51
|
Wang Y, Ji N, Wang J, Cao J, Li D, Zhang Y, Zhang L. SCG3 Protein Expression in Glioma Associates With less Malignancy and Favorable Clinical Outcomes. Pathol Oncol Res 2021; 27:594931. [PMID: 34257545 PMCID: PMC8262226 DOI: 10.3389/pore.2021.594931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022]
Abstract
Introduction: Secretogranin III (SCG3) physiologically participates in neurotransmitter storage/transport and is widely expressed in neuroendocrine tumors. However, there is no report on SCG3 protein expression in gliomas. Methods: The method of immunohistochemical staining on a glioma tissue microarray was utilized to detect SCG3 protein expression and investigate the correlations of its expression with clinicopathological and genetic features in gliomas. The RNA-seq data of SCG3 in The Cancer Genome Atlas database was exploited to explore these correlations at the transcriptional level. Results: There were 57.5% (130/226) glioma cases having SCG3 cytoplasmic staining in the tissue microarray. SCG3 expression inversely correlated with malignancy grade at both transcriptional and protein levels. The highest level was observed in oligodendroglial tumors, especially in oligodendrogliomas (ODs) with IDH-mutation/1p19q-codeletion. The lowest SCG3 expression was observed in glioblastomas (GBMs), especially in the mesenchymal subtype. Nearly a half of GBM cases (44.4%, 64/144) had any discernible SCG3 staining, and were defined as SCG3-positive by the microarray study. SCG3-positive GBM cases exhibited improved overall survival as compared with the SCG3-negative cases (29.3 vs. 14.5 months; Hazard ratio, 0.364; 95% CI, 0.216-0.612; p < 0.001). A multivariate Cox regression analysis also revealed SCG3 positivity as an independent favorable prognosticator in GBM patients. Conclusion: SCG3 protein expression inversely correlates with glioma malignancy and predicts favorable outcomes in GBM patients.
Collapse
Affiliation(s)
- Yi Wang
- Department of Neurosurgery/China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery/China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junmei Wang
- Department of Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jingli Cao
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Deling Li
- Department of Neurosurgery/China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Department of Neurosurgery/China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery/China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Beijing Neurosurgical Institute, Beijing, China
| |
Collapse
|
52
|
Galdieri L, Jash A, Malkova O, Mao DD, DeSouza P, Chu YE, Salter A, Campian JL, Naegle KM, Brennan CW, Wakimoto H, Oh ST, Kim AH, Chheda MG. Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry. JCI Insight 2021; 6:128456. [PMID: 33400685 PMCID: PMC7934942 DOI: 10.1172/jci.insight.128456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/29/2020] [Indexed: 01/09/2023] Open
Abstract
Most patients with glioblastoma (GBM) die within 2 years. A major therapeutic goal is to target GBM stem cells (GSCs), a subpopulation of cells that contribute to treatment resistance and recurrence. Since their discovery in 2003, GSCs have been isolated using single-surface markers, such as CD15, CD44, CD133, and α6 integrin. It remains unknown how these single-surface marker-defined GSC populations compare with each other in terms of signaling and function and whether expression of different combinations of these markers is associated with different functional capacity. Using mass cytometry and fresh operating room specimens, we found 15 distinct GSC subpopulations in patients, and they differed in their MEK/ERK, WNT, and AKT pathway activation status. Once in culture, some subpopulations were lost and previously undetectable ones materialized. GSCs that highly expressed all 4 surface markers had the greatest self-renewal capacity, WNT inhibitor sensitivity, and in vivo tumorigenicity. This work highlights the potential signaling and phenotypic diversity of GSCs. Larger patient sample sizes and antibody panels are required to confirm these findings.
Collapse
Affiliation(s)
| | | | - Olga Malkova
- Center for Human Immunology and Immunotherapy Programs, and
| | - Diane D Mao
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Yunli E Chu
- Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amber Salter
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jian L Campian
- Department of Medicine.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kristen M Naegle
- Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephen T Oh
- Center for Human Immunology and Immunotherapy Programs, and.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Milan G Chheda
- Department of Medicine.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
53
|
Tilak M, Holborn J, New LA, Lalonde J, Jones N. Receptor Tyrosine Kinase Signaling and Targeting in Glioblastoma Multiforme. Int J Mol Sci 2021; 22:1831. [PMID: 33673213 PMCID: PMC7918566 DOI: 10.3390/ijms22041831] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is amongst the deadliest of human cancers, with a median survival rate of just over one year following diagnosis. Characterized by rapid proliferation and diffuse infiltration into the brain, GBM is notoriously difficult to treat, with tumor cells showing limited response to existing therapies and eventually developing resistance to these interventions. As such, there is intense interest in better understanding the molecular alterations in GBM to guide the development of more efficient targeted therapies. GBM tumors can be classified into several molecular subtypes which have distinct genetic signatures, and they show aberrant activation of numerous signal transduction pathways, particularly those connected to receptor tyrosine kinases (RTKs) which control glioma cell growth, survival, migration, invasion, and angiogenesis. There are also non-canonical modes of RTK signaling found in GBM, which involve G-protein-coupled receptors and calcium channels. This review uses The Cancer Genome Atlas (TCGA) GBM dataset in combination with a data-mining approach to summarize disease characteristics, with a focus on select molecular pathways that drive GBM pathogenesis. We also present a unique genomic survey of RTKs that are frequently altered in GBM subtypes, as well as catalog the GBM disease association scores for all RTKs. Lastly, we discuss current RTK targeted therapies and highlight emerging directions in GBM research.
Collapse
Affiliation(s)
| | | | | | | | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.T.); (J.H.); (L.A.N.); (J.L.)
| |
Collapse
|
54
|
Mamun MA, Mannoor K, Cao J, Qadri F, Song X. SOX2 in cancer stemness: tumor malignancy and therapeutic potentials. J Mol Cell Biol 2021; 12:85-98. [PMID: 30517668 PMCID: PMC7109607 DOI: 10.1093/jmcb/mjy080] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/18/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs), a minor subpopulation of tumor bulks with self-renewal and seeding capacity to generate new tumors, posit a significant challenge to develop effective and long-lasting anti-cancer therapies. The emergence of drug resistance appears upon failure of chemo-/radiation therapy to eradicate the CSCs, thereby leading to CSC-mediated clinical relapse. Accumulating evidence suggests that transcription factor SOX2, a master regulator of embryonic and induced pluripotent stem cells, drives cancer stemness, fuels tumor initiation, and contributes to tumor aggressiveness through major drug resistance mechanisms like epithelial-to-mesenchymal transition, ATP-binding cassette drug transporters, anti-apoptotic and/or pro-survival signaling, lineage plasticity, and evasion of immune surveillance. Gaining a better insight and comprehensive interrogation into the mechanistic basis of SOX2-mediated generation of CSCs and treatment failure might therefore lead to new therapeutic targets involving CSC-specific anti-cancer strategies.
Collapse
Affiliation(s)
- Mahfuz Al Mamun
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Kaiissar Mannoor
- Oncology Laboratory, Institute for Developing Science & Health Initiatives (ideSHi), Dhaka, Bangladesh
| | - Jun Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Firdausi Qadri
- Oncology Laboratory, Institute for Developing Science & Health Initiatives (ideSHi), Dhaka, Bangladesh
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
55
|
Ishii H, Mimura Y, Zahra MH, Katayama S, Hassan G, Afify SM, Seno M. Isolation and characterization of cancer stem cells derived from human glioblastoma. Am J Cancer Res 2021; 11:441-457. [PMID: 33575080 PMCID: PMC7868757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023] Open
Abstract
Cancer stem cell (CSC) is considered as a cause of cancer recurrence and metastasis. Simultaneously CSCs are responsible for the heterogeneous population in tumor tissues due to their differentiation potential. However, the characterizations of CSCs are still not enough and cancer stem cell lines widely available is desired to be established for the advancement of cancer research. In this study, we tried to isolate and characterize stem like cells from human glioblastoma cell line U-251MG cells. U-251MG P1 cells, which was previously condensed in the presence of hyaluronic acid as CD44 positive population were subjected to single cell isolation procedure. Although 5 clones were isolated, only one clone exhibited high expression of CD44, Nanog, OCT3/4 and SOX2, and named U-251MGSC1. The sphere forming ability of U-251MGSC1 cell was significantly higher than the parental U-251MG cells. Tumorigenicity of U-251MG-SC1 cells were higher than that of U-251MG cells. U-251MGSC1 cells exhibited higher expression of CD44, SOX2, Nestin and A2B5 than U-251MG cells in vitro and in vivo. The expression of GFAP and NF-M was enhanced when the cells were treated with the conditioned medium of U-251MG cells indicating the potential of differentiation. Sphere forming ability was more efficient than that of U-251MG cells and was enhanced in the presence of hyaluronic acid, which enhanced the cell growth as well. U-251MGSC1 cells exhibited rapid growth tumor in nude mice and efficient metastatic ability in transmembrane assay when compared with U-251MG cells. As the result, we concluded U-251MGSC1 cell was a glioblastoma CSC line derived from the parental U-251MG cells. U-251MGSC1 cells will be a good tool to develop effective therapeutic agents against CSCs and to elucidate the properties of glioma derived CSCs and the mechanism of tumor development in brain.
Collapse
Affiliation(s)
- Hiroko Ishii
- GSP Enterprise, Inc.1-4-38 12F Minato-machi, Naniwaku, Osaka 556-0017, Japan
| | - Yuki Mimura
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| | - Maram H Zahra
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| | - Shota Katayama
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| | - Said M Afify
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia UniversityShebin ElKoum Menoufia, 32511, Egypt
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama UniversityOkayama 700-8530, Japan
| |
Collapse
|
56
|
Richards LM, Whitley OKN, MacLeod G, Cavalli FMG, Coutinho FJ, Jaramillo JE, Svergun N, Riverin M, Croucher DC, Kushida M, Yu K, Guilhamon P, Rastegar N, Ahmadi M, Bhatti JK, Bozek DA, Li N, Lee L, Che C, Luis E, Park NI, Xu Z, Ketela T, Moore RA, Marra MA, Spears J, Cusimano MD, Das S, Bernstein M, Haibe-Kains B, Lupien M, Luchman HA, Weiss S, Angers S, Dirks PB, Bader GD, Pugh TJ. Gradient of Developmental and Injury Response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity. NATURE CANCER 2021; 2:157-173. [PMID: 35122077 DOI: 10.1038/s43018-020-00154-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022]
Abstract
Glioblastomas harbor diverse cell populations, including rare glioblastoma stem cells (GSCs) that drive tumorigenesis. To characterize functional diversity within this population, we performed single-cell RNA sequencing on >69,000 GSCs cultured from the tumors of 26 patients. We observed a high degree of inter- and intra-GSC transcriptional heterogeneity that could not be fully explained by DNA somatic alterations. Instead, we found that GSCs mapped along a transcriptional gradient spanning two cellular states reminiscent of normal neural development and inflammatory wound response. Genome-wide CRISPR-Cas9 dropout screens independently recapitulated this observation, with each state characterized by unique essential genes. Further single-cell RNA sequencing of >56,000 malignant cells from primary tumors found that the majority organize along an orthogonal astrocyte maturation gradient yet retain expression of founder GSC transcriptional programs. We propose that glioblastomas grow out of a fundamental GSC-based neural wound response transcriptional program, which is a promising target for new therapy development.
Collapse
Affiliation(s)
- Laura M Richards
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Owen K N Whitley
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Graham MacLeod
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Florence M G Cavalli
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fiona J Coutinho
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julia E Jaramillo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nataliia Svergun
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mazdak Riverin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Danielle C Croucher
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kenny Yu
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Naghmeh Rastegar
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Moloud Ahmadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jasmine K Bhatti
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Danielle A Bozek
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Naijin Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clare Che
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Erika Luis
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicole I Park
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zhiyu Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Spears
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Cusimano
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Sunit Das
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - H Artee Luchman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
57
|
Nagaraja TN, deCarvalho AC, Brown SL, Griffith B, Farmer K, Irtenkauf S, Hasselbach L, Mukherjee A, Bartlett S, Valadie OG, Cabral G, Knight RA, Lee IY, Divine GW, Ewing JR. The impact of initial tumor microenvironment on imaging phenotype. Cancer Treat Res Commun 2021; 27:100315. [PMID: 33571801 PMCID: PMC8127413 DOI: 10.1016/j.ctarc.2021.100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/13/2022]
Abstract
Models of human cancer, to be useful, must replicate human disease with high fidelity. Our focus in this study is rat xenograft brain tumors as a model of human embedded cerebral tumors. A distinguishing signature of such tumors in humans, that of contrast-enhancement on imaging, is often not present when the human cells grow in rodents, despite the xenografts having nearly identical DNA signatures to the original tumor specimen. Although contrast enhancement was uniformly evident in all the human tumors from which the xenografts’ cells were derived, we show that long-term contrast enhancement in the model tumors may be determined conditionally by the tumor microenvironment at the time of cell implantation. We demonstrate this phenomenon in one of two patient-derived orthotopic xenograft (PDOX) models using cancer stem-like cell (CSC)-enriched neurospheres from human tumor resection specimens, transplanted to groups of immune-compromised rats in the presence or absence of a collagen/fibrin scaffolding matrix, Matrigel. The rats were imaged by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and their brains were examined by histopathology. Targeted proteomics of the PDOX tumor specimens grown from CSC implanted with and without Matrigel showed that while the levels of the majority of proteins and post-translational modifications were comparable between contrast-enhancing and non-enhancing tumors, phosphorylation of Fox038 showed a differential expression. The results suggest key proteins determine contrast enhancement and suggest a path toward the development of better animal models of human glioma. Future work is needed to elucidate fully the molecular determinants of contrast-enhancement.
Collapse
Affiliation(s)
| | | | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States; Department of Public Health, Henry Ford Hospital, Detroit, MI, United States
| | - Brent Griffith
- Department of Radiology, Henry Ford Hospital, Detroit, MI, United States
| | - Katelynn Farmer
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Susan Irtenkauf
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | | | - Abir Mukherjee
- Department of Pathology, Henry Ford Hospital, Detroit, MI, United States
| | - Seamus Bartlett
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI; School of Medicine, Wayne State University, Detroit, MI, United States
| | - O Grahm Valadie
- Department of Radiation Oncology, Wayne State University, Detroit, MI, United States
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Robert A Knight
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States; Department of Physics, Oakland University, Rochester, MI, United States
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | - George W Divine
- Department of Public Health, Henry Ford Hospital, Detroit, MI, United States
| | - James R Ewing
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI; Department of Neurology, Henry Ford Hospital, Detroit, MI, United States; Department of Physics, Oakland University, Rochester, MI, United States; Department of Neurology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
58
|
Wu Y, Fletcher M, Gu Z, Wang Q, Costa B, Bertoni A, Man KH, Schlotter M, Felsberg J, Mangei J, Barbus M, Gaupel AC, Wang W, Weiss T, Eils R, Weller M, Liu H, Reifenberger G, Korshunov A, Angel P, Lichter P, Herrmann C, Radlwimmer B. Glioblastoma epigenome profiling identifies SOX10 as a master regulator of molecular tumour subtype. Nat Commun 2020; 11:6434. [PMID: 33339831 PMCID: PMC7749178 DOI: 10.1038/s41467-020-20225-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma frequently exhibits therapy-associated subtype transitions to mesenchymal phenotypes with adverse prognosis. Here, we perform multi-omic profiling of 60 glioblastoma primary tumours and use orthogonal analysis of chromatin and RNA-derived gene regulatory networks to identify 38 subtype master regulators, whose cell population-specific activities we further map in published single-cell RNA sequencing data. These analyses identify the oligodendrocyte precursor marker and chromatin modifier SOX10 as a master regulator in RTK I-subtype tumours. In vitro functional studies demonstrate that SOX10 loss causes a subtype switch analogous to the proneural-mesenchymal transition observed in patients at the transcriptomic, epigenetic and phenotypic levels. SOX10 repression in an in vivo syngeneic graft glioblastoma mouse model results in increased tumour invasion, immune cell infiltration and significantly reduced survival, reminiscent of progressive human glioblastoma. These results identify SOX10 as a bona fide master regulator of the RTK I subtype, with both tumour cell-intrinsic and microenvironmental effects.
Collapse
Affiliation(s)
- Yonghe Wu
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Michael Fletcher
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Zuguang Gu
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Qi Wang
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Barbara Costa
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Anna Bertoni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ka-Hou Man
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Magdalena Schlotter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jörg Felsberg
- Medical Faculty, Institute of Neuropathology, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jasmin Mangei
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martje Barbus
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ann-Christin Gaupel
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Wei Wang
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Tobias Weiss
- Department of Neurology and Brain Tumor Center, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091, Zurich, Switzerland
| | - Roland Eils
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091, Zurich, Switzerland
| | - Haikun Liu
- Division of Molecular Neurogenetics, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Guido Reifenberger
- Medical Faculty, Institute of Neuropathology, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, University of Heidelberg, Im Neuenheimer Feld 220, 69120, Heidelberg, Germany
- Clinical Cooperation Unit, Neuropathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 220-221, 69120, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
59
|
New Avenues in Radiotherapy of Glioblastoma: from Bench to Bedside. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-00654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
60
|
Lu YB, Sun TJ, Chen YT, Cai ZY, Zhao JY, Miao F, Yang YN, Wang SX. Targeting the Epithelial-to-Mesenchymal Transition in Cancer Stem Cells for a Better Clinical Outcome of Glioma. Technol Cancer Res Treat 2020; 19:1533033820948053. [PMID: 33089751 PMCID: PMC7586027 DOI: 10.1177/1533033820948053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glioma is one of the most common malignant tumors of the central nervous system with a poor prognosis at present due to lack of effective treatment options. Its initiation, migration, and multipotency are affected by cancer stem cell’s transition. Previous studies imply that changes in the cancer stem cells can affect the malignant differentiation of the tumor. We found that the epithelial-to-mesenchymal transition (EMT)-related regulatory pathway is an important target for tumor therapy. In this review, we discuss the transition factor of EMT and 3 specific pathways that affect the EMT of cancer stem cells during tumor development. We conclude that targeting the EMT process of cancer stem cells can be a feasible approach in the treatment of glioma.
Collapse
Affiliation(s)
- Yu-Bao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,*Both authors contributed equally to this study and share first authorship
| | - Tian-Jiao Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,*Both authors contributed equally to this study and share first authorship
| | - Yu-Tong Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zong-Yan Cai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jia-Yu Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Feng Miao
- Zhangye People's Hospital Affiliated to Hexi University, Zhangye, Gansu, China
| | - Yong-Na Yang
- Department of Neurology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| | - Shi-Xin Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
61
|
de la Rocha AMA, González-Huarriz M, Guruceaga E, Mihelson N, Tejada-Solís S, Díez-Valle R, Martínez-Vélez N, Fueyo J, Gomez-Manzano C, Alonso MM, Laterra J, López-Bertoni H. miR-425-5p, a SOX2 target, regulates the expression of FOXJ3 and RAB31 and promotes the survival of GSCs. ACTA ACUST UNITED AC 2020; 4:221-238. [PMID: 32905473 PMCID: PMC7470213 DOI: 10.26502/acbr.50170100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults and prognosis is poor despite maximum therapeutic efforts. GBM is composed of heterogeneous cell populations, among which the glioma stem-like cells (GSCs) play an important role in tumor cell self-renewal and the ability to initiate and drive tumor growth and recurrence. The transcription factor SOX2 is enriched in GSCs where it controls the stem cell phenotype, invasion and maintenance of tumorigenicity. Therefore, understanding the molecular mechanisms governed by SOX2 in GSCs is crucial to developing targeted therapies against this resistant cell population. In this study, we identified and validated a miRNA profile regulated by SOX2 in GSCs. Among these miRNAs, miR-425-5p emerged as a significant robust candidate for further study. The expression of miR-425-5p was significantly enriched in clinical GBM specimens compared with a human brain reference sample and showed a positive correlation with SOX2 expression. Using a combination of in silico analyses and molecular approaches, we show that SOX2 binds to the promoter of miR-425-5p. Loss of function studies show that repressing miR-425-5p expression in multiple GSCs inhibited neurosphere renewal and induced cell death. More importantly, miR-425-5p inhibition extended survival in an orthotopic GBM mouse model. Finally, combining several bioinformatics platforms with biological endpoints in multiple GSC lines, we identified FOXJ3 and RAB31 as high confidence miR-425-5p target genes. Our findings show that miR-425-5p is a GBM stem cell survival factor and that miR-425-5p inhibition function is a potential strategy for treating GBM.
Collapse
Affiliation(s)
- Arlet María Acanda de la Rocha
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
- Department of Environmental Health Sciences. Robert Stempel College of Public Health & Social Work. Florida International University, USA
| | - Marisol González-Huarriz
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Elizabeth Guruceaga
- The Health Research Institute of Navarra (IDISNA), Spain
- Bioinformatics Unit, Center for Applied Medical Research, Pamplona, Spain
| | - Nicole Mihelson
- Hugo W Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
| | - Sonia Tejada-Solís
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Neurosurgery, University Hospital of Navarra, Pamplona, Spain
| | - Ricardo Díez-Valle
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Neurosurgery, University Hospital of Navarra, Pamplona, Spain
| | - Naiara Martínez-Vélez
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marta M. Alonso
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - John Laterra
- Hugo W Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hernando López-Bertoni
- Hugo W Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Corresponding author: Hernando López-Bertoni, Hugo W Moser Research Institute at Kennedy Krieger, Baltimore, USA,
| |
Collapse
|
62
|
Gao G, Yang M, Wang F, Dang G, Zhang X, Zhao J, Wang X, Jin B. Coagulation factor 2 thrombin receptor promotes malignancy in glioma under SOX2 regulation. Aging (Albany NY) 2020; 12:10594—10613. [PMID: 32507767 PMCID: PMC7346046 DOI: 10.18632/aging.103281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 01/22/2023]
Abstract
Glioma is the most common human primary brain cancer with high mortality and unfavorable clinical outcome. Coagulation factor 2 thrombin receptor (F2R), is a key component in the thrombosis process and has been demonstrated upregulated in various cancers. However, the effect and molecular mechanisms of F2R in glioma remains unclear. In our study, we confirmed that the expression of F2R was upregulated in glioma and predicted poor prognosis. Gene Set Enrichment Analysis (GSEA) and function assays demonstrated that F2R overexpression promoted glioma cell proliferation, metastasis and epithelial-mesenchymal transition (EMT) in vitro and tumor growth in vivo. Then, we identified and validated F2R was the target gene of SRY-box 2 (SOX2) by dual luciferase reporter assay and chromatin immunoprecipitation assay. Besides, High expression of F2R in malignant glioma was associated with β-catenint signaling pathway activation. Our findings conclude that F2R promotes glioma cell proliferation and metastasis under SOX2 and actives WNT/β-catenin Signaling pathway, which provides novel insight to the therapeutic regimen in glioma.
Collapse
Affiliation(s)
- Guojun Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR. China
| | - Ming Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR. China
| | - Fan Wang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR. China
| | - Ge Dang
- Department of Operating Theatre, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR. China
| | - Xiaoling Zhang
- Department of Operating Theatre, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR. China
| | - Jing Zhao
- Department of Operating Theatre, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR. China
| | - Xiangyang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR. China
| | - Baozhe Jin
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR. China
| |
Collapse
|
63
|
Meneceur S, Linge A, Meinhardt M, Hering S, Löck S, Bütof R, Krex D, Schackert G, Temme A, Baumann M, Krause M, von Neubeck C. Establishment and Characterisation of Heterotopic Patient-Derived Xenografts for Glioblastoma. Cancers (Basel) 2020; 12:cancers12040871. [PMID: 32260145 PMCID: PMC7226316 DOI: 10.3390/cancers12040871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an aggressive brain tumour with a patient median survival of approximately 14 months. The development of innovative treatment strategies to increase the life span and quality of life of patients is hence essential. This requires the use of appropriate glioblastoma models for preclinical testing, which faithfully reflect human cancers. The aim of this study was to establish glioblastoma patient-derived xenografts (PDXs) by heterotopic transplantation of tumour pieces in the axillae of NMRI nude mice. Ten out of 22 patients' samples gave rise to tumours in mice. Their human origin was confirmed by microsatellite analyses, though minor changes were observed. The glioblastoma nature of the PDXs was corroborated by pathological evaluation. Latency times spanned from 48.5 to 370.5 days in the first generation. Growth curve analyses revealed an increase in the growth rate with increasing passages. The methylation status of the MGMT promoter in the primary material was maintained in the PDXs. However, a trend towards a more methylated pattern could be found. A correlation was observed between the take in mice and the proportion of Sox2+ cells (r = 0.49, p = 0.016) and nestin+ cells (r = 0.55, p = 0.007). Our results show that many PDXs maintain key features of the patients' samples they derive from. They could thus be used as preclinical models to test new therapies and biomarkers.
Collapse
Affiliation(s)
- Sarah Meneceur
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- Correspondence:
| | - Annett Linge
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Matthias Meinhardt
- Institute for Pathology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany;
| | - Sandra Hering
- Institute for Legal Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany;
| | - Steffen Löck
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rebecca Bütof
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Medical Faculty and University Hospital Carl Gustav Carus, 01307 Dresden, Germany;
| | - Gabriele Schackert
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Department of Neurosurgery, Medical Faculty and University Hospital Carl Gustav Carus, 01307 Dresden, Germany;
| | - Achim Temme
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Department of Neurosurgery, Medical Faculty and University Hospital Carl Gustav Carus, 01307 Dresden, Germany;
| | - Michael Baumann
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mechthild Krause
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Cläre von Neubeck
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
64
|
Vaidya M, Sugaya K. Differential sequences and single nucleotide polymorphism of exosomal SOX2 DNA in cancer. PLoS One 2020; 15:e0229309. [PMID: 32092088 PMCID: PMC7039433 DOI: 10.1371/journal.pone.0229309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer, with an average life expectancy of fewer than two years post-diagnosis. We have previously reported that cancer cell originated exosomes, including GBM, have NANOG and NANOGP8 DNA associated with them. The exosomal NANOG DNA has certain differences as compared to its normal counterpart that are of immense importance as a potential cancer biomarker. NANOG has been demonstrated to play an essential role in the maintenance of embryonic stem cells, and its pseudogene, NANOGP8, is suggested to promote the cancer stem cell phenotype. Similarly, SOX2 is another stemness gene highly expressed in cancer stem cells with an intimate involvement in GBM progression and metastasis as well as promotion of tumorigenicity in Neuroblastoma (NB). Since exosomes are critical in intercellular communication with a role in dissipating hallmark biomolecules responsible for cancer, we conducted a detailed analysis of the association of the SOX2 gene with exosomes whose sequence modulations with further research and appropriate sample size can help to identify diagnostic markers for cancer. We have detected SOX2 DNA associated with exosomes and have identified some of the SNPs and nucleotide variations in the sequences from a GBM and SH-SY5Y sample. Although a further systematic investigation of exosomal DNA from GBM and NB patient's blood is needed, finding of SOX2 DNA in exosomes in the current study may have value in clinical research. SOX2 is known to be misregulated in cancer cells by changes in miRNA function, such as SNPs in the binding sites. Our finding of cancer-specific SNPs in exosomal SOX2 DNA sequence may reflect those changes in the cancer stem cells as well as cancer cells. A series of our study on embryonic stem cell gene analysis in exosomal DNA may lead to a minimally invasive exosome-based diagnosis, and give us a key in understanding the mechanisms of cancer formation, progression, and metastasis.
Collapse
Affiliation(s)
- Manjusha Vaidya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
65
|
Yang R, Guo J, Lin Z, Song H, Feng Z, Ou Y, Zhou M, Li Y, Yi G, Li K, Li K, Guo M, Wang X, Huang G, Liu Z, Qi S, Liu Y. The combination of two-dimensional and three-dimensional analysis methods contributes to the understanding of glioblastoma spatial heterogeneity. JOURNAL OF BIOPHOTONICS 2020; 13:e201900196. [PMID: 31743584 DOI: 10.1002/jbio.201900196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Heterogeneity is regarded as the major factor leading to the poor outcomes of glioblastoma (GBM) patients. However, conventional two-dimensional (2D) analysis methods, such as immunohistochemistry and immunofluorescence, have limited capacity to reveal GBM spatial heterogeneity. Thus, we sought to develop an effective analysis strategy to increase the understanding of GBM spatial heterogeneity. Here, 2D and three-dimensional (3D) analysis methods were compared for the examination of cell morphology, cell distribution and large intact structures, and both types of methods were employed to dissect GBM spatial heterogeneity. The results showed that 2D assays showed only cross-sections of specimens but provided a full view. To visualize intact GBM specimens in 3D without sectioning, the optical tissue clearing methods CUBIC and iDISCO+ were used to clear opaque specimens so that they would become more transparent, after which the specimens were imaged with a two-photon microscope. The 3D analysis methods showed specimens at a large spatial scale at cell-level resolution and had overwhelming advantages in comparison to the 2D methods. Furthermore, in 3D, heterogeneity in terms of cell stemness, the microvasculature, and immune cell infiltration within GBM was comprehensively observed and analysed. Overall, we propose that 2D and 3D analysis methods should be combined to provide much greater detail to increase the understanding of GBM spatial heterogeneity.
Collapse
Affiliation(s)
- Runwei Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinglin Guo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiying Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haimin Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yichao Ou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaomin Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Li
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaishu Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manlan Guo
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiran Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Glioma Center, Guangzhou, China
| | - Zhifeng Liu
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Glioma Center, Guangzhou, China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
66
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
67
|
Tan DC, Roth IM, Wickremesekera AC, Davis PF, Kaye AH, Mantamadiotis T, Stylli SS, Tan ST. Therapeutic Targeting of Cancer Stem Cells in Human Glioblastoma by Manipulating the Renin-Angiotensin System. Cells 2019; 8:cells8111364. [PMID: 31683669 PMCID: PMC6912312 DOI: 10.3390/cells8111364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with glioblastoma (GB), a highly aggressive brain tumor, have a median survival of 14.6 months following neurosurgical resection and adjuvant chemoradiotherapy. Quiescent GB cancer stem cells (CSCs) invariably cause local recurrence. These GB CSCs can be identified by embryonic stem cell markers, express components of the renin-angiotensin system (RAS) and are associated with circulating CSCs. Despite the presence of circulating CSCs, GB patients rarely develop distant metastasis outside the central nervous system. This paper reviews the current literature on GB growth inhibition in relation to CSCs, circulating CSCs, the RAS and the novel therapeutic approach by repurposing drugs that target the RAS to improve overall symptom-free survival and maintain quality of life.
Collapse
Affiliation(s)
- David Ch Tan
- Department of Neurosurgery, Wellington Regional Hospital, Wellington 6021, New Zealand.
| | - Imogen M Roth
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
| | - Agadha C Wickremesekera
- Department of Neurosurgery, Wellington Regional Hospital, Wellington 6021, New Zealand.
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem 91120, Israel.
| | - Theo Mantamadiotis
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington 6021, New Zealand.
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3050, Australia.
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5040, New Zealand.
| |
Collapse
|
68
|
Dorsett KA, Jones RB, Ankenbauer KE, Hjelmeland AB, Bellis SL. Sox2 promotes expression of the ST6Gal-I glycosyltransferase in ovarian cancer cells. J Ovarian Res 2019; 12:93. [PMID: 31610800 PMCID: PMC6792265 DOI: 10.1186/s13048-019-0574-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background The ST6Gal-I glycosyltransferase, which adds α2–6-linked sialic acids to N-glycosylated proteins is upregulated in a wide range of malignancies including ovarian cancer. Prior studies have shown that ST6Gal-I-mediated sialylation of select surface receptors remodels intracellular signaling to impart cancer stem cell (CSC) characteristics. However, the mechanisms that contribute to ST6Gal-I expression in stem-like cancer cells are poorly understood. Results Herein, we identify the master stem cell transcription factor, Sox2, as a novel regulator of ST6Gal-I expression. Interestingly, SOX2 and ST6GAL1 are located within the same tumor-associated amplicon, 3q26, and these two genes exhibit coordinate gains in copy number across multiple cancers including ~ 25% of ovarian serious adenocarcinomas. In conjunction with genetic co-amplification, our studies suggest that Sox2 directly binds the ST6GAL1 promoter to drive transcription. ST6Gal-I expression is directed by at least four distinct promoters, and we identified the P3 promoter as the predominant promoter utilized by ovarian cancer cells. Chromatin Immunoprecipitation (ChIP) assays revealed that Sox2 binds regions proximal to the P3 promoter. To confirm that Sox2 regulates ST6Gal-I expression, Sox2 was either overexpressed or knocked-down in various ovarian cancer cell lines. Sox2 overexpression induced an increase in ST6Gal-I mRNA and protein, as well as surface α2–6 sialylation, whereas Sox2 knock-down suppressed levels of ST6Gal-I mRNA, protein and surface α2–6 sialylation. Conclusions These data suggest a process whereby SOX2 and ST6GAL1 are coordinately amplified in cancer cells, with the Sox2 protein then binding the ST6GAL1 promoter to further augment ST6Gal-I expression. Our collective results provide new insight into mechanisms that upregulate ST6Gal-I expression in ovarian cancer cells, and also point to the possibility that some of the CSC characteristics commonly attributed to Sox2 may, in part, be mediated through the sialyltransferase activity of ST6Gal-I.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Robert B Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
69
|
Hughes JH, Ewy JM, Chen J, Wong SY, Tharp KM, Stahl A, Kumar S. Transcriptomic analysis reveals that BMP4 sensitizes glioblastoma tumor-initiating cells to mechanical cues. Matrix Biol 2019; 85-86:112-127. [PMID: 31189077 DOI: 10.1016/j.matbio.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022]
Abstract
The poor prognosis of glioblastoma (GBM) is associated with a highly invasive stem-like subpopulation of tumor-initiating cells (TICs), which drive recurrence and contribute to intra-tumoral heterogeneity through differentiation. These TICs are better able to escape extracellular matrix-imposed mechanical restrictions on invasion than their more differentiated progeny, and sensitization of TICs to extracellular matrix mechanics extends survival in preclinical models of GBM. However, little is known about the molecular basis of the relationship between TIC differentiation and mechanotransduction. Here we explore this relationship through a combination of transcriptomic analysis and studies with defined-stiffness matrices. We show that TIC differentiation induced by bone morphogenetic protein 4 (BMP4) suppresses expression of proteins relevant to extracellular matrix signaling and sensitizes TIC spreading to matrix stiffness. Moreover, our findings point towards a previously unappreciated connection between BMP4-induced differentiation, mechanotransduction, and metabolism. Notably, stiffness and differentiation modulate oxygen consumption, and inhibition of oxidative phosphorylation influences cell spreading in a stiffness- and differentiation-dependent manner. Our work integrates bioinformatic analysis with targeted molecular measurements and perturbations to yield new insight into how morphogen-induced differentiation influences how GBM TICs process mechanical inputs.
Collapse
Affiliation(s)
- Jasmine H Hughes
- UC Berkeley - UCSF Graduate Program in Bioengineering; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeanette M Ewy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sophie Y Wong
- UC Berkeley - UCSF Graduate Program in Bioengineering; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94720, USA
| | - Andreas Stahl
- UC Berkeley - UCSF Graduate Program in Bioengineering; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- UC Berkeley - UCSF Graduate Program in Bioengineering; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
70
|
Luo Y, Liu T, Fei W, Yue XG. Correlation between SOX2 and Survivin clinical features in patients with salivary adenoid cystic carcinoma. J Infect Public Health 2019; 12:847-853. [PMID: 31113740 DOI: 10.1016/j.jiph.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 03/03/2019] [Accepted: 03/17/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE In this study, expression of cancer stem cells (CSCs)-related factor-Sex-determining region of Y chromosome-related high-mobility-group box 2 (SOX2) and anti-apoptotic specific factor- Survivin in salivary adenoid cystic carcinoma (SACC) was detected to provide important clues for effective SACC prevention and treatment by combining clinical pathological parameters analysis. METHODS Paraffin and fresh specimens were collected from SACC patients who underwent surgery at the Oral and Maxillofacial Surgery Department of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital. The experimental group was designed as SACC tissue, and the control group normal paracancerous normal gland tissue. (1) SOX2 and Survivin expression were detected using immunohistochemistry and analyzed by comnining clinical pathological parameter analysis. (2) mRNA and protein expression levels of SOX2 and Survivin were detected using RT-PCR, Western Blot. RESULTS 1. Immunohistochemistry: (1) SOX2 was mainly expressed on the nucleus. The SOX2 positive rate was 28.57% in clinical stage I-II, and 76.92% in stage III-IV. (2) Survivin was mainly expressed in the cytoplasm. The Survivin positive rate was 61.90% in clinical stage I-II, and 76.92% in stage III-IV. (3) There was a clear correlation between SOX2 and Survivin. 2. RT-PCR and Western Blot: The mRNA and protein expression levels of SOX2 and Survivin were significantly higher in the experimental group than in the control group (P < 0.01). CONCLUSION (1) The mRNA and protein expression level of SOX2 and Survivin was significantly higher in SACC tissues than in paracancerous normal salivary gland tissues, indicating that both of the two are tissue-specific and may become SACC oncogenes. (2) SOX2 and Survivin are significantly correlated in expression, which may coorinatively participate in SACC incidence and development.
Collapse
Affiliation(s)
- Yejiao Luo
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, 610500 China
| | - Tong Liu
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, 610500 China
| | - Wei Fei
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan Provincial Key Laboratory for Human Disease Gene Study, 610072, China.
| | - Xiao-Guang Yue
- Rattanakosin International College of Creative Entrepreneurship, Rajamangala University of Technology Rattanakosin, Thailand
| |
Collapse
|
71
|
Alowaidi F, Hashimi SM, Nguyen M, Meshram M, Alqurashi N, Cavanagh BL, Bellette B, Ivanovski S, Meedenyia A, Wood SA. Investigating the role of CRIPTO-1 (TDGF-1) in glioblastoma multiforme U87 cell line. J Cell Biochem 2019; 120:7412-7427. [PMID: 30426531 DOI: 10.1002/jcb.28015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
Cripto-1 has been implicated in a number of human cancers. Although there is high potential for a role of Cripto-1 in glioblastoma multiforme (GBM) pathogenesis and progression, few studies have tried to define its role in GBM. These studies were limited in that Cripto-1 expression was not studied in detail in relation to markers of cancer initiation and progression. Therefore, these correlative studies allowed limited interpretation of Criptos-1's effect on the various aspects of GBM development using the U87 GBM cell line. In this study, we sought to delineate the role of Cripto-1 in facilitating pathogenesis, stemness, proliferation, invasion, migration and angiogenesis in GBM. Our findings show that upon overexpressing Cripto-1 in U87 GBM cells, the stemness markers Nanog, Oct4, Sox2, and CD44 increased expression. Similarly, an increase in Ki67 was observed demonstrating Cripto-1's potential to induce cellular proliferation. Likewise, we report a novel finding that increased expression of the markers of migration and invasion, Vimentin and Twist, correlated with upregulation of Cripto-1. Moreover, Cripto-1 exposure led to VEGFR-2 overexpression along with higher tube formation under conditions promoting endothelial growth. Taken together our results support a role for Cripto-1 in the initiation, development, progression, and maintenance of GBM pathogenesis. The data presented here are also consistent with a role for Cripto-1 in the re-growth and invasive growth in GBM. This highlights its potential use as a predictive and diagnostic marker in GBM as well as a therapeutic target.
Collapse
Affiliation(s)
- Faisal Alowaidi
- Department of Pathology and Laboratory Medicine, College of Medicine and University Hospitals, King Saud University, Riyadh, Saudi Arabia.,Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Saeed M Hashimi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Maria Nguyen
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Mallika Meshram
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Naif Alqurashi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Brenton L Cavanagh
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Bernadette Bellette
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Saso Ivanovski
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Adrian Meedenyia
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
72
|
Munksgaard Thorén M, Chmielarska Masoumi K, Krona C, Huang X, Kundu S, Schmidt L, Forsberg-Nilsson K, Floyd Keep M, Englund E, Nelander S, Holmqvist B, Lundgren-Åkerlund E. Integrin α10, a Novel Therapeutic Target in Glioblastoma, Regulates Cell Migration, Proliferation, and Survival. Cancers (Basel) 2019; 11:cancers11040587. [PMID: 31027305 PMCID: PMC6521287 DOI: 10.3390/cancers11040587] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022] Open
Abstract
New, effective treatment strategies for glioblastomas (GBMs), the most malignant and invasive brain tumors in adults, are highly needed. In this study, we investigated the potential of integrin α10β1 as a therapeutic target in GBMs. Expression levels and the role of integrin α10β1 were studied in patient-derived GBM tissues and cell lines. The effect of an antibody–drug conjugate (ADC), an integrin α10 antibody conjugated to saporin, on GBM cells and in a xenograft mouse model was studied. We found that integrin α10β1 was strongly expressed in both GBM tissues and cells, whereas morphologically unaffected brain tissues showed only minor expression. Partial or no overlap was seen with integrins α3, α6, and α7, known to be expressed in GBM. Further analysis of a subpopulation of GBM cells selected for high integrin α10 expression demonstrated increased proliferation and sphere formation. Additionally, siRNA-mediated knockdown of integrin α10 in GBM cells led to decreased migration and increased cell death. Furthermore, the ADC reduced viability and sphere formation of GBM cells and induced cell death both in vitro and in vivo. Our results demonstrate that integrin α10β1 has a functional role in GBM cells and is a novel, potential therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
| | | | - Cecilia Krona
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Xiaoli Huang
- Xintela AB, Medicon Village, SE-223 81 Lund, Sweden.
| | - Soumi Kundu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Marcus Floyd Keep
- Department of Neurosurgery, Sanford Brain and Spine Institute, Fargo, ND 58103, USA; Department of Surgery, School of Medicine, University of North Dakota, Fargo, ND 58102, USA.
| | - Elisabet Englund
- Neuropathology Lab, Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden.
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Bo Holmqvist
- ImaGene-iT AB, Medicon Village, SE-223 81 Lund, Sweden.
| | | |
Collapse
|
73
|
Fadhlullah SFB, Halim NBA, Yeo JYT, Ho RLY, Um P, Ang BT, Tang C, Ng WH, Virshup DM, Ho IAW. Pathogenic mutations in neurofibromin identifies a leucine-rich domain regulating glioma cell invasiveness. Oncogene 2019; 38:5367-5380. [PMID: 30967630 PMCID: PMC6755990 DOI: 10.1038/s41388-019-0809-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is the most aggressive tumor of the brain. NF1, a tumor suppressor gene and RAS-GTPase, is one of the highly mutated genes in GBM. Dysregulated NF1 expression promotes cell invasion, proliferation, and tumorigenesis. Loss of NF1 expression in glioblastoma is associated with increased aggressiveness of the tumor. Here, we show that NF1-loss in patient-derived glioma cells using shRNA increases self-renewal, heightens cell invasion, and promotes mesenchymal subtype and epithelial mesenchymal transition-specific gene expression that enhances tumorigenesis. The neurofibromin protein contains at least four major domains, with the GAP-related domain being the most well-studied. In this study, we report that the leucine-rich domain (LRD) of neurofibromin inhibits invasion of human glioblastoma cells without affecting their proliferation. Moreover, under conditions tested, the NF1-LRD fails to hydrolyze Ras-GTP to Ras-GDP, suggesting that its suppressive function is independent of Ras signaling. We further demonstrate that rare variants within the NF1-LRD domain found in a subset of the patients are pathogenic and reduce NF1-LRD’s invasion suppressive function. Taken together, our results show, for the first time, that NF1-LRD inhibits glioma invasion, and provides evidence of a previously unrecognized function of NF1-LRD in glioma biology.
Collapse
Affiliation(s)
- Siti Farah Bte Fadhlullah
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore.,Lucence Diagnostics Pte Ltd., Singapore, Singapore
| | | | - Jacqueline Y T Yeo
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Rachel L Y Ho
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Phoebe Um
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore.,University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Singapore Institute for Clinical Sciences, A*STAR, Singapore, 117609, Singapore.,Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Carol Tang
- Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Division of Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore
| | - Wai H Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27703, USA
| | - Ivy A W Ho
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore. .,Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
74
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
75
|
Garnier D, Renoult O, Alves-Guerra MC, Paris F, Pecqueur C. Glioblastoma Stem- Like Cells, Metabolic Strategy to Kill a Challenging Target. Front Oncol 2019; 9:118. [PMID: 30895167 PMCID: PMC6415584 DOI: 10.3389/fonc.2019.00118] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/11/2019] [Indexed: 01/25/2023] Open
Abstract
Over the years, substantial evidence has definitively confirmed the existence of cancer stem-like cells within tumors such as Glioblastoma (GBM). The importance of Glioblastoma stem-like cells (GSCs) in tumor progression and relapse clearly highlights that cancer eradication requires killing of GSCs that are intrinsically resistant to conventional therapies as well as eradication of the non-GSCs cells since GSCs emergence relies on a dynamic process. The past decade of research highlights that metabolism is a significant player in tumor progression and actually might orchestrate it. The growing interest in cancer metabolism reprogrammation can lead to innovative approaches exploiting metabolic vulnerabilities of cancer cells. These approaches are challenging since they require overcoming the compensatory and adaptive responses of GSCs. In this review, we will summarize the current knowledge on GSCs with a particular focus on their metabolic complexity. We will also discuss potential approaches targeting GSCs metabolism to potentially improve clinical care.
Collapse
Affiliation(s)
| | | | | | - François Paris
- CRCINA, INSERM CNRS, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest - René Gauducheau, St Herblain, France
| | - Claire Pecqueur
- CRCINA, INSERM CNRS, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
76
|
Malta TM, de Souza CF, Sabedot TS, Silva TC, Mosella MS, Kalkanis SN, Snyder J, Castro AVB, Noushmehr H. Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro Oncol 2019; 20:608-620. [PMID: 29036500 DOI: 10.1093/neuonc/nox183] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gliomas are a heterogeneous group of brain tumors with distinct biological and clinical properties. Despite advances in surgical techniques and clinical regimens, treatment of high-grade glioma remains challenging and carries dismal rates of therapeutic success and overall survival. Challenges include the molecular complexity of gliomas, as well as inconsistencies in histopathological grading, resulting in an inaccurate prediction of disease progression and failure in the use of standard therapy. The updated 2016 World Health Organization (WHO) classification of tumors of the central nervous system reflects a refinement of tumor diagnostics by integrating the genotypic and phenotypic features, thereby narrowing the defined subgroups. The new classification recommends molecular diagnosis of isocitrate dehydrogenase (IDH) mutational status in gliomas. IDH-mutant gliomas manifest the cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP). Notably, the recent identification of clinically relevant subsets of G-CIMP tumors (G-CIMP-high and G-CIMP-low) provides a further refinement in glioma classification that is independent of grade and histology. This scheme may be useful for predicting patient outcome and may be translated into effective therapeutic strategies tailored to each patient. In this review, we highlight the evolution of our understanding of the G-CIMP subsets and how recent advances in characterizing the genome and epigenome of gliomas may influence future basic and translational research.
Collapse
Affiliation(s)
- Tathiane M Malta
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Camila F de Souza
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Thais S Sabedot
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Tiago C Silva
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Maritza S Mosella
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - James Snyder
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | | | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
77
|
Yu H, Shin SM, Wang F, Xu H, Xiang H, Cai Y, Itson-Zoske B, Hogan QH. Transmembrane protein 100 is expressed in neurons and glia of dorsal root ganglia and is reduced after painful nerve injury. Pain Rep 2018; 4:e703. [PMID: 30801043 PMCID: PMC6370145 DOI: 10.1097/pr9.0000000000000703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Introduction Tmem100 modulates interactions between TRPA1 and TRPV1. The cell specificity of Tmem100 expression in dorsal root ganglia (DRGs) is not well defined, nor is the effect of peripheral nerve injury on Tmem100 expression. Objective This study was designed to determine the cell specificity of Tmem100 expression in DRG and its subcellular localization, and to examine how Tmem100 expression may be altered in painful conditions. Methods Dorsal root ganglion Tmem100 expression was determined by immunohistochemistry, immunoblot, and quantitative real-time PCR, and compared between various experimental rat pain models and controls. Results Tmem100 is expressed in both neurons and perineuronal glial cells in the rat DRG. The plasma membrane and intracellular localization of Tmem100 are identified in 83% ± 6% of IB4-positive and 48% ± 6% of calcitonin gene-related peptide-positive neurons, as well as in medium- and large-sized neurons, with its immunopositivity colocalized to TRPV1 (94% ± 5%) and TRPA1 (96% ± 3%). Tmem100 is also detected in the perineuronal satellite glial cells and in some microglia. Tmem100 protein is significantly increased in the lumbar DRGs in the complete Freund adjuvant inflammatory pain. By contrast, peripheral nerve injury by spinal nerve ligation diminishes Tmem100 expression in the injured DRG, with immunoblot and immunohistochemistry experiments showing reduced Tmem100 protein levels in both neurons and satellite glial cells of DRGs proximal to injury, whereas Tmem100 is unchanged in adjacent DRGs. The spared nerve injury model also reduces Tmem100 protein in the injured DRGs. Conclusion Our data demonstrate a pain pathology-dependent alteration of DRG Tmem100 protein expression, upregulated during CFA inflammatory pain but downregulated during neuropathic pain.
Collapse
Affiliation(s)
- Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, PR of China
| | - Hao Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, PR of China
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, PR of China
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR of China
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| |
Collapse
|
78
|
Liu S, U KP, Zhang J, Tsang LL, Huang J, Tu SP, Jiang X. R-spodin2 enhances canonical Wnt signaling to maintain the stemness of glioblastoma cells. Cancer Cell Int 2018; 18:156. [PMID: 30337838 PMCID: PMC6180579 DOI: 10.1186/s12935-018-0655-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/05/2018] [Indexed: 01/30/2023] Open
Abstract
Background As newly identified Wnt enhancer, R-spondin gene family members have been linked to various cancers; however, their role in isocitrate dehydrogenase-wildtype subtype of human glioblastoma (GBM) cells remains unknown. Methods Human U87 and U251 cell lines were used to perform the experiments. GBM stem-like cells were enriched in stem cell growth media and induced to differentiate using retinoid acid or growth factor deprivation. Wnthigh and Wntlow subpopulations were isolated and evaluated by MTS, sphere formation, transwell migration and xenograft formation assays. Results R-spondin 2 but not R-spondin 3 potentiates Wnt/β-catenin signaling in GBM cell lines. While R-spondin 2 does not affect cell growth, it induces the expression of pluripotent stem cell markers in combination with Wnt3A. GBM stem-like cells are endowed with intrinsic high activity of β-catenin signaling, which can be further intensified by R-spondin 2. In addition, R-spondin2 promotes stem cell self-renewal and suppresses retinoid acid- or growth factor deprivation-induced differentiation, indicating R-spondin 2 maintains stem cell traits in GBM. On the other hand, we identify subpopulations of GBM cells that show distinctive responsiveness to Wnt/β-catenin signaling. Interestingly, Wnthigh and Wntlow cells display distinctive biologic properties. Moreover, Wnthigh cell-inoculated xenografts exhibit enhanced tumorigenicity and increased expression levels of R-spondin 2 compared to Wntlow cell-inoculated xenografts. Conclusion Our study reveals a novel regulatory mechanisms underlying the over-activation of β-catenin-mediated signaling in the pathogenesis of GBM. Electronic supplementary material The online version of this article (10.1186/s12935-018-0655-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Si Liu
- 1Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR People's Republic of China
| | - Kin Pong U
- 1Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR People's Republic of China.,2School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Jieting Zhang
- 1Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR People's Republic of China.,2School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Lai Ling Tsang
- 1Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR People's Republic of China.,2School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Jiawei Huang
- 1Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR People's Republic of China
| | - Shui Ping Tu
- 3Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaohua Jiang
- 1Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR People's Republic of China.,2School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| |
Collapse
|
79
|
Sun X, St John JC. Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA methylation and gene expression of the nuclear genome in tumours. Epigenetics Chromatin 2018; 11:53. [PMID: 30208958 PMCID: PMC6136172 DOI: 10.1186/s13072-018-0223-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023] Open
Abstract
Background There are multiple copies of mitochondrial DNA (mtDNA) present in each cell type, and they are strictly regulated in a cell-specific manner by a group of nuclear-encoded mtDNA-specific replication factors. This strict regulation of mtDNA copy number is mediated by cell-specific DNA methylation of these replication factors. Glioblastoma multiforme, HSR-GBM1, cells are hyper-methylated and maintain low mtDNA copy number to support their tumorigenic status. We have previously shown that when HSR-GBM1 cells with 50% of their original mtDNA content were inoculated into mice, tumours grew more aggressively than non-depleted cells. However, when the cells possessed only 3% and 0.2% of their original mtDNA content, tumour formation was less frequent and the initiation of tumorigenesis was significantly delayed. Importantly, the process of tumorigenesis was dependent on mtDNA copy number being restored to pre-depletion levels. Results By performing whole genome MeDIP-Seq and RNA-Seq on tumours generated from cells possessing 100%, 50%, 0.3% and 0.2% of their original mtDNA content, we determined that restoration of mtDNA copy number caused significant changes to both the nuclear methylome and its transcriptome for each tumour type. The affected genes were specifically associated with gene networks and pathways involving behaviour, nervous system development, cell differentiation and regulation of transcription and cellular processes. The mtDNA-specific replication factors were also modulated. Conclusions Our results highlight the bidirectional control of the nuclear and mitochondrial genomes through modulation of DNA methylation to control mtDNA copy number, which, in turn, modulates nuclear gene expression during tumorigenesis. Electronic supplementary material The online version of this article (10.1186/s13072-018-0223-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Sun
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - Justin C St John
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia. .,Department of Molecular and Translational Sciences, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia.
| |
Collapse
|
80
|
Marjanovic Vicentic J, Drakulic D, Garcia I, Vukovic V, Aldaz P, Puskas N, Nikolic I, Tasic G, Raicevic S, Garros-Regulez L, Sampron N, Atkinson MJ, Anastasov N, Matheu A, Stevanovic M. SOX3 can promote the malignant behavior of glioblastoma cells. Cell Oncol (Dordr) 2018; 42:41-54. [PMID: 30209685 DOI: 10.1007/s13402-018-0405-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Glioblastoma is the most common and lethal adult brain tumor. Despite current therapeutic strategies, including surgery, radiation and chemotherapy, the median survival of glioblastoma patients is 15 months. The development of this tumor depends on a sub-population of glioblastoma stem cells governing tumor propagation and therapy resistance. SOX3 plays a role in both normal neural development and carcinogenesis. However, little is known about its role in glioblastoma. Thus, the aim of this work was to elucidate the role of SOX3 in glioblastoma. METHODS SOX3 expression was assessed using real-time quantitative PCR (RT-qPCR), Western blotting and immunohistochemistry. MTT, immunocytochemistry and Transwell assays were used to evaluate the effects of exogenous SOX3 overexpression on the viability, proliferation, migration and invasion of glioblastoma cells, respectively. The expression of Hedgehog signaling pathway components and autophagy markers was assessed using RT-qPCR and Western blot analyses, respectively. RESULTS Higher levels of SOX3 expression were detected in a subset of primary glioblastoma samples compared to those in non-tumoral brain tissues. Exogenous overexpression of this gene was found to increase the proliferation, viability, migration and invasion of glioblastoma cells. We also found that SOX3 up-regulation was accompanied by an enhanced activity of the Hedgehog signaling pathway and by suppression of autophagy in glioblastoma cells. Additionally, we found that SOX3 expression was elevated in patient-derived glioblastoma stem cells, as well as in oncospheres derived from glioblastoma cell lines, compared to their differentiated counterparts, implying that SOX3 expression is associated with the undifferentiated state of glioblastoma cells. CONCLUSION From our data we conclude that SOX3 can promote the malignant behavior of glioblastoma cells.
Collapse
Affiliation(s)
- Jelena Marjanovic Vicentic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Idoia Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Vladanka Vukovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Paula Aldaz
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Nela Puskas
- Institute of Histology and Embryology "Aleksandar Ð. Kostić", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Igor Nikolic
- Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Goran Tasic
- Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Savo Raicevic
- Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia
| | - Laura Garros-Regulez
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Nicolas Sampron
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,Neuro-oncology Tumor Board, Donostia Hospital, San Sebastian, Spain
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Radiation Biology, Technical University of Munich, Munich, Germany
| | - Natasa Anastasov
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,Neuro-oncology Tumor Board, Donostia Hospital, San Sebastian, Spain
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
81
|
Lv K, Chen Z, Zhang X, Zhang Q, Liu L. Selective enrichment of CD133 +/SOX2 + glioblastoma stem cells via adherent culture. Oncol Lett 2018; 16:4567-4576. [PMID: 30197675 DOI: 10.3892/ol.2018.9154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/08/2018] [Indexed: 11/06/2022] Open
Abstract
Most of the brain tumors are malignant with an extremely poor survival rate. Recent progress in identifying cancer stem cells (CSCs) within the brain tumors is starting to revolutionize our understanding in the imitation and progression of tumors as well as relapse and the development of therapeutic strategies. Suspension spheroid body culture paradigm is a routine method in enriching CSCs. While, it was reported recently that CSCs within the brain tumor may also be enriched through adherent monolayer culture with optimized properties. In the present study, 18 surgically resected brain tumors were used for analyzing the feasibility of adherent enrichment of CSCs. The results indicated that 50% of glioblastomas were able to generate adherent CSCs, which were uniformly positive for Sox2, CD133, GFAP and Nestin. However, adherent culture paradigm failed to yield CSCs in secondary brain tumors, including neurocytomas, ependymomas, germ cell tumors or low-grade astrocytomas, which is most likely due to a lack of CD133+/Sox2+ cells within the original biopsies. Therefore, it was concluded that the adherent culture paradigm may serve as a reliable method in enriching brain CSCs, but this method is more suitable for enriching CD133+/Sox2+ CSCs in glioblastomas.
Collapse
Affiliation(s)
- Ke Lv
- Neurosurgical Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China.,Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhenyu Chen
- Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, P.R. China.,Institute of Translational Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China.,The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, P.R. China
| | - Xiaoqing Zhang
- Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, P.R. China.,Institute of Translational Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China.,The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, P.R. China
| | - Quanbin Zhang
- Neurosurgical Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ling Liu
- Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, P.R. China.,Institute of Translational Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
82
|
Balça-Silva J, do Carmo A, Tão H, Rebelo O, Barbosa M, Moura-Neto V, Sarmento-Ribeiro AB, Lopes MC, Moreira JN. Nucleolin is expressed in patient-derived samples and glioblastoma cells, enabling improved intracellular drug delivery and cytotoxicity. Exp Cell Res 2018; 370:68-77. [PMID: 29902537 DOI: 10.1016/j.yexcr.2018.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 12/19/2022]
Abstract
One of the major challenges in Glioblastoma (GBM) therapy relates with the existence of glioma stem-like cells (GSCs), known to be chemo- and radio-resistant. GSCs and non-stem GBM cells have the ability to interchange, emphasizing the importance of identifying common molecular targets among those cell sub-populations. Nucleolin overexpression has been recently associated with breast cancer sub-populations with different stem-like phenotype. The goal of this work was to evaluate the potential of cell surface nucleolin as a target in GBM cells. Different levels of nucleolin expression resulted in a 3.4-fold higher association of liposomes targeting nucleolin (functionalized with the nucleolin-binding F3 peptide) in U87, relative to GBM11 glioblastoma cells. Moreover, nucleolin was suggested as a potential marker in OCT4-, NANOG-positive GSC, and in the corresponding non-stem GBM cells, as well as in SOX2-positive GSC. Doxorubicin delivered by liposomes targeting nucleolin enabled a level of cytotoxicity that was 2.5- or 4.6-fold higher compared to the non-targeted counterparts. Importantly, an overexpression of nucleolin was also observed in cells of patient-derived samples, as compared with normal brain. Overall, these results suggested nucleolin as a therapeutic target in GBM.
Collapse
Affiliation(s)
- Joana Balça-Silva
- CNC.IBILI - Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, Coimbra, Portugal; FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; IECPN - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Anália do Carmo
- CNC.IBILI - Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, Coimbra, Portugal; CHUC - Clinical Pathology Department, Coimbra Hospital and Universitary Center, Coimbra, Portugal.
| | - Hermínio Tão
- CHUC - Neurosurgery Service, Coimbra Hospital and Universitary Center, Coimbra, Portugal.
| | - Olinda Rebelo
- CHUC - Neuropathology Laboratory, Neurology Service, Coimbra Hospital and Universitary Center, Coimbra, Portugal.
| | - Marcos Barbosa
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CHUC - Neurosurgery Service, Coimbra Hospital and Universitary Center, Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- IECPN - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Ana Bela Sarmento-Ribeiro
- FMUC, Laboratory of Oncobiology and Hematology and University Clinic of Hematology/ Faculty of Medicine, University of Coimbra, Coimbra, Portugal; iCBR, CIMAGO - Coimbra Institute for Clinical and Biomedical Research - Group of Environment, Genetics and Oncobiology - FMUC, Coimbra, Portugal; CHUC - Clinical Hematology Department/Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Maria Celeste Lopes
- CNC.IBILI - Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
83
|
Zhou K, Zhang C, Yao H, Zhang X, Zhou Y, Che Y, Huang Y. Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 targeted by miR-132. Mol Cancer 2018; 17:105. [PMID: 30053878 PMCID: PMC6064054 DOI: 10.1186/s12943-018-0849-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A better understanding of the molecular mechanism involving lncRNA-miRNA-mRNA network underlying glioma genesis is beneficial to the treatment of glioma. This study was designed to investigate the role of lncRNA NEAT1, miR-132 and SOX2 interaction in glioma. METHODS Microarray analysis was conducted to identify the differentially expressed lncRNAs in glioma tissues. The expression levels of NEAT1, miR-132 and SOX2 were determined by qRT-PCR and western blot. Proliferation of glioma cells was detected by MTT assay, while migration and invasion were determined by transwell assay. The target relationships were predicted by miRcode algorithm, and confirmed by dual luciferase reporter gene assay. RESULTS NEAT1 was up-regulated in glioma. Knockdown of NEAT1 inhibited glioma cells' viability, migration and invasion. MiR-132 was down-regulated while SOX2 was up-regulated in glioma cells. NEAT1 negatively regulated the expression of miR-132 in glioma while miR-132 targeted SOX2 to down-regulate its expression. CONCLUSION NEAT1 promoted glioma development by promoting SOX2 expression through suppressing miR-132.
Collapse
Affiliation(s)
- Ke Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, 215007 Jiangsu China
- Department of Neurosurgery, Jingjiang People’s Hospital, No. 28 East Zhongzhou Road, Taizhou, 214500 Jiangsu China
| | - Chi Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, 215007 Jiangsu China
| | - Hui Yao
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, 215007 Jiangsu China
| | - Xuewen Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, 215007 Jiangsu China
| | - Youxin Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, 215007 Jiangsu China
| | - Yanjun Che
- Department of Neurosurgery, Jingjiang People’s Hospital, No. 28 East Zhongzhou Road, Taizhou, 214500 Jiangsu China
| | - Yulun Huang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, 215007 Jiangsu China
| |
Collapse
|
84
|
Zeng H, Wang L, Wang J, Chen T, Li H, Zhang K, Chen J, Zhen S, Tuluhong D, Li J, Wang S. microRNA-129-5p suppresses Adriamycin resistance in breast cancer by targeting SOX2. Arch Biochem Biophys 2018; 651:52-60. [PMID: 29802821 DOI: 10.1016/j.abb.2018.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
Adriamycin resistance is closely related to therapeutic efficacy in breast cancer patients and their prognosis. Increasing evidence has suggested that miRNA functions in Adriamycin resistance in various types of cancer. microRNA-129-5p (miR-129-5p) has been considered a tumor-suppressive miRNA in several cancers, but its potential role in Adriamycin resistance in breast cancer has not been fully elucidate. By qRT-PCR assay, we revealed that the expression of miR-129-5p was significantly decreased in breast cancer tissues and Adriamycin-resistant breast cancer cells (MDA-MB-231/ADR, MCF-7/ADR). CCK-8, colony formation, wound healing, Transwell invasion, and flow cytometric profiles were examined to determine the influence of miR-129-5p on Adriamycin-resistant breast cancer in vitro. The upregulation of miR-129-5p decreased the IC50 concentration of Adriamycin and invasion and promoted the apoptosis of MDA-MB-231/ADR cells in the presence of Adriamycin, whereas the upregulation of Sex-Determining Region Y-Box 2 (SOX2) reversed these effects. A luciferase reporter assay confirmed the binding of miR-129-5p to the 3'UTR of SOX2. Collectively, it was suggested that miR-129-5p suppresses Adriamycin resistance in breast cancer by directly targeting SOX2.
Collapse
Affiliation(s)
- Huijuan Zeng
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Lulu Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Jingjie Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Tao Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Hanjun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Shuang Zhen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Dilihumaer Tuluhong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China.
| | - Shaohua Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China.
| |
Collapse
|
85
|
Vidak M, Jovcevska I, Samec N, Zottel A, Liovic M, Rozman D, Dzeroski S, Juvan P, Komel R. Meta-Analysis and Experimental Validation Identified FREM2 and SPRY1 as New Glioblastoma Marker Candidates. Int J Mol Sci 2018; 19:ijms19051369. [PMID: 29734672 PMCID: PMC5983642 DOI: 10.3390/ijms19051369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive brain malignancy. Although some potential glioblastoma biomarkers have already been identified, there is a lack of cell membrane-bound biomarkers capable of distinguishing brain tissue from glioblastoma and/or glioblastoma stem cells (GSC), which are responsible for the rapid post-operative tumor reoccurrence. In order to find new GB/GSC marker candidates that would be cell surface proteins (CSP), we have performed meta-analysis of genome-scale mRNA expression data from three data repositories (GEO, ArrayExpress and GLIOMASdb). The search yielded ten appropriate datasets, and three (GSE4290/GDS1962, GSE23806/GDS3885, and GLIOMASdb) were used for selection of new GB/GSC marker candidates, while the other seven (GSE4412/GDS1975, GSE4412/GDS1976, E-GEOD-52009, E-GEOD-68848, E-GEOD-16011, E-GEOD-4536, and E-GEOD-74571) were used for bioinformatic validation. The selection identified four new CSP-encoding candidate genes—CD276, FREM2, SPRY1, and SLC47A1—and the bioinformatic validation confirmed these findings. A review of the literature revealed that CD276 is not a novel candidate, while SLC47A1 had lower validation test scores than the other new candidates and was therefore not considered for experimental validation. This validation revealed that the expression of FREM2—but not SPRY1—is higher in glioblastoma cell lines when compared to non-malignant astrocytes. In addition, FREM2 gene and protein expression levels are higher in GB stem-like cell lines than in conventional glioblastoma cell lines. FREM2 is thus proposed as a novel GB biomarker and a putative biomarker of glioblastoma stem cells. Both FREM2 and SPRY1 are expressed on the surface of the GB cells, while SPRY1 alone was found overexpressed in the cytosol of non-malignant astrocytes.
Collapse
Affiliation(s)
- Marko Vidak
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Ivana Jovcevska
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Neja Samec
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Alja Zottel
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Mirjana Liovic
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Damjana Rozman
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Saso Dzeroski
- Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana SI-1000, Slovenia.
| | - Peter Juvan
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Radovan Komel
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
86
|
Yu Q, Xue Y, Liu J, Xi Z, Li Z, Liu Y. Fibronectin Promotes the Malignancy of Glioma Stem-Like Cells Via Modulation of Cell Adhesion, Differentiation, Proliferation and Chemoresistance. Front Mol Neurosci 2018; 11:130. [PMID: 29706869 PMCID: PMC5908975 DOI: 10.3389/fnmol.2018.00130] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Glioma stem-like cells (GSCs) are regarded as the sources of oncogenesis, recurrence, invasion and chemoresistance in malignant gliomas. Growing evidence suggests that the microenvironment surrounding GSCs interacts with tumor cells to influence biological behavior; however, the functional mechanisms involved are still unclear. In the present study, we investigated the modulation of GSCs triggered by fibronectin (FN), a main component of the extracellular matrix (ECM), in terms of cell adhesion, differentiation, proliferation and chemoresistance. We demonstrated that pre-coated FN prompted increased adherence by GSCs, with increased matrix metallopeptidases (MMPs)-2 and -9 expression, in a concentration-dependent manner. Decreases in sox-2 and nestin levels, and increased levels of glial fibrillary acidic protein (GFAP) and β-tubulin were also found in GSCs, indicating cell differentiation driven by FN. Further investigation revealed that FN promoted cell growth, as demonstrated by the elevation of Ki-67, with the activation of p-ERK1/2 and cyclin D1 also evident. In addition, FN suppressed p53-mediated apoptosis and upregulated P-glycoprotein expression, making GSCs more chemoresistant to alkylating agents such as carmustine. In contrast, this effect was reversed by an integrin inhibitor, cilengitide. Activation of the focal adhesion kinase/paxillin/AKT signaling pathway was involved in the modulation of GSCs by FN. Focusing on the interactions between tumor cells and the ECM may be an encouraging aspect of research on novel chemotherapeutic therapies in future.
Collapse
Affiliation(s)
- Qi Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
87
|
Wang D, Li JR, Zhang YH, Chen L, Huang T, Cai YD. Identification of Differentially Expressed Genes between Original Breast Cancer and Xenograft Using Machine Learning Algorithms. Genes (Basel) 2018. [PMID: 29534550 PMCID: PMC5867876 DOI: 10.3390/genes9030155] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is one of the most common malignancies in women. Patient-derived tumor xenograft (PDX) model is a cutting-edge approach for drug research on breast cancer. However, PDX still exhibits differences from original human tumors, thereby challenging the molecular understanding of tumorigenesis. In particular, gene expression changes after tissues are transplanted from human to mouse model. In this study, we propose a novel computational method by incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS), random forest (RF), and rough set-based rule learning, to identify genes with significant expression differences between PDX and original human tumors. First, 831 breast tumors, including 657 PDX and 174 human tumors, were collected. Based on MCFS and RF, 32 genes were then identified to be informative for the prediction of PDX and human tumors and can be used to construct a prediction model. The prediction model exhibits a Matthews coefficient correlation value of 0.777. Seven interpretable interactions within the informative gene were detected based on the rough set-based rule learning. Furthermore, the seven interpretable interactions can be well supported by previous experimental studies. Our study not only presents a method for identifying informative genes with differential expression but also provides insights into the mechanism through which gene expression changes after being transplanted from human tumor into mouse model. This work would be helpful for research and drug development for breast cancer.
Collapse
Affiliation(s)
- Deling Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Jia-Rui Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
88
|
Mansouri S, Singh S, Alamsahebpour A, Burrell K, Li M, Karabork M, Ekinci C, Koch E, Solaroglu I, Chang JT, Wouters B, Aldape K, Zadeh G. DICER governs characteristics of glioma stem cells and the resulting tumors in xenograft mouse models of glioblastoma. Oncotarget 2018; 7:56431-56446. [PMID: 27421140 PMCID: PMC5302925 DOI: 10.18632/oncotarget.10570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
The RNAse III endonuclease DICER is a key regulator of microRNA (miRNA) biogenesis and is frequently decreased in a variety of malignancies. We characterized the role of DICER in glioblastoma (GB), specifically demonstrating its effects on the ability of glioma stem-like cells (GSCs) to form tumors in a mouse model of GB. DICER silencing in GSCs reduced their stem cell characteristics, while tumors arising from these cells were more aggressive, larger in volume, and displayed a higher proliferation index and lineage differentiation. The resulting tumors, however, were more sensitive to radiation treatment. Our results demonstrate that DICER silencing enhances the tumorigenic potential of GSCs, providing a platform for analysis of specific relevant miRNAs and development of potentially novel therapies against GB.
Collapse
Affiliation(s)
- Sheila Mansouri
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Sanjay Singh
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Amir Alamsahebpour
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Kelly Burrell
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Mira Li
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Merve Karabork
- School of Medicine, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Can Ekinci
- School of Medicine, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Elizabeth Koch
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ihsan Solaroglu
- School of Medicine, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey.,Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Jeffery T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Bradly Wouters
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kenneth Aldape
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada.,Department of Neurosurgery, Toronto Western Hospital, University Health Network, 4W-436, Toronto, ON, Canada
| |
Collapse
|
89
|
RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells. Stem Cell Reports 2017; 8:125-139. [PMID: 28076755 PMCID: PMC5233453 DOI: 10.1016/j.stemcr.2016.12.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 11/27/2022] Open
Abstract
Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. RAD51 is overexpressed in glioma stem cells RAD51 expression levels fall when GSCs are differentiated RAD51 inhibitors abrogate DNA repair leading to radiosensitization in GSCs RAD51 inhibition + XR removes SOX2-expressing cells and abolishes clonogenicity
Collapse
|
90
|
Abstract
The marked heterogeneity in glioblastoma (GBM) may be induced through dynamic differentiation and dedifferentiation process of glioma cells. The hypothesis that environmental stimuli induce these phenotypic changes, including dedifferentiation into the stem cell phenotype which contributes to the high invasiveness and resultant poor outcome in GBM patients, is recently being proven. In the process of cancer invasion and metastasis, the phenotypic change has also been described as epithelial-mesenchymal transition (EMT). This biological process is mainly dependent on hypoxic stimuli and also on transforming growth factor-β (TGF-β) released from glioma stem cells, mesenchymal stem cells, and myeloid cells recruited by hypoxia. The tumor microenvironment, especially hypoxia, inducing such dynamic phenotypic changes can be a good therapeutic target in the treatment of GBM.
Collapse
Affiliation(s)
- Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine
| |
Collapse
|
91
|
Otani Y, Ichikawa T, Kurozumi K, Inoue S, Ishida J, Oka T, Shimizu T, Tomita Y, Hattori Y, Uneda A, Matsumoto Y, Michiue H, Date I. Fibroblast growth factor 13 regulates glioma cell invasion and is important for bevacizumab-induced glioma invasion. Oncogene 2017; 37:777-786. [PMID: 29059154 DOI: 10.1038/onc.2017.373] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
Abstract
Glioblastoma has the poorest prognosis, and is characterized by excessive invasion and angiogenesis. To determine the invasive mechanisms, we previously used two glioma cell lines (J3T-1 and J3T-2) with different invasive phenotypes. The J3T-1 showed abundant angiogenesis and tumor cell invasion around neovasculature, while J3T-2 showed diffuse cell infiltration into surrounding healthy parenchyma. Microarray analyses were used to identify invasion-related genes in J3T-2 cells, and the expressed genes and their intracellular and intratumoral distribution patterns were evaluated in J3T-2 cell lines, human glioma cell lines, human glioblastoma stem cells and human glioblastoma specimens. To determine the role of the invasion-related genes, invasive activities were evaluated in vitro and in vivo. Fibroblast growth factor 13 (FGF13) was overexpressed in J3T-2 cells compared to J3T-1 cells, and in human glioma cell lines, human glioblastoma stem cells and human glioblastoma specimens, when compared to that of normal human astrocytes. Immunohistochemical staining and the RNA-seq (sequencing) data from the IVY Glioblastoma Atlas Project showed FGF13 expression in glioma cells in the invasive edges of tumor specimens. Also, the intracellular distribution was mainly in the cytoplasm of tumor cells and colocalized with tubulin. Overexpression of FGF13 stabilized tubulin dynamics in vitro and knockdown of FGF13 decreased glioma invasion both in vitro and in vivo and prolonged overall survival of several xenograft models. FGF13 was negatively regulated by hypoxic condition. Silencing of FGF13 also decreased in vivo bevacizumab-induced glioma invasion. In conclusion, FGF13 regulated glioma cell invasion and bevacizumab-induced glioma invasion, and could be a novel target for glioma treatment.
Collapse
Affiliation(s)
- Y Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - T Ichikawa
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - K Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - S Inoue
- Department of Neurosurgery, Okayama City Hospital, Okayama, Japan
| | - J Ishida
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - T Oka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - T Shimizu
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Y Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Y Hattori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - A Uneda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Y Matsumoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - H Michiue
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - I Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
92
|
Rosager AM, Sørensen MD, Dahlrot RH, Boldt HB, Hansen S, Lathia JD, Kristensen BW. Expression and prognostic value of JAM-A in gliomas. J Neurooncol 2017; 135:107-117. [PMID: 28677106 PMCID: PMC5658466 DOI: 10.1007/s11060-017-2555-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/27/2017] [Indexed: 12/26/2022]
Abstract
Gliomas are among the most lethal cancers, being highly resistant to both chemo- and radiotherapy. The expression of junctional adhesion molecule-A (JAM-A) was recently identified on the surface of stem cell-like brain tumor-initiating cells and suggested to function as a unique glioblastoma niche adhesion factor influencing the tumorigenic potential of brain tumor-initiating cells. We have recently identified high JAM-A expression to be associated with poor outcome in glioblastomas, and our aim was to further investigate the expression of JAM-A in gliomas focusing especially on the prognostic value in WHO grade II and III gliomas. JAM-A protein expression was evaluated by immunohistochemistry and advanced quantitative image analysis with continuous estimates of staining intensity. The JAM-A antibody stained tumor cell membranes and cytoplasm to various extent in different glioma subtypes, and the intensity was higher in glioblastomas than low-grade gliomas. We could not detect an association with overall survival in patients with grade II and III tumors. Double-immunofluorescence stainings in glioblastomas revealed co-expression of JAM-A with CD133, SOX2, nestin, and GFAP in tumor cells as well as some co-expression with the microglial/macrophage marker IBA-1. In conclusion, JAM-A expression was higher in glioblastomas compared to low-grade gliomas and co-localized with recognized stem cell markers suggesting an association of JAM-A with glioma aggressiveness. No significant association between JAM-A expression and overall survival was found in grade II and III gliomas. Further research is needed to determine the function and clinical impact of JAM-A in gliomas.
Collapse
Affiliation(s)
- Ann Mari Rosager
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3rd floor, 5000, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, 3rd floor, 5000, Odense, Denmark
| | - Mia D Sørensen
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3rd floor, 5000, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, 3rd floor, 5000, Odense, Denmark.
| | - Rikke H Dahlrot
- Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Henning B Boldt
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3rd floor, 5000, Odense, Denmark
| | - Steinbjørn Hansen
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, 3rd floor, 5000, Odense, Denmark
- Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, 9500 Euclid Avenue, NC10, Cleveland, OH, 44195, USA
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 3rd floor, 5000, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, 3rd floor, 5000, Odense, Denmark
| |
Collapse
|
93
|
Chd7 Collaborates with Sox2 to Regulate Activation of Oligodendrocyte Precursor Cells after Spinal Cord Injury. J Neurosci 2017; 37:10290-10309. [PMID: 28931573 DOI: 10.1523/jneurosci.1109-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/09/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) act as a reservoir of new oligodendrocytes (OLs) in homeostatic and pathological conditions. OPCs are activated in response to injury to generate myelinating OLs, but the underlying mechanisms remain poorly understood. Here, we show that chromodomain helicase DNA binding protein 7 (Chd7) regulates OPC activation after spinal cord injury (SCI). Chd7 is expressed in OPCs in the adult spinal cord and its expression is upregulated with a concomitant increase in Sox2 expression after SCI. OPC-specific ablation of Chd7 in injured mice leads to reduced OPC proliferation, the loss of OPC identity, and impaired OPC differentiation. Ablation of Chd7 or Sox2 in cultured OPCs shows similar phenotypes to those observed in Chd7 knock-out mice. Chd7 and Sox2 form a complex in OPCs and bind to the promoters or enhancers of the regulator of cell cycle (Rgcc) and protein kinase Cθ (PKCθ) genes, thereby inducing their expression. The expression of Rgcc and PKCθ is reduced in the OPCs of the injured Chd7 knock-out mice. In cultured OPCs, overexpression and knock-down of Rgcc or PKCθ promote and suppress OPC proliferation, respectively. Furthermore, overexpression of both Rgcc and PKCθ rescues the Chd7 deletion phenotypes. Chd7 is thus a key regulator of OPC activation, in which it cooperates with Sox2 and acts via direct induction of Rgcc and PKCθ expression.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to oligodendrocyte (OL) loss and demyelination, along with neuronal death, resulting in impairment of motor or sensory functions. Oligodendrocyte precursor cells (OPCs) activated in response to injury are potential sources of OL replacement and are thought to contribute to remyelination and functional recovery after SCI. However, the molecular mechanisms underlying OPC activation, especially its epigenetic regulation, remain largely unclear. We demonstrate here that the chromatin remodeler chromodomain helicase DNA binding protein 7 (Chd7) regulates the proliferation and identity of OPCs after SCI. We have further identified regulator of cell cycle (Rgcc) and protein kinase Cθ (PKCθ) as novel targets of Chd7 for OPC activation.
Collapse
|
94
|
Wan X, Ball S, Willenbrock F, Yeh S, Vlahov N, Koennig D, Green M, Brown G, Jeyaretna S, Li Z, Cui Z, Ye H, O'Neill E. Perfused Three-dimensional Organotypic Culture of Human Cancer Cells for Therapeutic Evaluation. Sci Rep 2017; 7:9408. [PMID: 28842598 PMCID: PMC5573358 DOI: 10.1038/s41598-017-09686-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Pharmaceutical research requires pre-clinical testing of new therapeutics using both in-vitro and in-vivo models. However, the species specificity of non-human in-vivo models and the inadequate recapitulation of physiological conditions in-vitro are intrinsic weaknesses. Here we show that perfusion is a vital factor for engineered human tissues to recapitulate key aspects of the tumour microenvironment. Organotypic culture and human tumour explants were allowed to grow long-term (14-35 days) and phenotypic features of perfused microtumours compared with those in the static culture. Differentiation status and therapeutic responses were significantly different under perfusion, indicating a distinct biological response of cultures grown under static conditions. Furthermore, heterogeneous co-culture of tumour and endothelial cells demonstrated selective cell-killing under therapeutic perfusion versus episodic delivery. We present a perfused 3D microtumour culture platform that sustains a more physiological tissue state and increased viability for long-term analyses. This system has the potential to tackle the disadvantages inherit of conventional pharmaceutical models and is suitable for precision medicine screening of tumour explants, particularly in hard-to-treat cancer types such as brain cancer which suffer from a lack of clinical samples.
Collapse
Affiliation(s)
- Xiao Wan
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Steven Ball
- Oxford Instruments Nanoscience, Tubney Woods, Abingdon, Oxford, OX13 5QX, UK
| | - Frances Willenbrock
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Shaoyang Yeh
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Nikola Vlahov
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Delia Koennig
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Marcus Green
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Graham Brown
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Sanjeeva Jeyaretna
- Department of Neurosurgery, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Zhaohui Li
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Eric O'Neill
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK.
| |
Collapse
|
95
|
Irtenkauf SM, Sobiechowski S, Hasselbach LA, Nelson KK, Transou AD, Carlton ET, Mikkelsen T, deCarvalho AC. Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research. Comp Med 2017; 67:300-314. [PMID: 28830577 PMCID: PMC5557202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2016] [Accepted: 12/06/2016] [Indexed: 06/07/2023]
Abstract
Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and -negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for preclinical mouse models of glioblastoma.
Collapse
Affiliation(s)
- Susan M Irtenkauf
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Susan Sobiechowski
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Laura A Hasselbach
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Kevin K Nelson
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Andrea D Transou
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Enoch T Carlton
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Tom Mikkelsen
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ana C deCarvalho
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.
| |
Collapse
|
96
|
Yin J, Oh YT, Kim JY, Kim SS, Choi E, Kim TH, Hong JH, Chang N, Cho HJ, Sa JK, Kim JC, Kwon HJ, Park S, Lin W, Nakano I, Gwak HS, Yoo H, Lee SH, Lee J, Kim JH, Kim SY, Nam DH, Park MJ, Park JB. Transglutaminase 2 Inhibition Reverses Mesenchymal Transdifferentiation of Glioma Stem Cells by Regulating C/EBPβ Signaling. Cancer Res 2017; 77:4973-4984. [PMID: 28754668 DOI: 10.1158/0008-5472.can-17-0388] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 11/16/2022]
Abstract
Necrosis is a hallmark of glioblastoma (GBM) and is responsible for poor prognosis and resistance to conventional therapies. However, the molecular mechanisms underlying necrotic microenvironment-induced malignancy of GBM have not been elucidated. Here, we report that transglutaminase 2 (TGM2) is upregulated in the perinecrotic region of GBM and triggered mesenchymal (MES) transdifferentiation of glioma stem cells (GSC) by regulating master transcription factors (TF), such as C/EBPβ, TAZ, and STAT3. TGM2 expression was induced by macrophages/microglia-derived cytokines via NF-κB activation and further degraded DNA damage-inducible transcript 3 (GADD153) to induce C/EBPβ expression, resulting in expression of the MES transcriptome. Downregulation of TGM2 decreased sphere-forming ability, tumor size, and radioresistance and survival in a xenograft mouse model through a loss of the MES signature. A TGM2-specific inhibitor GK921 blocked MES transdifferentiation and showed significant therapeutic efficacy in mouse models of GSC. Moreover, TGM2 expression was significantly increased in recurrent MES patients and inversely correlated with patient prognosis. Collectively, our results indicate that TGM2 is a key molecular switch of necrosis-induced MES transdifferentiation and an important therapeutic target for MES GBM. Cancer Res; 77(18); 4973-84. ©2017 AACR.
Collapse
Affiliation(s)
- Jinlong Yin
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.,Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Young Taek Oh
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Jeong-Yub Kim
- Division of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Pathology, College of Medicine, Korea University, Seoul, Korea
| | - Sung Soo Kim
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Eunji Choi
- Department of Cancer Control and Policy, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Tae Hoon Kim
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jun Hee Hong
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Nakho Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Hee Jin Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Jason K Sa
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Jeong Cheol Kim
- Division of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyung Joon Kwon
- Department of Cancer Control and Policy, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Saewhan Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Weiwei Lin
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama.,UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ho-Shin Gwak
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.,Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Heon Yoo
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.,Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Seung-Hoon Lee
- Department of Neurosurgery, Eulji University School of Medicine, Daejeon, Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jong Heon Kim
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.,Cancer Cell and Molecular Biology Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Do-Hyun Nam
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea. .,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Jin Park
- Division of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.
| | - Jong Bae Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea. .,Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
97
|
Vasquez JC, Huttner A, Zhang L, Marks A, Chan A, Baehring JM, Kahle KT, Dhodapkar KM. SOX2 immunity and tissue resident memory in children and young adults with glioma. J Neurooncol 2017. [PMID: 28620836 DOI: 10.1007/s11060-017-2515-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Therapies targeting immune checkpoints are effective in tumors with a high mutation burden that express multiple neo-antigens. However, glial tumors including those seen in children carry fewer mutations and there is an unmet need to identify new antigenic targets of anti-tumor immunity. SOX2 is an embryonal stem cell antigen implicated in the biology of glioma initiating cells. Expression of SOX2 by pediatric glial tumors and the capacity of the immune system in these patients to recognize SOX2 has not been previously studied. We examined the expression of SOX2 on archived paraffin-embedded tissue from pediatric glial tumors. The presence of T-cell immunity to SOX2 was examined in both blood and tumor-infiltrating T-cells in children and young adults with glioma. The nature of tumor-infiltrating immune cells was analyzed with a 37-marker panel using single-cell mass cytometry. SOX2 is expressed by tumor cells but not surrounding normal tissue in pediatric gliomas of all grades. T-cells against this antigen can be detected in blood and tumor tissue in glioma patients. Glial tumors are enriched for CD8/CD4 T-cells with tissue resident memory (TRM; CD45RO+, CD69+, CCR7-) phenotype, which co-express multiple inhibitory checkpoints including PD-1, PD-L1 and TIGIT. Tumors also contain natural killer cells with reduced expression of lytic granzyme. Our data demonstrate immunogenicity of SOX2, which is specifically overexpressed on pediatric glial tumor cells. Harnessing tumor immunity in glioma will likely require the combined targeting of multiple inhibitory checkpoints.
Collapse
Affiliation(s)
- Juan C Vasquez
- Department of Pediatrics, Yale School of Medicine, 333 Cedar Street, LMP 2073, New Haven, CT, 06510, USA
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lin Zhang
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Asher Marks
- Department of Pediatrics, Yale School of Medicine, 333 Cedar Street, LMP 2073, New Haven, CT, 06510, USA
| | - Amy Chan
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Kavita M Dhodapkar
- Department of Pediatrics, Yale School of Medicine, 333 Cedar Street, LMP 2073, New Haven, CT, 06510, USA.
| |
Collapse
|
98
|
Han YP, Enomoto A, Shiraki Y, Wang SQ, Wang X, Toyokuni S, Asai N, Ushida K, Ara H, Ohka F, Wakabayashi T, Ma J, Natsume A, Takahashi M. Significance of low mTORC1 activity in defining the characteristics of brain tumor stem cells. Neuro Oncol 2017; 19:636-647. [PMID: 28453744 PMCID: PMC5464440 DOI: 10.1093/neuonc/now237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/25/2016] [Accepted: 09/29/2016] [Indexed: 12/12/2022] Open
Abstract
Background The significance of mammalian target of rapamycin complex 1 (mTORC1) activity in the maintenance of cancer stem cells (CSCs) remains controversial. Previous findings showed that mTORC1 activation depleted the population of leukemia stem cells in leukemia, while maintaining the stemness in pancreatic CSCs. The purpose of this study was to examine the currently unknown role and significance of mTORC1 activity in brain tumor stem cells (BTSCs). Methods Basal mTORC1 activity and its kinetics were investigated in BTSC clones isolated from patients with glioblastoma and their differentiated progenies (DIFFs). The effects of nutrient deprivation and the mTORC1 inhibitors on cell proliferation were compared between the BTSCs and DIFFs. Tissue sections from patients with brain gliomas were examined for expression of BTSC markers and mTORC1 activity by immunohistochemistry. Results BTSCs presented lower basal mTORC1 activity under each culture condition tested and a more rapid decline of mTORC1 activity after nutrient deprivation than observed in DIFFs. The self-renewal capacity of BTSCs was unaffected by mTORC1 inhibition, whereas it effectively suppressed DIFF proliferation. In agreement, immunohistochemical staining of glioma tissues revealed low mTORC1 activity in tumor cells positive for BTSC markers. In in vitro culture, BTSCs exhibited resistance to the antitumor agent temozolomide. Conclusions Our findings indicated the importance of low mTORC1 activity in maintaining the undifferentiated state of BTSCs, implicating the relevance of manipulating mTORC1 activity when developing future strategies that target BTSCs.
Collapse
Affiliation(s)
- Yi-Peng Han
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shen-Qi Wang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xiaoze Wang
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hosne Ara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
99
|
Palumbo P, Miconi G, Cinque B, Lombardi F, Torre CL, Dehcordi SR, Galzio R, Cimini A, Giordano A, Cifone MG. NOS2 expression in glioma cell lines and glioma primary cell cultures: correlation with neurosphere generation and SOX-2 expression. Oncotarget 2017; 8:25582-25598. [PMID: 28424427 PMCID: PMC5421953 DOI: 10.18632/oncotarget.16106] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/15/2017] [Indexed: 01/14/2023] Open
Abstract
Nitric oxide has been implicated in biology and progression of glioblastoma (GBM) being able to influence the cellular signal depending on the concentration and duration of cell exposure. NOS2 (inducible nitric oxide synthase) have been proposed as a component of molecular profile of several tumors, including glioma, one of the most aggressive primary brain tumor featuring local cancer stem cells responsible for enhanced resistance to therapies and for tumor recurrence. Here, we investigated the NOS2 mRNA expression by reverse transcription-PCR in human glioma primary cultures at several grade of malignancy and glioma stem cell (GSC) derived neurospheres. Glioma cell lines were used as positive controls both in terms of stemness marker expression that of capacity of generating neurospheres. NOS2 expression was detected at basal levels in cell lines and primary cultures and appeared significantly up-regulated in cultures kept in the specific medium for neurospheres. The immunofluorescence analysis of all cell cultures to evaluate the levels of SOX-2, a stemness marker aberrantly up-regulated in GBM, was also performed. The potential correlation between NOS2 expression and ability to generate neurospheres and between NOS2 and SOX-2 levels was also verified. The results show that the higher NOS2 expression is detected in all primary cultures able to arise neurosphere. A high and significant correlation between NOS2 expression and SOX-2 positive cells (%) in all cell cultures maintained in standard conditions has been observed. The results shed light on the potential relevance of NOS2 as a prognostic factor for glioma malignancy and recurrence.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Gianfranca Miconi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Cristina La Torre
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Soheila Raysi Dehcordi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Department of Surgery, Operative Unit of Neurosurgery, San Salvatore Hospital, L’Aquila, Italy
| | - Renato Galzio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Department of Surgery, Operative Unit of Neurosurgery, San Salvatore Hospital, L’Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, USA
- National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, USA
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
100
|
Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications. Neurotherapeutics 2017; 14:372-384. [PMID: 28374184 PMCID: PMC5398995 DOI: 10.1007/s13311-017-0524-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.
Collapse
Affiliation(s)
- Tamara J Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case, Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Stephen M Dombrowski
- Department of Neurological Surgery, Section of Pediatric Neurosurgical Oncology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|