51
|
Khurana N, Sikka SC. Targeting Crosstalk between Nrf-2, NF-κB and Androgen Receptor Signaling in Prostate Cancer. Cancers (Basel) 2018; 10:cancers10100352. [PMID: 30257470 PMCID: PMC6210752 DOI: 10.3390/cancers10100352] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress, inflammation and androgen receptor (AR) signaling play a pivotal role in the initiation, development and progression of prostate cancer (PCa). Numerous papers in the literature have documented the interconnection between oxidative stress and inflammation; and how antioxidants can combat the inflammation. It has been shown in the literature that both oxidative stress and inflammation regulate AR, the key receptor involved in the transition of PCa to castration resistant prostate cancer (CRPC). In this review, we discuss about the importance of targeting Nrf-2-antioxidant signaling, NF-κB inflammatory response and AR signaling in PCa. Finally, we discuss about the crosstalk between these three critical pathways as well as how the anti-inflammatory antioxidant phytochemicals like sulforaphane (SFN) and curcumin (CUR), which can also target AR, can be ideal candidates in the chemoprevention of PCa.
Collapse
Affiliation(s)
- Namrata Khurana
- Department of Internal Medicine-Medical Oncology, Washington University in St. Louis Medical Campus, 660 S Euclid Ave, St. Louis, MO 63110-1010, USA.
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine,1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
52
|
Wang L, Liu L, Chen Y, Du Y, Wang J, Liu J. Correlation between adenosine triphosphate (ATP)-binding cassette transporter G2 (ABCG2) and drug resistance of esophageal cancer and reversal of drug resistance by artesunate. Pathol Res Pract 2018; 214:1467-1473. [DOI: 10.1016/j.prp.2018.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/23/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
|
53
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
54
|
Zheng L, Chen S, Cao Y, Zhao L, Gao Y, Ding X, Wang X, Gu Y, Wang S, Zhu Z, Yuan Y, Chen X, Chai Y. Combination of comprehensive two-dimensional prostate cancer cell membrane chromatographic system and network pharmacology for characterizing membrane binding active components from Radix et Rhizoma Rhei and their targets. J Chromatogr A 2018; 1564:145-154. [DOI: 10.1016/j.chroma.2018.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
|
55
|
Prevention of carcinogenesis and metastasis by Artemisinin-type drugs. Cancer Lett 2018; 429:11-18. [DOI: 10.1016/j.canlet.2018.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
|
56
|
Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor Research on Artemisinin and Its Bioactive Derivatives. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:303-319. [PMID: 29633188 PMCID: PMC6102173 DOI: 10.1007/s13659-018-0162-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 05/02/2023]
Abstract
Cancer is the leading cause of human death which seriously threatens human life. The antimalarial drug artemisinin and its derivatives have been discovered with considerable anticancer properties. Simultaneously, a variety of target-selective artemisinin-related compounds with high efficiency have been discovered. Many researches indicated that artemisinin-related compounds have cytotoxic effects against a variety of cancer cells through pleiotropic effects, including inhibiting the proliferation of tumor cells, promoting apoptosis, inducing cell cycle arrest, disrupting cancer invasion and metastasis, preventing angiogenesis, mediating the tumor-related signaling pathways, and regulating tumor microenvironment. More importantly, artemisinins demonstrated minor side effects to normal cells and manifested the ability to overcome multidrug-resistance which is widely observed in cancer patients. Therefore, we concentrated on the new advances and development of artemisinin and its derivatives as potential antitumor agents in recent 5 years. It is our hope that this review could be helpful for further exploration of novel artemisinin-related antitumor agents.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - P Saravana Prabha
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, China.
| |
Collapse
|
57
|
Anti-survivin effect of the small molecule inhibitor YM155 in RCC cells is mediated by time-dependent inhibition of the NF-κB pathway. Sci Rep 2018; 8:10289. [PMID: 29980758 PMCID: PMC6035265 DOI: 10.1038/s41598-018-28213-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/19/2018] [Indexed: 01/24/2023] Open
Abstract
Constitutive activation of the NF-κB signaling cascade is associated with tumourigenesis and poor prognosis in many human cancers including RCC. YM155, a small molecule inhibitor of survivin, was previously shown to potently inhibit the viability of immortalized and patient derived renal cell carcinoma (RCC) cell lines. Here we investigated the role of NF-κB signaling to the anti-cancer properties of YM155 in RCC786.0 cells. YM155 diminished nuclear levels of p65 and phosphorylated p65 and attenuated the transcriptional competencies of the p65/p50 heterodimers. Accordingly, we found that YM155 diminished the transcription of NF-κB target gene survivin. Events that led to the interception of the nuclear translocation of p65/p50 were the activation of the deubiquinating enzyme CYLD by YM155, which led to the inhibition of IKKβ, stabilization of IκBα and retention of NF-κB heterodimers in the cytosol. Importantly, the suppressive effects of YM155 were time-dependent and observed at the 24 h time point, and not earlier. TNF-α, a stimulator of NF-κB signaling did not affect its inhibitory properties. The ability of YM155 to intercept a major transcriptional pathway like NF-κB, would have important ramifications on the pharmacodynamics effects elicited by this unusual molecule.
Collapse
|
58
|
Ge WQ. MiR-539 Inhibits Inflammation in Renal Transplant Iscemia-Reperfusion Injury Via Blocking the MyD88/NF-κB Pathway. ACTA ACUST UNITED AC 2018. [DOI: 10.31491/csrc.2018.6.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
59
|
Li Z, Chan K, Qi Y, Lu L, Ning F, Wu M, Wang H, Wang Y, Cai S, Du J. Participation of CCL1 in Snail-Positive Fibroblasts in Colorectal Cancer Contribute to 5-Fluorouracil/Paclitaxel Chemoresistance. Cancer Res Treat 2017; 50:894-907. [PMID: 28934847 PMCID: PMC6056976 DOI: 10.4143/crt.2017.356] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose Cancer-associated fibroblasts (CAFs) activated by cancer cells has a central role in development and malignant biological behavior in colorectal cancer (CRC). Adult fibroblasts do not express Snail, but Snail-positive fibroblasts are discovered in the stroma of malignant CRC and reported to be the key role to chemoresistance. However, the reciprocal effect of CAFs expressed Snail to chemoresistance on CRC cells and the underlying molecular mechanisms are not fully characterized. Materials and Methods Snail-overexpressed 3T3 stable cell lines were generated by lipidosome and CT26 mixed with 3T3-Snail subcutaneous transplanted CRC models were established by subcutaneous injection. Cell Counting Kit-8, flow cytometry and western blotting assays were performed, and immunohistochemistry staining was studied. The cytokines participated in chemoresistance was validated with reverse transcriptase-polymerase chain reaction and heatmap. Results Snail-expression fibroblasts are discovered in human and mouse spontaneous CRCs. Overexpression of Snail induces 3T3 fibroblasts transdifferentiation to CAFs. CT26 co-cultured with 3T3-Snail resisted the impairment from 5-fluorouracil and paclitaxel in vitro. The subcutaneous transplanted tumor models included 3T3-Snail cells develop without restrictions even after treating with 5-fluorouracil or paclitaxel. Moreover, these chemoresistant processes may be mediated by CCL1 secreted by Snail-expression fibroblasts via transforming growth factor β/nuclear factor-κB signaling pathways. Conclusion Taken together, Snail-expressing 3T3 fibroblasts display CAFs properties that support 5-fluorouracil and paclitaxel chemoresistance in CRC via participation of CCL1 and suggest that inhibition of the Snail-expression fibroblasts in tumor may be a useful strategy to limit chemoresistance.
Collapse
Affiliation(s)
- Ziqian Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kaying Chan
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yifei Qi
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Linlin Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fen Ning
- Department of Obstetrics, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengling Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haifang Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuan Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaohui Cai
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|