51
|
Revealing Adenosine A 2A-Dopamine D 2 Receptor Heteromers in Parkinson's Disease Post-Mortem Brain through a New AlphaScreen-Based Assay. Int J Mol Sci 2019; 20:ijms20143600. [PMID: 31340557 PMCID: PMC6678849 DOI: 10.3390/ijms20143600] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022] Open
Abstract
Background: Several biophysical techniques have been successfully implemented to detect G protein-coupled receptors (GPCRs) heteromerization. Although these approaches have made it possible to ascertain the presence of GPCR heteromers in animal models of disease, no success has been accomplished in pathological human post-mortem brains. The AlphaScreen technology has been consistently used to quantify small analyte accumulation or depletion, bimolecular interactions, and post-translational modifications. The high signal-to-background, dynamic range and sensitivity exhibited by this technology support that it may be suitable to detect GPCR heteromers even under non-optimal conditions. Methods: Here, we describe the development of a new AlphaScreen assay to detect GPCR oligomers in human post-mortem brain. Results: Adenosine A2A-dopamine D2 receptor (A2AR/D2R) heteromer formation was monitored in caudate from healthy and Parkinson’s disease (PD) subjects. The approach was first validated using striatal membranes from wild type and A2AR deficient mice. Secondly, we took advantage of the 6-hydroxydopamine hemiparkinsonian rat model to validate previous results. In addition, finally, A2AR/D2R heteromer formation was assessed in caudate membranes from human post-mortem brains. Importantly, our preliminary results revealed an increase in A2AR/D2R heteromer formation in PD brains. Conclusions: The new AlphaScreen assay allowed assessing GPCR heteromers in human post-mortem brains with high sensitivity.
Collapse
|
52
|
Paiva I, Carvalho K, Santos P, Cellai L, Pavlou MAS, Jain G, Gnad T, Pfeifer A, Vieau D, Fischer A, Buée L, Outeiro TF, Blum D. A
2A
R‐induced transcriptional deregulation in astrocytes: An in vitro study. Glia 2019; 67:2329-2342. [DOI: 10.1002/glia.23688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Isabel Paiva
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Göttingen Germany
| | - Kévin Carvalho
- University of Lille, Inserm, CHU Lille, UMR‐S 1172 ‐ JPArc, LabEx DISTALZ Lille France
| | - Patrícia Santos
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Göttingen Germany
| | - Lucrezia Cellai
- University of Lille, Inserm, CHU Lille, UMR‐S 1172 ‐ JPArc, LabEx DISTALZ Lille France
| | - Maria Angeliki S. Pavlou
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Göttingen Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases German Center for Neurodegenerative Diseases (DZNE) Göttingen Göttingen Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology University Hospital, University of Bonn Bonn Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology University Hospital, University of Bonn Bonn Germany
| | - Didier Vieau
- University of Lille, Inserm, CHU Lille, UMR‐S 1172 ‐ JPArc, LabEx DISTALZ Lille France
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases German Center for Neurodegenerative Diseases (DZNE) Göttingen Göttingen Germany
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR‐S 1172 ‐ JPArc, LabEx DISTALZ Lille France
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Göttingen Germany
- Max Planck Institute for Experimental Medicine Göttingen Germany
- Institute of Neuroscience, The Medical School Newcastle University Newcastle Upon Tyne UK
| | - David Blum
- University of Lille, Inserm, CHU Lille, UMR‐S 1172 ‐ JPArc, LabEx DISTALZ Lille France
| |
Collapse
|
53
|
Falconi A, Bonito-Oliva A, Di Bartolomeo M, Massimini M, Fattapposta F, Locuratolo N, Dainese E, Pascale E, Fisone G, D'Addario C. On the Role of Adenosine A2A Receptor Gene Transcriptional Regulation in Parkinson's Disease. Front Neurosci 2019; 13:683. [PMID: 31354407 PMCID: PMC6635589 DOI: 10.3389/fnins.2019.00683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
Adenosine A2A receptors (A2ARs) have attracted considerable attention as an important molecular target for the design of Parkinson's disease (PD) therapeutic compounds. Here, we studied the transcriptional regulation of the A2AR gene in human peripheral blood mononuclear cells (PBMCs) obtained from PD patients and in the striatum of the well-validated, 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We report an increase in A2AR mRNA expression and protein levels in both human cells and mice striata, and in the latter we could also observe a consistent reduction in DNA methylation at gene promoter and an increase in histone H3 acetylation at lysine 9. Of particular relevance in clinical samples, we also observed higher levels in the receptor gene expression in younger subjects, as well as in those with less years from disease onset, and less severe disease according to clinical scores. In conclusion, the present findings provide further evidence of the relevant role of A2AR in PD and, based on the clinical data, highlight its potential role as disease biomarker for PD especially at the initial stages of disease development. Furthermore, our preclinical results also suggest selective epigenetic mechanisms targeting gene promoter as tool for the development of new treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Enrico Dainese
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Esterina Pascale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Rome, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
54
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019; 71:345-382. [PMID: 31235653 PMCID: PMC6592405 DOI: 10.1124/pr.117.014878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Pál Pacher
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - György Haskó
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| |
Collapse
|
55
|
Alonso-Andrés P, Martín M, Albasanz JL. Modulation of Adenosine Receptors and Antioxidative Effect of Beer Extracts in in Vitro Models. Nutrients 2019; 11:nu11061258. [PMID: 31163630 PMCID: PMC6628356 DOI: 10.3390/nu11061258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
The fight against neurodegenerative diseases is promoting the searching of nutrients, preferably of wide consumption, with proven effects on health. Beer is widely consumed and has potential benefits on health. In this work, three different extracts from dark beer (DB), non-alcoholic beer (NAB), and lager beer (LB) were assayed at 30 min and 24 h in rat C6 glioma and human SH-SY5Y neuroblastoma cells in order to study their possible protective effects. Cell viability and adenosine A1, A2A, A2B, and A3 receptor gene expression and protein levels were measured in control cells and in cells challenged with hydrogen peroxide as an oxidant stressor. Among the three extracts analyzed, DB showed a greater protective effect against H2O2-induced oxidative stress and cell death. Moreover, a higher A1 receptor level was also induced by this extract. Interestingly, A1 receptor level was also increased by NAB and LB extracts, but to a lower extent, and the protective effect of these extracts against H2O2 was lower. This possible correlation between protection and A1 receptor level was observed at 24 h in both C6 and SH-SY5Y cells. In summary, different beer extracts modulate, to a different degree, adenosine receptors expression and protect both glioma and neuroblastoma cells from oxidative stress.
Collapse
Affiliation(s)
- Patricia Alonso-Andrés
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| | - Mairena Martín
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| | - José Luis Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| |
Collapse
|
56
|
Pelassa S, Guidolin D, Venturini A, Averna M, Frumento G, Campanini L, Bernardi R, Cortelli P, Buonaura GC, Maura G, Agnati LF, Cervetto C, Marcoli M. A2A-D2 Heteromers on Striatal Astrocytes: Biochemical and Biophysical Evidence. Int J Mol Sci 2019; 20:ijms20102457. [PMID: 31109007 PMCID: PMC6566402 DOI: 10.3390/ijms20102457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Our previous findings indicate that A2A and D2 receptors are co-expressed on adult rat striatal astrocytes and on the astrocyte processes, and that A2A-D2 receptor–receptor interaction can control the release of glutamate from the processes. Functional evidence suggests that the receptor–receptor interaction was based on heteromerization of native A2A and D2 receptors at the plasma membrane of striatal astrocyte processes. We here provide biochemical and biophysical evidence confirming that receptor–receptor interaction between A2A and D2 receptors at the astrocyte plasma membrane is based on A2A-D2 heteromerization. To our knowledge, this is the first direct demonstration of the ability of native A2A and D2 receptors to heteromerize on glial cells. As striatal astrocytes are recognized to be involved in Parkinson’s pathophysiology, the findings that adenosine A2A and dopamine D2 receptors can form A2A-D2 heteromers on the astrocytes in the striatum (and that these heteromers can play roles in the control of the striatal glutamatergic transmission) may shed light on the molecular mechanisms involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy.
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy.
| | - Giulia Frumento
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Letizia Campanini
- Division of Experimental Oncology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy.
| | - Rosa Bernardi
- Division of Experimental Oncology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy.
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139 Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy.
| | - Giovanna Calandra Buonaura
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139 Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy.
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 65 Stockholm, Sweden.
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
- Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy.
| |
Collapse
|
57
|
MicroRNAs: Game Changers in the Regulation of α-Synuclein in Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:1743183. [PMID: 31191899 PMCID: PMC6525811 DOI: 10.1155/2019/1743183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/24/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Its neuropathological hallmarks include neuronal loss in the substantia nigra pars compacta (SNpc) and the presence of Lewy bodies containing aggregates of α-synuclein (α-syn). An imbalance between the rates of α-syn synthesis, aggregation, and clearance can result in abnormal α-syn levels and contribute to the pathogenesis of PD. MicroRNAs (miRNAs) are endogenous single-stranded noncoding RNAs (∼22 nucleotides) that have recently emerged as key posttranscriptional regulators of gene expression. In this review, we summarize the functions of miRNAs that directly target α-syn. We also review miRNAs that indirectly impact α-syn levels or toxicity through different pathways, including those involved in the clearance of α-syn and neuroinflammation.
Collapse
|
58
|
Renani PG, Taheri F, Rostami D, Farahani N, Abdolkarimi H, Abdollahi E, Taghizadeh E, Gheibi Hayat SM. Involvement of aberrant regulation of epigenetic mechanisms in the pathogenesis of Parkinson's disease and epigenetic-based therapies. J Cell Physiol 2019; 234:19307-19319. [PMID: 30968426 DOI: 10.1002/jcp.28622] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is known as a progressive neurodegenerative disorder associated with the reduction of dopamine-secreting neurons and the formation of Lewy bodies in the substantia nigra and basal ganglia routes. Aging, as well as environmental and genetic factors, are considered as disease risk factors that can make PD as a complex one. Epigenetics means studying heritable changes in gene expression or function, without altering the underlying DNA sequence. Multiple studies have shown the association of epigenetic variations with onset or progression of various types of diseases. DNA methylation, posttranslational modifications of histones and presence of microRNA (miRNA) are among epigenetic processes involved in regulating pathways related to the development of PD. Unlike genetic mutations, most epigenetic variations may be reversible or preventable. Therefore, the return of aberrant epigenetic events in different cells is a growing therapeutic approach to treatment or prevention. Currently, there are several methods for treating PD patients, the most important of which are drug therapies. However, detection of genes and epigenetic mechanisms involved in the disease can develop appropriate diagnosis and treatment of the disease before the onset of disabilities and resulting complications. The main purpose of this study was to review the most important epigenetic molecular mechanisms, epigenetic variations in PD, and epigenetic-based therapies.
Collapse
Affiliation(s)
- Pedram G Renani
- Genetic Department, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Forogh Taheri
- Genetic Department, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Abdolkarimi
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Elahe Abdollahi
- Department of Medical Genetics, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
59
|
Nedeljkovic N. Complex regulation of ecto-5'-nucleotidase/CD73 and A 2AR-mediated adenosine signaling at neurovascular unit: A link between acute and chronic neuroinflammation. Pharmacol Res 2019; 144:99-115. [PMID: 30954629 DOI: 10.1016/j.phrs.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
The review summarizes available data regarding the complex regulation of CD73 at the neurovascular unit (NVU) during neuroinflammation. Based on available data we propose the biphasic pattern of CD73 regulation at NVU, with an early attenuation and a postponed up-regulation of CD73 activity. Transient attenuation of CD73 activity on leukocyte/vascular endothelium and leukocyte/astrocyte surface, required for the initiation of a neuroinflammatory response, may be effectuated either by catalytic inhibition of CD73 and/or by shedding of the CD73 molecule from the cell surface, while postponed induction of CD73 is effectuated by transcriptional up-regulation of Nt5e and posttranslational modifications. Neuroinflammatory conditions are also associated with significant enhancement and gain-of-function of A2AR-mediated adenosine signaling. However, in contrast to the temporary prevalence of A2AR over A1R signaling during an acute inflammatory response, prolonged induction of A2AR and resulting perpetual CD73/A2AR coupling may be a contributing factors in the transition between acute and chronic neuroinflammation. Thus, pharmacological targeting of the CD73/A2AR axis may attenuate inflammatory response and ameliorate neurological deficits in chronic neuroinflammatory conditions.
Collapse
Affiliation(s)
- Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Studentski trg 3, Belgrade 11001, Serbia.
| |
Collapse
|
60
|
Resveratrol Modulates and Reverses the Age-Related Effect on Adenosine-Mediated Signalling in SAMP8 Mice. Mol Neurobiol 2018; 56:2881-2895. [DOI: 10.1007/s12035-018-1281-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
|
61
|
Cervetto C, Venturini A, Guidolin D, Maura G, Passalacqua M, Tacchetti C, Cortelli P, Genedani S, Candiani S, Ramoino P, Pelassa S, Marcoli M, Agnati LF. Homocysteine and A2A-D2 Receptor-Receptor Interaction at Striatal Astrocyte Processes. J Mol Neurosci 2018; 65:456-466. [PMID: 30030763 DOI: 10.1007/s12031-018-1120-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/11/2018] [Indexed: 01/03/2023]
Abstract
The interaction between adenosine A2A and dopamine D2 receptors in striatal neurons is a well-established phenomenon and has opened up new perspectives on the molecular mechanisms involved in Parkinson's disease. However, it has barely been investigated in astrocytes. Here, we show by immunofluorescence that both A2A and D2 receptors are expressed in adult rat striatal astrocytes in situ, and investigate on presence, function, and interactions of the receptors in the astrocyte processes-acutely prepared from the adult rat striatum-and on the effects of homocysteine on the A2A-D2 receptor-receptor interaction. We found that A2A and D2 receptors were co-expressed on vesicular glutamate transporter-1-positive astrocyte processes, and confirmed that A2A-D2 receptor-receptor interaction controlled glutamate release-assessed by measuring the [3H]D-aspartate release-from the processes. The complexity of A2A-D2 receptor-receptor interaction is suggested by the effect of intracellular homocysteine, which reduced D2-mediated inhibition of glutamate release (homocysteine allosteric action on D2), without interfering with the A2A-mediated antagonism of the D2 effect (maintained A2A-D2 interaction). Our findings indicate the crucial integrative role of A2A-D2 molecular circuits at the plasma membrane of striatal astrocyte processes. The fact that homocysteine reduced D2-mediated inhibition of glutamate release could provide new insights into striatal astrocyte-neuron intercellular communications. As striatal astrocytes are recognized to be involved in Parkinson's pathophysiology, these findings may shed light on the pathogenic mechanisms of the disease and contribute to the development of new drugs for its treatment.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, and Italian Institute of Biostructures and Biosystems, University of Genova, Genoa, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, Scientific Institute San Raffaele, Milan, Italy
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Susanna Genedani
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences, University of Genova, Genoa, Italy
| | - Paola Ramoino
- Department of Earth, Environmental and Life Sciences, University of Genova, Genoa, Italy
| | - Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy. .,Centre of Excellence for Biomedical Research CEBR, University of Genova, Genoa, Italy.
| | - Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
62
|
Vo MT, Choi SH, Lee JH, Hong CH, Kim JS, Lee UH, Chung HM, Lee BJ, Park JW, Cho WJ. Tristetraprolin inhibits mitochondrial function through suppression of α-Synuclein expression in cancer cells. Oncotarget 2018; 8:41903-41920. [PMID: 28410208 PMCID: PMC5522037 DOI: 10.18632/oncotarget.16706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/19/2017] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial dynamics play critical roles in maintaining mitochondrial functions. Here, we report a novel mechanism for regulation of mitochondrial dynamics mediated by tristetraprolin (TTP), an AU-rich element (ARE)-binding protein. Overexpression of TTP resulted in elongated mitochondria, down-regulation of mitochondrial oxidative phosphorylation, reduced membrane potential, cytochrome c release, and increased apoptotic cell death in cancer cells. TTP overexpression inhibited the expression of α-Synuclein (α-Syn). TTP bound to the ARE within the mRNA 3′-untranslated regions (3′-UTRs) of α-Syn and enhanced the decay of α-Syn mRNA. Overexpression of α-Syn without the 3′-UTR restored TTP-induced defects in mitochondrial morphology, mitochondrial oxidative phosphorylation, membrane potential, and apoptotic cell death. Taken together, our data demonstrate that TTP acts as a regulator of mitochondrial dynamics through enhancing degradation of α-Syn mRNA in cancer cells. This finding will increase understanding of the molecular basis of mitochondrial dynamics.
Collapse
Affiliation(s)
- Mai-Tram Vo
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Seong Hee Choi
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Ji-Heon Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul, 143-701, Korea
| | - Chung Hwan Hong
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Jong Soo Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul, 143-701, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul, 143-701, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Wha Ja Cho
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| |
Collapse
|
63
|
Long non-coding and coding RNAs characterization in Peripheral Blood Mononuclear Cells and Spinal Cord from Amyotrophic Lateral Sclerosis patients. Sci Rep 2018; 8:2378. [PMID: 29402919 PMCID: PMC5799454 DOI: 10.1038/s41598-018-20679-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Alteration in RNA metabolism, concerning both coding and long non-coding RNAs (lncRNAs), may play an important role in Amyotrophic Lateral Sclerosis (ALS) pathogenesis. In this work, we performed a whole transcriptome RNA-seq analysis to investigate the regulation of non-coding and coding RNAs in Sporadic ALS patients (SALS), mutated ALS patients (FUS, TARDBP and SOD1) and matched controls in Peripheral Blood Mononuclear Cells (PBMC). Selected transcripts were validated in spinal cord tissues. A total of 293 differentially expressed (DE) lncRNAs was found in SALS patients, whereas a limited amount of lncRNAs was deregulated in mutated patients. A total of 87 mRNAs was differentially expressed in SALS patients; affected genes showed an association with transcription regulation, immunity and apoptosis pathways. Taken together our data highlighted the importance of extending the knowledge on transcriptomic molecular alterations and on the significance of regulatory lncRNAs classes in the understanding of ALS disease. Our data brought the light on the importance of lncRNAs and mRNAs regulation in central and peripheral systems, offering starting points for new investigations about pathogenic mechanism involved in ALS disease.
Collapse
|
64
|
Ferrer I. Sisyphus in Neverland. J Alzheimers Dis 2018; 62:1023-1047. [PMID: 29154280 PMCID: PMC5870014 DOI: 10.3233/jad-170609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 11/24/2022]
Abstract
The study of life and living organisms and the way in which these interact and organize to form social communities have been central to my career. I have been fascinated by biology, neurology, and neuropathology, but also by history, sociology, and art. Certain current historical, political, and social events, some occurring proximally but others affecting people in apparently distant places, have had an impact on me. Epicurus, Seneca, and Camus shared their philosophical positions which I learned from. Many scientists from various disciplines have been exciting sources of knowledge as well. I have created a world of hypothesis and experiments but I have also got carried away by serendipity following unexpected observations. It has not been an easy path; errors and wanderings are not uncommon, and opponents close to home much more abundant than one might imagine. Ambition, imagination, resilience, and endurance have been useful in moving ahead in response to setbacks. In the end, I have enjoyed my dedication to science and I am grateful to have glimpsed beauty in it. These are brief memories of a Spanish neuropathologist born and raised in Barcelona, EU.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Service of Pathological Anatomy, Bellvitge University Hospital; CIBERNED; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
65
|
Diao HL, Xue Y, Han XH, Wang SY, Liu C, Chen WF, Chen L. Adenosine A 2A Receptor Modulates the Activity of Globus Pallidus Neurons in Rats. Front Physiol 2017; 8:897. [PMID: 29163226 PMCID: PMC5682020 DOI: 10.3389/fphys.2017.00897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
The globus pallidus is a central nucleus in the basal ganglia motor control circuit. Morphological studies have revealed the expression of adenosine A2A receptors in the globus pallidus. To determine the modulation of adenosine A2A receptors on the activity of pallidal neurons in both normal and parkinsonian rats, in vivo electrophysiological and behavioral tests were performed in the present study. The extracellular single unit recordings showed that micro-pressure administration of adenosine A2A receptor agonist, CGS21680, regulated the pallidal firing activity. GABAergic neurotransmission was involved in CGS21680-induced modulation of pallidal neurons via a PKA pathway. Furthermore, application of two adenosine A2A receptor antagonists, KW6002 or SCH442416, mainly increased the spontaneous firing of pallidal neurons, suggesting that endogenous adenosine system modulates the activity of pallidal neurons through adenosine A2A receptors. Finally, elevated body swing test (EBST) showed that intrapallidal microinjection of adenosine A2A receptor agonist/antagonist induced ipsilateral/contralateral-biased swing, respectively. In addition, the electrophysiological and behavioral findings also revealed that activation of dopamine D2 receptors by quinpirole strengthened KW6002/SCH442416-induced excitation of pallidal activity. Co-application of quinpirole with KW6002 or SCH442416 alleviated biased swing in hemi-parkinsonian rats. Based on the present findings, we concluded that pallidal adenosine A2A receptors may be potentially useful in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Hui-Ling Diao
- Department of Physiology, Qingdao University, Qingdao, China.,Department of Physiology, Binzhou Medical University, Yantai, China
| | - Yan Xue
- Department of Physiology, Qingdao University, Qingdao, China
| | - Xiao-Hua Han
- Department of Physiology, Qingdao University, Qingdao, China
| | - Shuang-Yan Wang
- Department of Physiology, Qingdao University, Qingdao, China.,Department of Anatomy, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Physiology, Qingdao University, Qingdao, China
| | - Wen-Fang Chen
- Department of Physiology, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, Qingdao University, Qingdao, China
| |
Collapse
|
66
|
Yuan XS, Wang L, Dong H, Qu WM, Yang SR, Cherasse Y, Lazarus M, Schiffmann SN, d'Exaerde ADK, Li RX, Huang ZL. Striatal adenosine A 2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. eLife 2017; 6:29055. [PMID: 29022877 PMCID: PMC5655138 DOI: 10.7554/elife.29055] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Dysfunction of the striatum is frequently associated with sleep disturbances. However, its role in sleep-wake regulation has been paid little attention even though the striatum densely expresses adenosine A2A receptors (A2ARs), which are essential for adenosine-induced sleep. Here we showed that chemogenetic activation of A2AR neurons in specific subregions of the striatum induced a remarkable increase in non-rapid eye movement (NREM) sleep. Anatomical mapping and immunoelectron microscopy revealed that striatal A2AR neurons innervated the external globus pallidus (GPe) in a topographically organized manner and preferentially formed inhibitory synapses with GPe parvalbumin (PV) neurons. Moreover, lesions of GPe PV neurons abolished the sleep-promoting effect of striatal A2AR neurons. In addition, chemogenetic inhibition of striatal A2AR neurons led to a significant decrease of NREM sleep at active period, but not inactive period of mice. These findings reveal a prominent contribution of striatal A2AR neuron/GPe PV neuron circuit in sleep control.
Collapse
Affiliation(s)
- Xiang-Shan Yuan
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Hui Dong
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Su-Rong Yang
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Rui-Xi Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
67
|
Blesa J, Trigo-Damas I, Dileone M, Del Rey NLG, Hernandez LF, Obeso JA. Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Exp Neurol 2017; 298:148-161. [PMID: 28987461 DOI: 10.1016/j.expneurol.2017.10.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
The motor features of Parkinson's disease (PD) are well known to manifest only when striatal dopaminergic deficit reaches 60-70%. Thus, PD has a long pre-symptomatic and pre-motor evolution during which compensatory mechanisms take place to delay the clinical onset of disabling manifestations. Classic compensatory mechanisms have been attributed to changes and adjustments in the nigro-striatal system, such as increased neuronal activity in the substantia nigra pars compacta and enhanced dopamine synthesis and release in the striatum. However, it is not so clear currently that such changes occur early enough to account for the pre-symptomatic period. Other possible mechanisms relate to changes in basal ganglia and motor cortical circuits including the cerebellum. However, data from early PD patients are difficult to obtain as most studies have been carried out once the diagnosis and treatments have been established. Likewise, putative compensatory mechanisms taking place throughout disease evolution are nearly impossible to distinguish by themselves. Here, we review the evidence for the role of the best known and other possible compensatory mechanisms in PD. We also discuss the possibility that, although beneficial in practical terms, compensation could also play a deleterious role in disease progression.
Collapse
Affiliation(s)
- Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Michele Dileone
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ledia F Hernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
68
|
Engkvist ME, Stratford EW, Lorenz S, Meza-Zepeda LA, Myklebost O, Munthe E. Analysis of the miR-34 family functions in breast cancer reveals annotation error of miR-34b. Sci Rep 2017; 7:9655. [PMID: 28848235 PMCID: PMC5573726 DOI: 10.1038/s41598-017-10189-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
The microRNAs in the miR-34 family, consisting of miR-34a, miR-34b and miR-34c, are tumour suppressors. The annotated human miR-34b-5p has one additional base at the 5' end of the common miR-34 family seed sequence, compared to miR-34a-5p and miR-34c-5p. This extra base results in a shift of the seed sequence, which would affect the target gene repertoire and have functional consequences. During our studies of miR-34 functions, we investigated the precise sequence of mature miR-34b-5p in human cells by deep sequencing. We found that a miR-34b-5p without the extra base was the predominant form in both non-malignant and malignant cells derived from several human tissues, indicating that the miR-34b annotation is misleading. We evaluated the functional implications of the seed shift, by comparing the effect of mimics representing the alternative miR-34b-5p sequences in MDA-MB-231 cells. In contrast to the annotated miR-34b, the endogenously expressed miR-34b displayed tumour suppressive characteristics in vitro similarly to miR-34c. These data demonstrate the importance of determining the precise sequence of a mature microRNA before exploring miRNA functions.
Collapse
Affiliation(s)
- M E Engkvist
- Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - E W Stratford
- Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - S Lorenz
- Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - L A Meza-Zepeda
- Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - O Myklebost
- Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - E Munthe
- Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
69
|
Zhang X, Yang R, Hu BL, Lu P, Zhou LL, He ZY, Wu HM, Zhu JH. Reduced Circulating Levels of miR-433 and miR-133b Are Potential Biomarkers for Parkinson's Disease. Front Cell Neurosci 2017; 11:170. [PMID: 28690499 PMCID: PMC5481393 DOI: 10.3389/fncel.2017.00170] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/06/2017] [Indexed: 11/15/2022] Open
Abstract
Aberrant expression of microRNA (miRNA) in tissues may lead to altered level in circulation. Considerable evidence has suggested that miRNA deregulation is involved in the pathogenesis of Parkinson’s disease (PD). In this study, we screened a set of PD-associated miRNAs and aimed to identify differentially expressed miRNAs in plasma of PD patients and to evaluate their potentiality to serve as PD biomarkers. A total of 95 subjects consisting of 46 sporadic PD cases and 49 controls were recruited. Plasma levels of six miRNAs including miR-433, miR-133b, miR-34b, miR-34c, miR-153, and miR-7 were evaluated using reverse transcribed quantitative PCR, among which we found that miR-34c and miR-7 were below detection limit under our condition. The results showed that levels of circulating miR-433 (P = 0.003) and miR-133b (P = 0.006), but not miR-34b and miR-153, were reduced in PD patients. miR-433 and miR-133b were strongly correlated in both control and PD groups (rs = 0.87 and 0.85, respectively). The correlation between miR-34b and miR-153 expressions was significantly reduced (P < 0.05) in the PD group. Although miR-433 and miR-133b were likely to be functionally complimentary as suggested by Pathway and Gene Ontology analyses, these two miRNAs per se might not be sufficient to predict PD. No correlation was observed between the four miRNAs and age or severity of disease. Collectively, our results demonstrate that circulating miR-433 and miR-133b are significantly altered in PD and may serve as PD biomarkers.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, WenzhouChina.,Department of Preventive Medicine, Wenzhou Medical University, WenzhouChina
| | - Rui Yang
- Department of Preventive Medicine, Wenzhou Medical University, WenzhouChina
| | - Bei-Lei Hu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, WenzhouChina
| | - Pengcheng Lu
- Department of Biostatistics Graduate Program, University of Kansas Medical Center, Kansas CityKS, United States
| | - Li-Li Zhou
- Department of Preventive Medicine, Wenzhou Medical University, WenzhouChina
| | - Zhi-Yong He
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, WenzhouChina
| | - Hong-Mei Wu
- Department of Preventive Medicine, Wenzhou Medical University, WenzhouChina
| | - Jian-Hong Zhu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, WenzhouChina.,Department of Preventive Medicine, Wenzhou Medical University, WenzhouChina.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, WenzhouChina
| |
Collapse
|
70
|
Altered adenosine 2A and dopamine D2 receptor availability in the 6-hydroxydopamine-treated rats with and without levodopa-induced dyskinesia. Neuroimage 2017; 157:209-218. [PMID: 28583881 DOI: 10.1016/j.neuroimage.2017.05.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 11/22/2022] Open
Abstract
Several lines of evidence imply alterations in adenosine signaling in Parkinson's disease (PD). Here, we investigated cerebral changes in adenosine 2A receptor (A2AR) availability in 6-hydroxydopamine (6-OHDA)-lesioned rats with and without levodopa-induced dyskinesia (LID) using positron-emission tomography (PET) with [11C]preladenant. In parallel dopamine type 2 receptor (D2R) imaging with [11C]raclopride PET and behavioral tests for motor and cognitive function were performed. METHODS Parametric A2AR and D2R binding potential (BPND) images were reconstructed using reference tissue models with midbrain and cerebellum as reference tissue, respectively. All images were anatomically standardized to Paxinos space and analyzed using volume-of-interest (VOI) and voxel-based approaches. The behavioral alternations were assessed with the open field test, Y-maze, novel object recognition test, cylinder test, and abnormal involuntary movement (AIM) score. In total, 28 female Wistar rats were included. RESULTS On the behavioral level, 6-OHDA-lesioned rats showed asymmetry in forepaw use and deficits in spatial memory and explorative behavior as compared to the sham-operated animals. 15-Days of levodopa (L-DOPA) treatment induced dyskinesia but did not alleviate motor deficits in PD rats. Intranigral 6-OHDA injection significantly increased D2R binding in the lesioned striatum (BPND: 2.69 ± 0.40 6-OHDA vs. 2.31 ± 0.18 sham, + 16.6%; p = 0.03), whereas L-DOPA treatment did not affect the D2R binding in the ipsilateral striatum of the PD rats. In addition, intranigral 6-OHDA injection tended to decrease the A2AR availability in the lesioned striatum. The decrease became significant when data were normalized to the non-affected side (BPND: 4.32 ± 0.41 6-OHDA vs. 4.58 ± 0.89 sham; NS, ratio: 0.94 ± 0.03 6-OHDA vs. 1.00 ± 0.02 sham; - 6.1%; p = 0.01). L-DOPA treatment significantly increased A2AR binding in the affected striatum (BPND: 6.02 ± 0.91 L-DOPA vs. 4.90 ± 0.76 saline; + 23.4%; p = 0.02). In PD rats with LID, positive correlations were found between D2R and A2AR BPND values in the ipsilateral striatum (r = 0.88, ppeak = 8.56.10-4 uncorr), and between AIM score and the D2R BPND in the contralateral striatum (r = 0.98; ppeak = 9.55.10-5 uncorr). CONCLUSION A2AR availability changed in drug-naïve and in L-DOPA-treated PD rats. The observed correlations of striatal D2R availability with A2AR availability and with AIM score may provide new knowledge on striatal physiology and new possibilities to further unravel the functions of these targets in the pathophysiology of PD.
Collapse
|
71
|
Singh A, Sen D. MicroRNAs in Parkinson's disease. Exp Brain Res 2017; 235:2359-2374. [PMID: 28526930 DOI: 10.1007/s00221-017-4989-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 05/16/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disease commonly affecting the older population. Loss of dopaminergic neurons in the substantia nigra of brain leads to impairment of motor activities as well as cognitive defects. There are many underlying causes to this disease, both genetic and epigenetic, which are yet to be fully explored. Non-coding RNAs are significant part of our genome and are involved in various cellular processes. MicroRNAs, which are small non-coding RNAs having 20-22 nucleotides, are involved in many underlying mechanisms of pathogenesis of several neurodegenerative diseases including Parkinson's. This review focuses on the role played by microRNAs in regulating various genes responsible for the onset and pathogenesis of Parkinson's disease and various literature evidences pointing at the usefulness of targeting specific microRNAs as a potential alternate therapeutic strategy for successful impairment of the disease progression. This review also discusses about various biofluid-based microRNA markers which may be potentially utilized for diagnostic purposes.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, Tamil Nadu, 632014, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
72
|
Pavlou MAS, Pinho R, Paiva I, Outeiro TF. The yin and yang of α-synuclein-associated epigenetics in Parkinson's disease. Brain 2017; 140:878-886. [PMID: 27585855 DOI: 10.1093/brain/aww227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/08/2016] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disorder. The main neuropathological hallmarks of the disease are the degeneration of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of protein inclusions known as Lewy bodies. Recently, great attention has been given to the study of genes associated with both familial and sporadic forms of Parkinson's disease. Among them, the α-synuclein gene is believed to play a central role in the disease and is, therefore, one of the most studied genes. Parkinson's disease is a complex disorder and, as such, derives from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of epigenetic-mediated regulation of gene expression that has been linked with α-synuclein and associated with Parkinson's disease. We also provide an overview of how epigenetic modifications can influence the transcription and/or translation of the α-synuclein gene and, on the other hand, how α-synuclein function/dysfunction can, per se, affect the epigenetic landscape. Finally, we discuss how a deeper understanding of the epigenetic profile of α-synuclein may enable the development of novel therapeutic approaches for Parkinson's disease and other synucleinopathies.
Collapse
Affiliation(s)
- Maria Angeliki S Pavlou
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Raquel Pinho
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Faculty of Medicine, University of Porto, 4099-002, Porto, Portugal
| | - Isabel Paiva
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
73
|
Tagliafierro L, Glenn OC, Zamora ME, Beach TG, Woltjer RL, Lutz MW, Chiba-Falek O. Genetic analysis of α-synuclein 3' untranslated region and its corresponding microRNAs in relation to Parkinson's disease compared to dementia with Lewy bodies. Alzheimers Dement 2017; 13:1237-1250. [PMID: 28431219 DOI: 10.1016/j.jalz.2017.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The α-synuclein (SNCA) gene has been implicated in the etiology of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). METHODS A computational analysis of SNCA 3' untranslated region to identify potential microRNA (miRNA) binding sites and quantitative real-time polymerase chain reaction (PCR) to determine their expression in isogenic induced pluripotent stem cell-derived dopaminergic and cholinergic neurons as a model of PD and DLB, respectively, were performed. In addition, we performed a deep sequencing analysis of the SNCA 3' untranslated region of autopsy-confirmed cases of PD, DLB, and normal controls, followed by genetic association analysis of the identified variants. RESULTS We identified four miRNA binding sites and observed a neuronal-type-specific expression profile for each miRNA in the different isogenic induced pluripotent stem cell-derived dopaminergic and cholinergic neurons. Furthermore, we found that the short structural variant rs777296100-polyT was moderately associated with DLB but not with PD. DISCUSSION We suggest that the regulation of SNCA expression through miRNAs is neuronal-type-specific and possibly plays a part in the phenotypic heterogeneity of synucleinopathies. Furthermore, genetic variability in the SNCA gene may contribute to synucleinopathies in a pathology-specific manner.
Collapse
Affiliation(s)
- Lidia Tagliafierro
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Omolara-Chinue Glenn
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Madison E Zamora
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Randy L Woltjer
- Department of Pathology, Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael W Lutz
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ornit Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
74
|
van Waarde A, Dierckx RAJO, Zhou X, Khanapur S, Tsukada H, Ishiwata K, Luurtsema G, de Vries EFJ, Elsinga PH. Potential Therapeutic Applications of Adenosine A 2A Receptor Ligands and Opportunities for A 2A Receptor Imaging. Med Res Rev 2017; 38:5-56. [PMID: 28128443 DOI: 10.1002/med.21432] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Adenosine A2A receptors (A2A Rs) are highly expressed in the human striatum, and at lower densities in the cerebral cortex, the hippocampus, and cells of the immune system. Antagonists of these receptors are potentially useful for the treatment of motor fluctuations, epilepsy, postischemic brain damage, or cognitive impairment, and for the control of an immune checkpoint during immunotherapy of cancer. A2A R agonists may suppress transplant rejection and graft-versus-host disease; be used to treat inflammatory disorders such as asthma, inflammatory bowel disease, and rheumatoid arthritis; be locally applied to promote wound healing and be employed in a strategy for transient opening of the blood-brain barrier (BBB) so that therapeutic drugs and monoclonal antibodies can enter the brain. Increasing A2A R signaling in adipose tissue is also a potential strategy to combat obesity. Several radioligands for positron emission tomography (PET) imaging of A2A Rs have been developed in recent years. This review article presents a critical overview of the potential therapeutic applications of A2A R ligands, the use of A2A R imaging in drug development, and opportunities and limitations of PET imaging in future research.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands.,Department of Nuclear Medicine, University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Xiaoyun Zhou
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Shivashankar Khanapur
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Kiichi Ishiwata
- Research Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama, 963-8052, Japan.,Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Gert Luurtsema
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Erik F J de Vries
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
75
|
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder, with the clinical main symptoms caused by a loss of dopaminergic neurons in the substantia nigra, corpus striatum and brain cortex. Over 90% of patients with PD have sporadic PD and occur in people with no known family history of the disorder. Currently there is no cure for PD. Treatment with medications to increase dopamine relieves the symptoms but does not slow down or reverse the damage to neurons in the brain. Increasing evidence points to inflammation as a chief mediator of PD with inflammatory response mechanisms, involving microglia and leukocytes, activated following loss of dopaminergic neurons. Oxidative stress is also recognized as one of the main causes of PD, and excessive reactive oxygen species (ROS) and reactive nitrogen species can lead to dopaminergic neuron vulnerability and eventual death. MicroRNAs control a range of physiological and pathological functions, and may serve as potential targets for intervention against PD to mitigate damage to the brain. Several studies have demonstrated that microRNAs can regulate oxidative stress and prevent ROS-mediated damage to dopaminergic neurons, suggesting that specific microRNAs may be putative targets for novel therapeutic strategies in PD. Recent human and animal studies have identified a large number of dysregulated microRNAs in PD brain tissue samples, many of which were downregulated. The dysregulated microRNAs affect downstream targets such as SNCA, PARK2, LRRK2, TNFSF13B, LTA, SLC5A3, PSMB2, GSR, GBA, LAMP-2A, HSC. Apart from one study, none of the studies reviewed had used agomirs or antagomirs to reverse the levels of downregulated or upregulated microRNAs, respectively, in mouse models of PD or with isolated human or mouse dopaminergic cells. Further large-scale studies of brain tissue samples collected with short postmortem interval from human PD patients are warranted to provide more information on the microRNA profiles in different brain regions and to test for gender differences.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular and Cellular Biology, University of California, Merced, CA, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
76
|
Wen KX, Miliç J, El-Khodor B, Dhana K, Nano J, Pulido T, Kraja B, Zaciragic A, Bramer WM, Troup J, Chowdhury R, Ikram MA, Dehghan A, Muka T, Franco OH. The Role of DNA Methylation and Histone Modifications in Neurodegenerative Diseases: A Systematic Review. PLoS One 2016; 11:e0167201. [PMID: 27973581 PMCID: PMC5156363 DOI: 10.1371/journal.pone.0167201] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD). OBJECTIVE To systematically review studies investigating epigenetic marks in AD or PD. METHODS Eleven bibliographic databases (Embase.com, Medline (Ovid), Web-of-Science, Scopus, PubMed, Cinahl (EBSCOhost), Cochrane Central, ProQuest, Lilacs, Scielo and Google Scholar) were searched until July 11th 2016 to identify relevant articles. We included all randomized controlled trials, cohort, case-control and cross-sectional studies in humans that examined associations between epigenetic marks and ND. Two independent reviewers, with a third reviewer available for disagreements, performed the abstract and full text selection. Data was extracted using a pre-designed data collection form. RESULTS Of 6,927 searched references, 73 unique case-control studies met our inclusion criteria. Overall, 11,453 individuals were included in this systematic review (2,640 AD and 2,368 PD outcomes). There was no consistent association between global DNA methylation pattern and any ND. Studies reported epigenetic regulation of 31 genes (including cell communication, apoptosis, and neurogenesis genes in blood and brain tissue) in relation to AD and PD. Methylation at the BDNF, SORBS3 and APP genes in AD were the most consistently reported associations. Methylation of α-synuclein gene (SNCA) was also found to be associated with PD. Seven studies reported histone protein alterations in AD and PD. CONCLUSION Many studies have investigated epigenetics and ND. Further research should include larger cohort or longitudinal studies, in order to identify clinically significant epigenetic changes. Identifying relevant epigenetic changes could lead to interventional strategies in ND.
Collapse
Affiliation(s)
- Ke-xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Jelena Miliç
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Bassem El-Khodor
- Research and Development, Metagenics, Inc, United States of America
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Tammy Pulido
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Bledar Kraja
- Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania
- University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | | | - John Troup
- Research and Development, Metagenics, Inc, United States of America
| | - Rajiv Chowdhury
- Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
| | - M. Arfam Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
77
|
Recent developments in circulating biomarkers in Parkinson’s disease: the potential use of miRNAs in a clinical setting. Bioanalysis 2016; 8:2497-2518. [DOI: 10.4155/bio-2016-0166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting 5% of the elderly population. PD diagnosis is still based on the identification of neuromotor symptoms although nonmotor manifestations emerge years prior to diagnosis. The discovery of biomarkers at the earliest stages of PD is of extreme interest. miRNAs have been considered potential biomarkers for neurodegenerative diseases, but only a limited number have been found to be PD related. This review focuses on the current findings in the field of circulating miRNAs in PD and the challenges surrounding clinical utility and validation. We briefly describe the more established circulating biomarkers in PD and provide a more thorough review of miRNAs differentially expressed in PD. We highlight their potential for being considered as biomarkers for diagnosis while emphasizing the challenges for adequate validation of the findings and how miRNAs can be envisioned in a clinical setting satisfying regulatory bodies.
Collapse
|
78
|
Ferrari D, Bianchi N, Eltzschig HK, Gambari R. MicroRNAs Modulate the Purinergic Signaling Network. Trends Mol Med 2016; 22:905-918. [PMID: 27623176 DOI: 10.1016/j.molmed.2016.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules capable of silencing mRNA targets. miRNA dysregulation has been linked to cancer development, cardiovascular and neurological diseases, lipid metabolism, and impaired immunity. Therefore, miRNAs are gaining interest as putative novel disease biomarkers and therapeutic targets. Recent studies have shown that purinergic surface receptors activated by extracellular nucleotides (ATP, ADP, UTP, UDP), and by nucleosides such as adenosine (ADO), are subject to miRNA regulation. This opens a new and previously unrecognized opportunity to modulate the purinergic network with the aim of avoiding abnormal activation of specific receptor subtypes. miRNA technology will hopefully contribute strategies to prevent purinergic-mediated tissue damage in conditions of neurodegeneration, atherosclerosis, transplantation, and even neoplasia.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Nicoletta Bianchi
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Texas Medical School at Houston, Houston, TX, USA
| | - Roberto Gambari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
79
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
80
|
Toulorge D, Schapira AHV, Hajj R. Molecular changes in the postmortem parkinsonian brain. J Neurochem 2016; 139 Suppl 1:27-58. [PMID: 27381749 DOI: 10.1111/jnc.13696] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/14/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease after Alzheimer disease. Although PD has a relatively narrow clinical phenotype, it has become clear that its etiological basis is broad. Post-mortem brain analysis, despite its limitations, has provided invaluable insights into relevant pathogenic pathways including mitochondrial dysfunction, oxidative stress and protein homeostasis dysregulation. Identification of the genetic causes of PD followed the discovery of these abnormalities, and reinforced the importance of the biochemical defects identified post-mortem. Recent genetic studies have highlighted the mitochondrial and lysosomal areas of cell function as particularly significant in mediating the neurodegeneration of PD. Thus the careful analysis of post-mortem PD brain biochemistry remains a crucial component of research, and one that offers considerable opportunity to pursue etiological factors either by 'reverse biochemistry' i.e. from defective pathway to mutant gene, or by the complex interplay between pathways e.g. mitochondrial turnover by lysosomes. In this review we have documented the spectrum of biochemical defects identified in PD post-mortem brain and explored their relevance to metabolic pathways involved in neurodegeneration. We have highlighted the complex interactions between these pathways and the gene mutations causing or increasing risk for PD. These pathways are becoming a focus for the development of disease modifying therapies for PD. Parkinson's is accompanied by multiple changes in the brain that are responsible for the progression of the disease. We describe here the molecular alterations occurring in postmortem brains and classify them as: Neurotransmitters and neurotrophic factors; Lewy bodies and Parkinson's-linked genes; Transition metals, calcium and calcium-binding proteins; Inflammation; Mitochondrial abnormalities and oxidative stress; Abnormal protein removal and degradation; Apoptosis and transduction pathways. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
| | | | - Rodolphe Hajj
- Department of Discovery, Pharnext, Issy-Les-Moulineaux, France.
| |
Collapse
|
81
|
Hu Q, Ren X, Liu Y, Li Z, Zhang L, Chen X, He C, Chen JF. Aberrant adenosine A2A receptor signaling contributes to neurodegeneration and cognitive impairments in a mouse model of synucleinopathy. Exp Neurol 2016; 283:213-23. [PMID: 27342081 DOI: 10.1016/j.expneurol.2016.05.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 02/08/2023]
Abstract
Synucleinopathy is characterized by abnormal accumulation of misfolded α-synuclein (α-Syn)-positive cytoplasmic inclusions and by neurodegeneration and cognitive impairments, but the pathogenesis mechanism of synucleinopathy remains to be defined. Using a transmission model of synucleinopathy by intracerebral injection of preformed A53T α-Syn fibrils, we investigated whether aberrant adenosine A2A receptor (A2AR) signaling contributed to pathogenesis of synucleinopathy. We demonstrated that intra-hippocampal injection of preformed mutant α-Syn fibrils triggered a striking and selective induction of A2AR expression which was closely co-localized with pSer129 α-Syn-rich inclusions in neurons and glial cells of hippocampus. Importantly, by abolishing aberrant A2AR signaling triggered by mutant α-Syn, genetic deletion of A2ARs blunted a cascade of pathological events leading to synucleinopathy, including pSer129 α-Syn-rich and p62-positive aggregates, NF-κB activation and astrogliosis, apoptotic neuronal cell death and working memory deficits without affecting motor activity. These findings define α-Syn-triggered aberrant A2AR signaling as a critical pathogenesis mechanism of synucleinopathy with dual controls of cognition and neurodegeneration by modulating α-Syn aggregates. Thus, aberrant A2AR signaling represents a useful biomarker as well as a therapeutic target of synucleinopathy.
Collapse
Affiliation(s)
- Qidi Hu
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangpeng Ren
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.
| | - Ya Liu
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihui Li
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Liping Zhang
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xingjun Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaoxiang He
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China; Department of Neurology, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
82
|
Tagliafierro L, Chiba-Falek O. Up-regulation of SNCA gene expression: implications to synucleinopathies. Neurogenetics 2016; 17:145-57. [PMID: 26948950 DOI: 10.1007/s10048-016-0478-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
Synucleinopathies are a group of neurodegenerative diseases that share a common pathological lesion of intracellular protein inclusions largely composed by aggregates of alpha-synuclein protein. Accumulating evidence, including genome wide association studies, has implicated alpha-synuclein (SNCA) gene in the etiology of synucleinopathies. However, the precise variants within SNCA gene that contribute to the sporadic forms of Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and other synucleinopathies and their molecular mechanisms of action remain elusive. It has been suggested that SNCA expression levels are critical for the development of these diseases. Here, we review several model systems that have been developed to advance the understanding of the role of SNCA expression levels in the etiology of synucleinopathies. We also describe different molecular mechanisms that regulate SNCA gene expression and discuss possible strategies for SNCA down-regulation as means for therapeutic approaches. Finally, we highlight some examples that underscore the relationships between the genetic association findings and the regulatory mechanisms of SNCA expression, which suggest that genetic variability in SNCA locus is directly responsible, at least in part, to the changes in gene expression and explain the reported associations of SNCA with synucleinopathies. Future studies utilizing induced pluripotent stem cells (iPSCs)-derived neuronal lines and genome editing by CRISPR/Cas9, will allow us to validate, characterize, and manipulate the effects of particular cis-genetic variants on SNCA expression. Moreover, this model system will enable us to compare different neuronal and glial lineages involved in synucleinopathies representing an attractive strategy to elucidate-common and specific-SNCA-genetic variants, regulatory mechanisms, and vulnerable expression levels underlying synucleinopathy spectrum disorders. This forthcoming knowledge will support the development of precision medicine for synucleinopathies.
Collapse
Affiliation(s)
- L Tagliafierro
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - O Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
83
|
Ferreira DG, Batalha VL, Vicente Miranda H, Coelho JE, Gomes R, Gonçalves FQ, Real JI, Rino J, Albino-Teixeira A, Cunha RA, Outeiro TF, Lopes LV. Adenosine A2AReceptors Modulate α-Synuclein Aggregation and Toxicity. Cereb Cortex 2015; 27:718-730. [DOI: 10.1093/cercor/bhv268] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
84
|
Woods LT, Ajit D, Camden JM, Erb L, Weisman GA. Purinergic receptors as potential therapeutic targets in Alzheimer's disease. Neuropharmacology 2015; 104:169-79. [PMID: 26519903 DOI: 10.1016/j.neuropharm.2015.10.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognitive ability and is a serious cause of mortality. Many of the pathological characteristics associated with AD are revealed post-mortem, including amyloid-β plaque deposition, neurofibrillary tangles containing hyperphosphorylated tau proteins and neuronal loss in the hippocampus and cortex. Although several genetic mutations and risk factors have been associated with the disease, the causes remain poorly understood. Study of disease-initiating mechanisms and AD progression in humans is inherently difficult as most available tissue specimens are from late-stages of disease. Therefore, AD researchers rely on in vitro studies and the use of AD animal models where neuroinflammation has been shown to be a major characteristic of AD. Purinergic receptors are a diverse family of proteins consisting of P1 adenosine receptors and P2 nucleotide receptors for ATP, UTP and their metabolites. This family of receptors has been shown to regulate a wide range of physiological and pathophysiological processes, including neuroinflammation, and may contribute to the pathogenesis of neurodegenerative diseases like Parkinson's disease, multiple sclerosis and AD. Experimental evidence from human AD tissue has suggested that purinergic receptors may play a role in AD progression and studies using selective purinergic receptor agonists and antagonists in vitro and in AD animal models have demonstrated that purinergic receptors represent novel therapeutic targets for the treatment of AD. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Deepa Ajit
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
85
|
Wang ZH, Zhang JL, Duan YL, Zhang QS, Li GF, Zheng DL. MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed Pharmacother 2015; 74:252-6. [DOI: 10.1016/j.biopha.2015.08.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/05/2015] [Indexed: 01/08/2023] Open
|
86
|
Burnstock G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology 2015; 104:4-17. [PMID: 26056033 DOI: 10.1016/j.neuropharm.2015.05.031] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022]
Abstract
Purinergic signalling appears to play important roles in neurodegeneration, neuroprotection and neuroregeneration. Initially there is a brief summary of the background of purinergic signalling, including release of purines and pyrimidines from neural and non-neural cells and their ectoenzymatic degradation, and the current characterisation of P1 (adenosine), and P2X (ion channel) and P2Y (G protein-coupled) nucleotide receptor subtypes. There is also coverage of the localization and roles of purinoceptors in the healthy central nervous system. The focus is then on the roles of purinergic signalling in trauma, ischaemia, stroke and in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, as well as multiple sclerosis and amyotrophic lateral sclerosis. Neuroprotective mechanisms involving purinergic signalling are considered and its involvement in neuroregeneration, including the role of adult neural stem/progenitor cells. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Australia.
| |
Collapse
|
87
|
Garcia-Esparcia P, Hernández-Ortega K, Ansoleaga B, Carmona M, Ferrer I. Purine metabolism gene deregulation in Parkinson's disease. Neuropathol Appl Neurobiol 2015; 41:926-40. [PMID: 25597950 DOI: 10.1111/nan.12221] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/12/2015] [Indexed: 11/27/2022]
Abstract
AIMS To explore alterations in the expression of genes encoding enzymes involved in purine metabolism in Parkinson's disease (PD) brains as purines are the core of the DNA, RNA, nucleosides and nucleotides which participate in a wide variety of crucial metabolic pathways. METHODS Analysis of mRNA using real-time quantitative PCR of 22 genes involved in purine metabolism in the substantia nigra, putamen and cerebral cortex area 8 in PD at different stages of disease progression, and localization of selected purine metabolism-related enzymes with immunohistochemistry. RESULTS Reduced expression of adenylate kinase 2 (AKA2), AK3, AK4, adenine phosphoribosyltransferase, ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1), ENTPD3, nonmetastatic cells 3, nucleoside-diphosphatese kinase 3 (NME1), NME7 and purine nucleoside phosphorylase 1 (PNP1) mRNA in the substantia nigra at stages 3-6; up-regulation of ADA mRNA in the frontal cortex area 8 at stages 3-4 and of AK1, AK5, NME4, NME5, NME6, 5'-nucleotidase (NT5E), PNP1 and prune homolog Drosophila at stages 5-6. There is no modification in the expression of these genes in the putamen at stages 3-5. CONCLUSIONS Gene down-regulation in the substantia nigra may be interpreted as a consequence of dopaminergic cell death as ENTPD3, NME1, NME7, AK1 and PNP1 are mainly expressed in neurons. Yet ENTPD1 and NT5E, also down-regulated in the substantia nigra, are expressed in astrocytes, probably pericytes and microglia, respectively. In contrast, gene up-regulation in the frontal cortex area 8 at advanced stages of the disease suggests a primary manifestation or a compensation of altered purine metabolism in this region.
Collapse
Affiliation(s)
- Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Barcelona, Spain
| | - Karina Hernández-Ortega
- Institute of Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Belén Ansoleaga
- Institute of Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
88
|
Rieck M, Schumacher-Schuh AF, Callegari-Jacques SM, Altmann V, Schneider Medeiros M, Rieder CR, Hutz MH. Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson's disease patients? Pharmacogenomics 2015; 16:573-82. [PMID: 25872644 DOI: 10.2217/pgs.15.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIM Levodopa is first line treatment of Parkinson's disease (PD). However, its use is associated with the presence of motor fluctuations and dyskinesias. In recent years, adenosine A2A receptor (A2AR) is rising as a therapeutic target for PD. The aim of the present study was to investigate whether ADORA2A is associated with levodopa adverse effects. PATIENTS & METHODS Two hundred and eight PD patients on levodopa therapy were investigated. rs2298383 and rs3761422 at the ADORA2A gene were genotyped by allelic discrimination assays. RESULTS A trend for association was observed for both polymorphism and diplotypes with dyskinesia. CONCLUSION The present results should be considered as positive preliminary evidence. Further studies are needed to determine the association between ADORA2A and dyskinesia. Original submitted 3 December 2014; Revision submitted 13 February 2015.
Collapse
Affiliation(s)
- Mariana Rieck
- Departmento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa postal 15053, Porto Alegre, RS, 91501-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
89
|
Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson's disease. FEBS Lett 2014; 589:319-25. [PMID: 25541488 DOI: 10.1016/j.febslet.2014.12.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/21/2014] [Accepted: 12/05/2014] [Indexed: 11/23/2022]
Abstract
Mounting evidence suggests that microRNA (miR) dysregulation contributes to neurodegenerative disorders including Parkinson's disease (PD). MiR-34b and miR-34c have been previously shown to be down-regulated in the brains of patients with PD. Here, we demonstrate that miR-34b and miR-34c repress the expression of α-synuclein (α-syn), a key protein in PD pathogenesis. Inhibition of miR-34b and miR-34c expression in human dopaminergic SH-SY5Y cells increased α-syn levels and stimulated aggregate formation. Additionally, a single nucleotide polymorphism (SNP) in the 3'-UTR of α-syn was found to lower the miR-34b-mediated repression of the protein. Our results suggest that down-regulation of miR-34b and miR-34c in the brain, as well as an SNP in the 3'-UTR of α-syn can increase α-syn expression, possibly contributing to PD pathogenesis.
Collapse
|