; 11:E2008. [PMID: 31817133 PMCID: PMC6960548 DOI: 10.3390/polym11122008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
The key attributes of core-shell fibers are their ability to preserve bioactivity of incorporated-sensitive biomolecules (such as drug, protein, and growth factor) and subsequently control biomolecule release to the targeted microenvironments to achieve therapeutic effects. Such qualities are highly favorable for tissue engineering and drug delivery, and these features are not able to be offered by monolithic fibers. In this review, we begin with an overview on design requirement of core-shell fibers, followed by the summary of recent preparation methods of core-shell fibers, with focus on electrospinning-based techniques and other newly discovered fabrication approaches. We then highlight the importance and roles of core-shell fibers in tissue engineering and drug delivery, accompanied by thorough discussion on controllable release strategies of the incorporated bioactive molecules from the fibers. Ultimately, we touch on core-shell fibers-related challenges and offer perspectives on their future direction towards clinical applications.
Collapse
Affiliation(s)
- Muhammad Faiq Abdullah
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau, Perlis 02600, Malaysia
| | - Tamrin Nuge
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bee Chin Ang
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
62
|
Akbarzadeh M, Pezeshki‐Modaress M, Zandi M. Biphasic, tough composite core/shell PCL/PVA‐GEL nanofibers for biomedical application. J Appl Polym Sci 2019. [DOI: 10.1002/app.48713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Mojgan Zandi
- Department of BiomaterialsIran Polymer and Petrochemical Institute Tehran Iran
| |
Collapse
|
63
|
Amokrane G, Humblot V, Jubeli E, Yagoubi N, Ramtani S, Migonney V, Falentin-Daudré C. Electrospun Poly(ε-caprolactone) Fiber Scaffolds Functionalized by the Covalent Grafting of a Bioactive Polymer: Surface Characterization and Influence on in Vitro Biological Response. ACS OMEGA 2019; 4:17194-17208. [PMID: 31656893 PMCID: PMC6811844 DOI: 10.1021/acsomega.9b01647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/19/2019] [Indexed: 05/10/2023]
Abstract
The purpose of this study is to present the poly(caprolactone) (PCL) functionalization by the covalent grafting of poly(sodium styrene sulfonate) on electrospun scaffolds using the "grafting from" technique and evaluate the effect of the coating and surface wettability on the biological response. The "grafting from" technique required energy (thermal or UV) to induce the decomposition of the PCL (hydro)peroxides and generate radicals able to initiate the polymerization of NaSS. In addition, UV irradiation was used to initiate the radical polymerization of NaSS directly from the surface (UV direct "grafting from"). The interest of these two techniques is their easiness, the reduction of the number of process steps, and its applicability to the industry. The selected parameters allow controlling the grafting rate (i.e., degree of functionalization). The aim of the study was to compare two covalent grafting in terms of surface functionalization and hydrophilicity and their effect on the in vitro biological responses of fibroblasts. The achieved results showed the influence of the sulfonate functional groups on the cell response. In addition, outcomes highlighted that the UV direct "grafting from" method allows to moderate the amount of sulfonate groups and the surface hydrophilicity presents a considerable interest for covalently immobilizing bioactive polymers onto electrospun scaffolds designed for tissue engineering applications using efficient post-electrospinning chemical modification.
Collapse
Affiliation(s)
- Gana Amokrane
- Université
Paris 13 Sorbonne Paris Cité, Laboratoire CSPBAT, équipe
LBPS, CNRS (UMR 7244), Institut Galilée, 93430 Villetaneuse, France
| | - Vincent Humblot
- Sorbonne Université, Caboratoire
de Réactivité de Surface, UMR CNRS 7197, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Emile Jubeli
- Laboratoire Matériaux et Santé EA 401,
UFR de Pharmacie, Université Paris-Sud, 92290 Châtenay-Malabry, France
| | - Najet Yagoubi
- Laboratoire Matériaux et Santé EA 401,
UFR de Pharmacie, Université Paris-Sud, 92290 Châtenay-Malabry, France
| | - Salah Ramtani
- Université
Paris 13 Sorbonne Paris Cité, Laboratoire CSPBAT, équipe
LBPS, CNRS (UMR 7244), Institut Galilée, 93430 Villetaneuse, France
| | - Véronique Migonney
- Université
Paris 13 Sorbonne Paris Cité, Laboratoire CSPBAT, équipe
LBPS, CNRS (UMR 7244), Institut Galilée, 93430 Villetaneuse, France
| | - Céline Falentin-Daudré
- Université
Paris 13 Sorbonne Paris Cité, Laboratoire CSPBAT, équipe
LBPS, CNRS (UMR 7244), Institut Galilée, 93430 Villetaneuse, France
- E-mail:
| |
Collapse
|
64
|
Celebioglu A, Uyar T. Fast Dissolving Oral Drug Delivery System Based on Electrospun Nanofibrous Webs of Cyclodextrin/Ibuprofen Inclusion Complex Nanofibers. Mol Pharm 2019; 16:4387-4398. [PMID: 31436100 DOI: 10.1021/acs.molpharmaceut.9b00798] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, the polymer-free electrospinning was performed in order to produce cyclodextrin/ibuprofen inclusion complex nanofibers, which could have potential as the fast dissolving oral drug delivery system. Ibuprofen is a poorly water-soluble nonsteroidal anti-inflammatory drug; however, the water solubility of ibuprofen can be significantly enhanced by inclusion complexation with cyclodextrins. Here, hydroxypropyl-beta-cyclodextrin (HPβCyD) was chosen both as a nanofiber matrix and host molecule for inclusion complexation in order to enhance water solubility and fast dissolution of ibuprofen. Ibuprofen was inclusion-complexed with HPβCyD in highly concentrated aqueous solutions of HPβCyD (200%, w/v) having two different molar ratios: 1:1 and 2:1 (HPβCyD/ibuprofen). The HPβCyD/ibuprofen-IC (1:1) aqueous solution was turbid having some undissolved/uncomplexed ibuprofen, whereas HPβCyD/ibuprofen-IC (2:1) aqueous solution was homogeneous and clear, indicating that ibuprofen was totally complexed with HPβCyD and becomes water soluble. Then, both HPβCyD/ibuprofen-IC solutions (1:1 and 2:1) were electrospun into bead-free and uniform nanofibers having ∼200 nm fiber diameter. The electrospun HPβCyD/ibuprofen-IC nanofibers were obtained as nanofibrous webs having self-standing and flexible character, which is appropriate for fast dissolving oral drug delivery systems. Ibuprofen was completely preserved during the electrospinning process, and the resulting electrospun HPβCyD/ibuprofen-IC nanofibers were produced without any loss of ibuprofen by preserving the initial molar ratio of 1:1 and 2:1 (HPβCyD/ibuprofen). X-ray diffraction and differential scanning calorimetry measurements indicated the presence of some crystalline ibuprofen in HPβCyD/ibuprofen-IC (1:1) nanofibers, whereas ibuprofen was totally in the amorphous state in HPβCyD/ibuprofen-IC (2:1) nanofibers. Nonetheless, both HPβCyD/ibuprofen-IC (1:1 and 2:1) nanofibrous webs have shown very fast dissolving character when contacted with water or when wetted with artificial saliva. In brief, our results revealed that electrospun HPβCyD/ibuprofen-IC nanofibrous webs have potential as fast dissolving oral drug delivery systems.
Collapse
Affiliation(s)
- Asli Celebioglu
- Department of Fiber Science & Apparel Design, College of Human Ecology , Cornell University , Ithaca , New York 14853 , United States
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
65
|
Multi-walled carbon nanotube-incorporating electrospun composite fibrous mats for controlled drug release profile. Int J Pharm 2019; 568:118513. [DOI: 10.1016/j.ijpharm.2019.118513] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
|
66
|
Kotroni E, Simirioti E, Kikionis S, Sfiniadakis I, Siamidi A, Karalis V, Vitsos A, Vlachou M, Ioannou E, Roussis V, Rallis M. In Vivo Evaluation of the Anti-Inflammatory Activity of Electrospun Micro/Nanofibrous Patches Loaded with Pinus halepensis Bark Extract on Hairless Mice Skin. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2596. [PMID: 31443178 PMCID: PMC6720688 DOI: 10.3390/ma12162596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Abstract
Skin inflammation is the most common symptom in dermatological diseases. It is usually treated by topically applied products, such as creams, gels and lotions. Skin dressings offer a promising alternative as they are endowed with more controlled administration conditions. In this study, the anti-inflammatory activity of electrospun alginate micro/nanofibrous dressings loaded with the aqueous extract of Pinus halepensis bark (PHBE) was evaluated in vivo in mice. The upper back skin of SKH-1 female hairless mice was exposed to a single dose of ultraviolet radiation (3 MEDs) and the inflamed area was treated daily by the direct application of a nanofibrous patch. The condition of the skin was evaluated primarily on the basis of clinical observation, photo-documentation and histopathological assessment, while measurements of the erythema, hydration, transepidermal water loss (TEWL) and sebum production were also taken into account. The results showed that the topical application of alginate micro/nanofibrous dressings loaded with PHBE on UV-inflamed skin significantly attenuated inflammation damage, reducing the healing period. Increase of the loading dose of PHBE resulted in a proportional reduction of the extent, the density and the depth of skin inflammation. With the steadily increasing interest of the skin dressing industry towards nanofibrous matrices, electrospun nonwovens could serve as ideal candidates for the development of multifunctional anti-inflammatory care systems.
Collapse
Affiliation(s)
- Eleftheria Kotroni
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Eleftheria Simirioti
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | | | - Aggeliki Siamidi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Vangelis Karalis
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Andreas Vitsos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Marilena Vlachou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece.
| | - Michail Rallis
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15784, Greece.
| |
Collapse
|
67
|
Multi-Functional Electrospun Nanofibers from Polymer Blends for Scaffold Tissue Engineering. FIBERS 2019. [DOI: 10.3390/fib7070066] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrospinning and polymer blending have been the focus of research and the industry for their versatility, scalability, and potential applications across many different fields. In tissue engineering, nanofiber scaffolds composed of natural fibers, synthetic fibers, or a mixture of both have been reported. This review reports recent advances in polymer blended scaffolds for tissue engineering and the fabrication of functional scaffolds by electrospinning. A brief theory of electrospinning and the general setup as well as modifications used are presented. Polymer blends, including blends with natural polymers, synthetic polymers, mixture of natural and synthetic polymers, and nanofiller systems, are discussed in detail and reviewed.
Collapse
|
68
|
Tort S, Yıldız A, Tuğcu-Demiröz F, Akca G, Kuzukıran Ö, Acartürk F. Development and characterization of rapid dissolving ornidazole loaded PVP electrospun fibers. Pharm Dev Technol 2019; 24:864-873. [PMID: 31046546 DOI: 10.1080/10837450.2019.1615088] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gingivitis is a common and mild form of periodontal disease and can be described as a limited inflammation of the gingiva. This study aims to develop and characterize rapid releasing mucoadhesive fibers containing ornidazole with electrospinning process for the treatment of gingivitis. Polyvinylpyrrolidone (PVP) was chosen as a polymer and used at different concentrations of 10%, 12.5%, and 15%. Scanning electron microscopy images showed that fiber diameters increased with increasing polymer concentrations. Tensile strength and elongation at break values of fibers increased with increasing PVP amount, whereas the loading of ornidazole into the fibers decreased these parameters. The contact angle values of all fibers were found to be 0° due to the hydrophilic nature of PVP. Ornidazole was released within 5 min and diffused from all of the fibers faster than that of gel and solution formulations. Electrospun ornidazole fibers were found efficient against Porphyromonas gingivalis in antimicrobial activity studies. The results demonstrated that ornidazole loaded fibers could be a potential drug delivery system for the treatment of gingivitis.
Collapse
Affiliation(s)
- Serdar Tort
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Gazi University , Ankara , Turkey
| | - Ayşegül Yıldız
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Gazi University , Ankara , Turkey
| | - Fatmanur Tuğcu-Demiröz
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Gazi University , Ankara , Turkey
| | - Gülçin Akca
- b Faculty of Dentistry, Department of Medical Microbiology , Gazi University , Ankara , Turkey
| | - Özgür Kuzukıran
- c Eldivan Vocational School of Health Services, Veterinary Department , Cankiri Karatekin University , Cankiri , Turkey
| | - Füsun Acartürk
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Gazi University , Ankara , Turkey
| |
Collapse
|
69
|
The role of emulsion parameters in tramadol sustained-release from electrospun mats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1493-1501. [DOI: 10.1016/j.msec.2019.02.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 01/04/2023]
|
70
|
An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur J Pharm Biopharm 2019; 139:1-22. [DOI: 10.1016/j.ejpb.2019.03.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
|
71
|
Raza ZA, Noor S, Khalil S. Recent developments in the synthesis of poly(hydroxybutyrate) based biocomposites. Biotechnol Prog 2019; 35:e2855. [PMID: 31136087 DOI: 10.1002/btpr.2855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 11/06/2022]
Abstract
Poly(hydroxybutyrate) (PHB) has become an attractive biomaterial in research and development for past few years. It is natural bio-based aliphatic polyester produced by many types of bacteria. Due to its biodegradable, biocompatible, and eco-friendly nature, PHB can be used in line with bioactive species. However, high production cost, thermal instability, and poor mechanical properties limit its desirable applications. So there is need to incorporate PHB with other materials or biopolymers for the development of some novel PHB based biocomposites for value addition. Many attempts have been employed to incorporate PHB with other biomaterials (or biopolymers) to develop sustainable biocomposites. In this review, some recent developments in the synthesis of PHB based biocomposites and their biomedical, packaging and tissue engineering applications have been focused. The development of biodegradable PHB based biocomposites with improved mechanical properties could be used to overcome its native limitations hence to open new possibilities for industrial applications.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, Pakistan
| | - Safa Noor
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Shanza Khalil
- Department of Applied Sciences, National Textile University, Faisalabad, Pakistan
| |
Collapse
|
72
|
Eskitoros-Togay ŞM, Bulbul YE, Tort S, Demirtaş Korkmaz F, Acartürk F, Dilsiz N. Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. Int J Pharm 2019; 565:83-94. [PMID: 31063838 DOI: 10.1016/j.ijpharm.2019.04.073] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/13/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022]
Abstract
Potential usage of biodegradable and biocompatible polymeric nanofibers is the most attention grabbing topic for the drug delivery system. In order to fabricate ultrafine fibers, electrospinning, one of the well-known techniques, has been extensively studied in the literature. In the present study, the objective is to achieve the optimum blend of hydrophobic and hydrophilic polymers to be used as a drug delivery vehicle and also to obtain the optimum amount of doxycycline (DOXH) to reach the optimum release. In this case, the biodegradable and biocompatible synthetic polymers, poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO), were blended with different ratios for the production of DOXH-loaded electrospun PCL/PEO membranes using electrospinning technique, which is a novel attempt. The fabricated membranes were subsequently characterized to optimize the blending ratio of polymers by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD) and water contact angle analysis. After the characterization studies, different amounts of DOXH were loaded to the optimized blend of PCL and PEO to investigate the release of DOXH from the membrane used as a drug delivery vehicle. In vitro drug release studies were performed, and in vitro drug release kinetics were assessed to confirm the usage of these nanofiber materials as efficient drug delivery vehicles. The results indicated that 3.5% DOXH-loaded (75:25 w/w) PCL/PEO is the most acceptable membrane to provide prolonged release rather than immediate release of DOXH.
Collapse
Affiliation(s)
- Ş Melda Eskitoros-Togay
- Department of Chemical Engineering, Institute for Graduate School of Natural and Applied Sciences, Gazi University, 06560 Ankara, Turkey
| | - Y Emre Bulbul
- Department of Chemical Engineering, Institute for Graduate School of Natural and Applied Sciences, Gazi University, 06560 Ankara, Turkey
| | - Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Funda Demirtaş Korkmaz
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, 06500 Ankara, Turkey; Department of Medical Biology, Faculty of Medicine, Giresun University, 28100 Giresun, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Nursel Dilsiz
- Department of Chemical Engineering, Institute for Graduate School of Natural and Applied Sciences, Gazi University, 06560 Ankara, Turkey; Department of Chemical Engineering, Faculty of Engineering, Gazi University, 06570 Ankara, Turkey.
| |
Collapse
|
73
|
Vlachou M, Kikionis S, Siamidi A, Tragou K, Kapoti S, Ioannou E, Roussis V, Tsotinis A. Fabrication and Characterization of Electrospun Nanofibers for the Modified Release of the Chronobiotic Hormone Melatonin. Curr Drug Deliv 2019; 16:79-85. [PMID: 30215335 PMCID: PMC6340153 DOI: 10.2174/1567201815666180914095701] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 09/11/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Aiming at the modified release of melatonin (MLT), electrospun-MLT loaded nanofibers, filled into hard gelatin and DRcapsTM capsules, were used as formulants. METHODS Cellulose acetate, polyvinylpyrrolidinone and hydroxypropylmethylcellusose (HPMC 2910) were used for the preparation of the fiber matrices through electrospinning. The in vitro modified release profile of MLT from the fabricated matrices in gastrointestinal-like fluids was studied. At pH 1.2, the formulations CA1, CA2, PV1, HP1, HP2 and the composite formulations CAPV1-CAPV5 in hard gelatin capsules exhibited fast MLT release. RESULTS In general, the same trend was observed at pH 6.8, with the exception of CAPV1 and CAPV2. These two composite formulations delivered 52.08% and 75.25% MLT, respectively at a slower pace (6 h) when encapsulated in DRcapsTM capsules. In all other cases, the release of MLT from DRcapsTM capsules filled with the MLT-loaded nanofibers reached 100% at 6h. CONCLUSION These findings suggest that the MLT-loaded nanofibrous mats developed in this study exhibit a promising profile for treating sleep dysfunctions.
Collapse
Affiliation(s)
- Marilena Vlachou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefanos Kikionis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Siamidi
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Tragou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefania Kapoti
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathia Ioannou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilios Roussis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Andrew Tsotinis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
74
|
Wróblewska-Krepsztul J, Rydzkowski T, Michalska-Pożoga I, Thakur VK. Biopolymers for Biomedical and Pharmaceutical Applications: Recent Advances and Overview of Alginate Electrospinning. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E404. [PMID: 30857370 PMCID: PMC6473949 DOI: 10.3390/nano9030404] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/19/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Innovative solutions using biopolymer-based materials made of several constituents seems to be particularly attractive for packaging in biomedical and pharmaceutical applications. In this direction, some progress has been made in extending use of the electrospinning process towards fiber formation based on biopolymers and organic compounds for the preparation of novel packaging materials. Electrospinning can be used to create nanofiber mats characterized by high purity of the material, which can be used to create active and modern biomedical and pharmaceutical packaging. Intelligent medical and biomedical packaging with the use of polymers is a broadly and rapidly growing field of interest for industries and academia. Among various polymers, alginate has found many applications in the food sector, biomedicine, and packaging. For example, in drug delivery systems, a mesh made of nanofibres produced by the electrospinning method is highly desired. Electrospinning for biomedicine is based on the use of biopolymers and natural substances, along with the combination of drugs (such as naproxen, sulfikoxazol) and essential oils with antibacterial properties (such as tocopherol, eugenol). This is a striking method due to the ability of producing nanoscale materials and structures of exceptional quality, allowing the substances to be encapsulated and the drugs/ biologically active substances placed on polymer nanofibers. So, in this article we briefly summarize the recent advances on electrospinning of biopolymers with particular emphasis on usage of Alginate for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Jolanta Wróblewska-Krepsztul
- Department of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, Koszalin 75-620, Poland.
| | - Tomasz Rydzkowski
- Department of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, Koszalin 75-620, Poland.
| | - Iwona Michalska-Pożoga
- Department of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, Koszalin 75-620, Poland.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire, MK43 0AL, UK.
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh, 201314, India.
| |
Collapse
|
75
|
Memic A, Abudula T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA. Latest Progress in Electrospun Nanofibers for Wound Healing Applications. ACS APPLIED BIO MATERIALS 2019; 2:952-969. [DOI: 10.1021/acsabm.8b00637] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tuerdimaimaiti Abudula
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Halimatu S. Mohammed
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kasturi Joshi Navare
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Sorbonne University, UTC CNTS UMR 7338, Biomechanics and Bioengineering, University of Technology of Compiegne, 60203 Compiegne, Cedex, France
| |
Collapse
|
76
|
Modica de Mohac L, Keating AV, de Fátima Pina M, Raimi-Abraham BT. Engineering of Nanofibrous Amorphous and Crystalline Solid Dispersions for Oral Drug Delivery. Pharmaceutics 2018; 11:E7. [PMID: 30586871 PMCID: PMC6359107 DOI: 10.3390/pharmaceutics11010007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
Poor aqueous solubility (<0.1 mg/mL) affects a significant number of drugs currently on the market or under development. Several formulation strategies including salt formation, particle size reduction, and solid dispersion approaches have been employed with varied success. In this review, we focus primarily on the emerging trends in the generation of amorphous and micro/nano-crystalline solid dispersions using electrospinning to improve the dissolution rate and in turn the bioavailability of poorly water-soluble drugs. Electrospinning is a simple but versatile process that utilizes electrostatic forces to generate polymeric fibers and has been used for over 100 years to generate synthetic fibers. We discuss the various electrospinning studies and spinneret types that have been used to generate amorphous and crystalline solid dispersions.
Collapse
Affiliation(s)
- Laura Modica de Mohac
- DIBIMIS Department, University of Study of Palermo, 90128 Palermo, Italy.
- Drug Delivery Group, Institute of Pharmaceutical Science Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK.
| | - Alison Veronica Keating
- Drug Delivery Group, Institute of Pharmaceutical Science Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK.
| | - Maria de Fátima Pina
- Department of Pharmaceutics, University College London School of Pharmacy, London WC1N 1AX, UK.
| | - Bahijja Tolulope Raimi-Abraham
- Drug Delivery Group, Institute of Pharmaceutical Science Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK.
| |
Collapse
|
77
|
Wakui Y, Aizawa T. Analysis of Sustained Release Behavior of Drug-Containing Tablet Prepared by CO₂-Assisted Polymer Compression. Polymers (Basel) 2018; 10:E1405. [PMID: 30961330 PMCID: PMC6401936 DOI: 10.3390/polym10121405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
A controlled-release system for drug delivery allows the continuous supply of a drug to the target region at a predetermined rate for a specified period of time. Herein, the sustained release behavior of a drug-containing tablet fabricated through CO₂-assisted polymer compression (CAPC) was investigated. CAPC involves placing the drug in the center of a nonwoven fabric, sandwiching this fabric between an integer number of nonwoven fabrics, and applying pressure bonding. An elution test, in which the drug-carrying tablet was immersed in water, showed that sustained-release performance can be controlled by the number of nonwoven fabrics covering the top and bottom of the drug-loaded fabric and compression conditions. A model of sustained drug release was formulated to estimate the effective diffusion coefficient in the porous material. Comparative analysis of the bulk diffusion coefficient revealed that the change in diffusion volume due to change in porosity predominates. The tortuosity of the diffusion path was 3⁻4, and tended to remain almost constant or increase only slightly when the compression rate was increased. These findings show that sustained drug release can be controlled by incorporating the drug into a nonwoven fabric and using the same raw material to encapsulate it.
Collapse
Affiliation(s)
- Yoshito Wakui
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan.
| | - Takafumi Aizawa
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan.
| |
Collapse
|