51
|
Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke. Neuroscience 2016; 339:338-362. [PMID: 27725217 DOI: 10.1016/j.neuroscience.2016.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022]
Abstract
Motor map reorganization is believed to be one mechanism underlying rehabilitation-induced functional recovery. Although the ipsilesional secondary motor area has been known to reorganize motor maps and contribute to rehabilitation-induced functional recovery, it is unknown how the secondary motor area is reorganized by rehabilitative training. In the present study, using skilled forelimb reaching tasks, we investigated neural network remodeling in the rat rostral forelimb area (RFA) of the secondary motor area during 4weeks of rehabilitative training. Following photothrombotic stroke in the caudal forelimb area (CFA), rehabilitative training led to task-specific recovery and motor map reorganization in the RFA. A second injury to the RFA resulted in reappearance of motor deficits. Further, when both the CFA and RFA were destroyed simultaneously, rehabilitative training no longer improved task-specific recovery. In neural tracer studies, although rehabilitative training did not alter neural projection to the RFA from other brain areas, rehabilitative training increased neural projection from the RFA to the lower spinal cord, which innervates the muscles in the forelimb. Double retrograde tracer studies revealed that rehabilitative training increased the neurons projecting from the RFA to both the upper cervical cord, which innervates the muscles in the neck, trunk, and part of the proximal forelimb, and the lower cervical cord. These results suggest that neurons projecting to the upper cervical cord provide new connections to the denervated forelimb area of the spinal cord, and these new connections may contribute to rehabilitation-induced task-specific recovery and motor map reorganization in the secondary motor area.
Collapse
|
52
|
Sindhurakar A, Butensky SD, Meyers E, Santos J, Bethea T, Khalili A, Sloan AP, Rennaker RL, Carmel JB. An Automated Test of Rat Forelimb Supination Quantifies Motor Function Loss and Recovery After Corticospinal Injury. Neurorehabil Neural Repair 2016; 31:122-132. [PMID: 27530125 DOI: 10.1177/1545968316662528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Rodents are the primary animal model of corticospinal injury and repair, yet current behavioral tests do not show the large deficits after injury observed in humans. Forearm supination is critical for hand function and is highly impaired by corticospinal injury in both humans and rats. Current tests of rodent forelimb function do not measure this movement. OBJECTIVE To determine if quantification of forelimb supination in rats reveals large-scale functional loss and partial recovery after corticospinal injury. METHODS We developed a knob supination device that quantifies supination using automated and objective methods. Rats in a reaching box have to grasp and turn a knob in supination in order to receive a food reward. Performance on this task and the single pellet reaching task were measured before and after 2 manipulations of the pyramidal tract: a cut lesion of 1 pyramid and inactivation of motor cortex using 2 different drug doses. RESULTS A cut lesion of the corticospinal tract produced a large deficit in supination. In contrast, there was no change in pellet retrieval success. Supination function recovered partially over 6 weeks after injury, and a large deficit remained. Motor cortex inactivation produced a dose-dependent loss of knob supination; the effect on pellet reaching was more subtle. CONCLUSIONS The knob supination task reveals in rodents 3 signature hand function changes observed in humans with corticospinal injury: (1) large-scale loss with injury, (2) partial recovery in the weeks after injury, and (3) loss proportional to degree of dysfunction.
Collapse
Affiliation(s)
| | | | - Eric Meyers
- 2 The University of Texas at Dallas, Richardson, TX, USA
| | - Joshua Santos
- 1 Burke Medical Research Institute, White Plains, NY, USA
| | - Thelma Bethea
- 1 Burke Medical Research Institute, White Plains, NY, USA
| | - Ashley Khalili
- 1 Burke Medical Research Institute, White Plains, NY, USA.,3 City University of New York Medical School, New York, NY, USA
| | - Andrew P Sloan
- 2 The University of Texas at Dallas, Richardson, TX, USA
| | | | - Jason B Carmel
- 1 Burke Medical Research Institute, White Plains, NY, USA.,4 Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
53
|
Forelimb Kinematics of Rats Using XROMM, with Implications for Small Eutherians and Their Fossil Relatives. PLoS One 2016; 11:e0149377. [PMID: 26933950 PMCID: PMC4775064 DOI: 10.1371/journal.pone.0149377] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 01/31/2016] [Indexed: 11/18/2022] Open
Abstract
The earliest eutherian mammals were small-bodied locomotor generalists with a forelimb morphology that strongly resembles that of extant rats. Understanding the kinematics of the humerus, radius, and ulna of extant rats can inform and constrain hypotheses concerning typical posture and mobility in early eutherian forelimbs. The locomotion of Rattus norvegicus has been extensively studied, but the three-dimensional kinematics of the bones themselves remains under-explored. Here, for the first time, we use markerless XROMM (Scientific Rotoscoping) to explore the three-dimensional long bone movements in Rattus norvegicus during a normal, symmetrical gait (walking). Our data show a basic kinematic profile that agrees with previous studies on rats and other small therians: rats maintain a crouched forelimb posture throughout the step cycle, and the ulna is confined to flexion/extension in a parasagittal plane. However, our three-dimensional data illuminate long-axis rotation (LAR) movements for both the humerus and the radius for the first time. Medial LAR of the humerus throughout stance maintains an adducted elbow with a caudally-facing olecranon process, which in turn maintains a cranially-directed manus orientation (pronation). The radius also shows significant LAR correlated with manus pronation and supination. Moreover, we report that elbow flexion and manus orientation are correlated in R. norvegicus: as the elbow angle becomes more acute, manus supination increases. Our data also suggest that manus pronation and orientation in R. norvegicus rely on a divided system of labor between the ulna and radius. Given that the radius follows the flexion and extension trajectory of the ulna, it must rotate at the elbow (on the capitulum) so that during the stance phase its distal end lies medial to ulna, ensuring that the manus remains pronated while the forelimb is supporting the body. We suggest that forelimb posture and kinematics in Juramaia, Eomaia, and other basal eutherians were grossly similar to those of rats, and that humerus and radius LAR may have always played a significant role in forelimb and manus posture in small eutherian mammals.
Collapse
|
54
|
Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci 2016; 19:432-42. [PMID: 26854804 DOI: 10.1038/nn.4236] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
Overactivation of neuronal N-methyl-D-aspartate receptors (NMDARs) causes excitotoxicity and is necessary for neuronal death. In the classical view, these ligand-gated Ca(2+)-permeable ionotropic receptors require co-agonists and membrane depolarization for activation. We report that NMDARs signal during ligand binding without activation of their ion conduction pore. Pharmacological pore block with MK-801, physiological pore block with Mg(2+) or a Ca(2+)-impermeable NMDAR variant prevented NMDAR currents, but did not block excitotoxic dendritic blebbing and secondary currents induced by exogenous NMDA. NMDARs, Src kinase and Panx1 form a signaling complex, and activation of Panx1 required phosphorylation at Y308. Disruption of this NMDAR-Src-Panx1 signaling complex in vitro or in vivo by administration of an interfering peptide either before or 2 h after ischemia or stroke was neuroprotective. Our observations provide insights into a new signaling modality of NMDARs that has broad-reaching implications for brain physiology and pathology.
Collapse
|
55
|
Alaverdashvili M, Li X, Paterson PG. Protein-Energy Malnutrition Causes Deficits in Motor Function in Adult Male Rats. J Nutr 2015; 145:2503-11. [PMID: 26423735 PMCID: PMC5469620 DOI: 10.3945/jn.115.216382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/03/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Adult protein-energy malnutrition (PEM) often occurs in combination with neurological disorders affecting hand use and walking ability. The independent effects of PEM on motor function are not well characterized and may be obscured by these comorbidities. OBJECTIVE Our goal was to undertake a comprehensive evaluation of sensorimotor function with the onset and progression of PEM in an adult male rat model. METHODS In Expt. 1 and Expt. 2, male Sprague-Dawley rats (14-15 wk old) were assigned ad libitum access for 4 wk to normal-protein (NP) or low-protein (LP) diets containing 12.5% and 0.5% protein, respectively. Expt. 1 assessed muscle strength, balance, and skilled walking ability on days 2, 8, and 27 by bar-holding, cylinder, and horizontal ladder walking tasks, respectively. In addition to food intake and body weight, nutritional status was determined on days 3, 9, and 28 by serum acute-phase reactant and corticosterone concentrations and liver lipids. Expt. 2 addressed the effect of an LP diet on hindlimb muscle size. RESULTS PEM evolved over time in rats consuming the LP diet. Total food intake decreased by 24% compared with the NP group. On day 28, body weight and serum albumin decreased by 31% and 26%, respectively, and serum α2-macroglobulin increased by 445% (P < 0.05) in the LP group compared with the NP group. Forelimb dysfunction (173% increase in adaptive flexed-arm-hang score) developed on day 2 in rats fed the LP diet (P < 0.001), whereas abnormal walking (34% decreased incidence of correct hindlimb placement) developed by day 27 (P < 0.05). Relative to the NP diet, the LP diet reduced the cross-sectional area of gastrocnemius medialis (P < 0.05). CONCLUSIONS PEM in adult male rats causes a variety of sensorimotor abnormalities that develop at different stages of malnutrition. This model can be used in combination with disease models of sensorimotor deficits to examine the interactions between nutritional status, other treatments, and disease progression.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- Neuroscience Research Group and College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
56
|
A Within-Animal Comparison of Skilled Forelimb Assessments in Rats. PLoS One 2015; 10:e0141254. [PMID: 26506434 PMCID: PMC4624720 DOI: 10.1371/journal.pone.0141254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022] Open
Abstract
A variety of skilled reaching tasks have been developed to evaluate forelimb function in rodent models. The single pellet skilled reaching task and pasta matrix task have provided valuable insight into recovery of forelimb function in models of neurological injury and disease. Recently, several automated measures have been developed to reduce the cost and time burden of forelimb assessment in rodents. Here, we provide a within-subject comparison of three common forelimb assessments to allow direct evaluation of sensitivity and efficiency across tasks. Rats were trained to perform the single pellet skilled reaching task, the pasta matrix task, and the isometric pull task. Once proficient on all three tasks, rats received an ischemic lesion of motor cortex and striatum to impair use of the trained limb. On the second week post-lesion, all three tasks measured a significant deficit in forelimb function. Performance was well-correlated across tasks. By the sixth week post-lesion, only the isometric pull task measured a significant deficit in forelimb function, suggesting that this task is more sensitive to chronic impairments. The number of training days required to reach asymptotic performance was longer for the isometric pull task, but the total experimenter time required to collect and analyze data was substantially lower. These findings suggest that the isometric pull task represents an efficient, sensitive measure of forelimb function to facilitate preclinical evaluation in models of neurological injury and disease.
Collapse
|
57
|
Caleo M. Rehabilitation and plasticity following stroke: Insights from rodent models. Neuroscience 2015; 311:180-94. [PMID: 26493858 DOI: 10.1016/j.neuroscience.2015.10.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 01/08/2023]
Abstract
Ischemic injuries within the motor cortex result in functional deficits that may profoundly impact activities of daily living in patients. Current rehabilitation protocols achieve only limited recovery of motor abilities. The brain reorganizes spontaneously after injury, and it is believed that appropriately boosting these neuroplastic processes may restore function via recruitment of spared areas and pathways. Here I review studies on circuit reorganization, neuronal and glial plasticity and axonal sprouting following ischemic damage to the forelimb motor cortex, with a particular focus on rodent models. I discuss evidence pointing to compensatory take-over of lost functions by adjacent peri-lesional areas and the role of the contralesional hemisphere in recovery. One key issue is the need to distinguish "true" recovery (i.e. re-establishment of original movement patterns) from compensation in the assessment of post-stroke functional gains. I also consider the effects of physical rehabilitation, including robot-assisted therapy, and the potential mechanisms by which motor training induces recovery. Finally, I describe experimental approaches in which training is coupled with delivery of plasticizing drugs that render the remaining, undamaged pathways more sensitive to experience-dependent modifications. These combinatorial strategies hold promise for the definition of more effective rehabilitation paradigms that can be translated into clinical practice.
Collapse
Affiliation(s)
- M Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy; The BioRobotics Institute, Scuola Superiore Sant'Anna, P.zza Martiri della Libertà 33, 56127 Pisa, Italy.
| |
Collapse
|
58
|
Lee KH. The role of compensatory movements patterns in spontaneous recovery after stroke. J Phys Ther Sci 2015; 27:2671-3. [PMID: 26504266 PMCID: PMC4616067 DOI: 10.1589/jpts.27.2671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/23/2015] [Indexed: 11/24/2022] Open
Abstract
[Purpose] Post-stroke motor recovery consists of both true recovery and compensatory movements. Although compensatory movements are learned more quickly early after stroke, the role of compensatory movement patterns in functional recovery is controversial. We investigated the role of compensatory movement patterns in the long-term functional motor recovery after stroke. [Subjects and Methods] Male Wistar rats were subjected to photothrombotic infarction to induce motor and sensorimotor cortex lesions. The rats were given task-specific training. Behavior tests and analyses of compensatory movement patterns (head lift, limb withdrawal impairment, phantom grasps, and pellet chasing) during the single-pellet reaching test were performed 2, 7, 14, 21, 28, and 35 days post stroke. [Results] Successful retrieval during the single-pellet reaching test was significantly correlated with compensatory movement patterns in stroke groups. Motor cortex stroke showed significant correlation in limb withdrawal impairment and pellet chasing. But, sensorimotor cortex stroke was significant correlation in pellet chasing. [Conclusion] The data suggest that compensatory movements after stroke are correlated with spontaneous recovery. Since some compensatory movement patterns are detrimental to functional recovery, the correct timing of training and control of compensatory movement patterns might be important.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- Department of Occupational Therapy, Baekseok University, Repubic of Korea
| |
Collapse
|
59
|
Dobkin BH, Carmichael ST. The Specific Requirements of Neural Repair Trials for Stroke. Neurorehabil Neural Repair 2015; 30:470-8. [PMID: 26359342 DOI: 10.1177/1545968315604400] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel molecular, cellular, and pharmacological therapies to stimulate repair of sensorimotor circuits after stroke are entering clinical trials. Compared with acute neuroprotection and thrombolysis studies, clinical trials for repair in subacute and chronic hemiplegic participants have a different time course for delivery of an intervention, different mechanisms of action within the milieu of the injury, distinct relationships to the amount of physical activity and skills practice of participants, and need to include more refined outcome measures. This review examines the biological interaction of targeted rehabilitation with neural repair strategies to optimize outcomes. We suggest practical guidelines for the incorporation of inexpensive skills training and exercise at home. In addition, we describe some novel outcome measurement tools, including wearable sensors, to obtain the more detailed outcomes that may identify at least some minimal level of success from cellular and regeneration interventions. Thus, proceeding in the shadow of acute stroke trial designs may unnecessarily limit the mechanisms of action of new repair strategies, reduce their impact on participants, and risk missing important behavioral outcomes.
Collapse
Affiliation(s)
- Bruce H Dobkin
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
60
|
Ganguly K, Byl NN, Abrams GM. Neurorehabilitation: motor recovery after stroke as an example. Ann Neurol 2015; 74:373-81. [PMID: 25813243 DOI: 10.1002/ana.23994] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 12/13/2022]
Abstract
The field of neurorehabilitation aims to translate neuroscience research toward the goal of maximizing functional recovery after neurological injury. A growing body of research indicates that the fundamental principles of neurological rehabilitation are applicable to a broad range of congenital, degenerative, and acquired neurological disorders. In this perspective, we will focus on motor recovery after acquired brain injuries such as stroke. Over the past few decades, a large body of basic and clinical research has created an experimental and theoretical foundation for approaches to neurorehabilitation. Recent randomized clinical trials all emphasize the requirement for intense progressive rehabilitation programs to optimally enhance recovery. Moreover, advances in multimodal assessment of patients with neuroimaging and neurophysiological tools suggest the possibility of individualized treatment plans based on recovery potential. There are also promising indications for medical as well as noninvasive brain stimulation paradigms to facilitate recovery. Ongoing or planned clinical studies should provide more definitive evidence. We also highlight unmet needs and potential areas of research. Continued research built upon a robust experimental and theoretical foundation should help to develop novel treatments to improve recovery after neurological injury.
Collapse
Affiliation(s)
- Karunesh Ganguly
- Department of Neurology and Rehabilitation, San Francisco Veterans Administration Medical Center, University of California, San Francisco, San Francisco, CA; Departments of Neurology, University of California, San Francisco, San Francisco, CA
| | | | | |
Collapse
|
61
|
Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther 2015; 95:415-25. [PMID: 25212522 PMCID: PMC4348716 DOI: 10.2522/ptj.20130579] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality-based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback-based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed.
Collapse
|
62
|
Fenrich KK, May Z, Hurd C, Boychuk CE, Kowalczewski J, Bennett DJ, Whishaw IQ, Fouad K. Improved single pellet grasping using automated ad libitum full-time training robot. Behav Brain Res 2014; 281:137-48. [PMID: 25523027 DOI: 10.1016/j.bbr.2014.11.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/14/2014] [Accepted: 11/20/2014] [Indexed: 12/15/2022]
Abstract
The single pellet grasping (SPG) task is a skilled forelimb motor task commonly used to evaluate reaching and grasp kinematics and recovery of forelimb function in rodent models of CNS injuries and diseases. To train rats in the SPG task, the animals are usually food restricted then placed in an SPG task enclosure and presented food pellets on a platform located beyond a slit located at the front of the task enclosure for 10-30 min, normally every weekday for several weeks. When the SPG task is applied in studies involving various experimental groups, training quickly becomes labor intensive, and can yield results with significant day-to-day variability. Furthermore, training is frequently done during the animals' light-cycle, which for nocturnal rodents such as mice and rats could affect performance. Here we describe an automated pellet presentation (APP) robotic system to train and test rats in the SPG task that reduces some of the procedural weaknesses of manual training. We found that APP trained rats performed significantly more trials per 24 h period, and had higher success rates with less daily and weekly variability than manually trained rats. Moreover, the results show that success rates are positively correlated with the number of dark-cycle trials, suggesting that dark-cycle training has a positive effect on success rates. These results demonstrate that automated training is an effective method for evaluating and training skilled reaching performance of rats, opening up the possibility for new approaches to investigating the role of motor systems in enabling skilled forelimb use and new approaches to investigating rehabilitation following CNS injury.
Collapse
Affiliation(s)
- Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6E 2G4, Canada; Faculty of Rehabilitation Medicine, University of Alberta, 3-88 Corbett Hall, Edmonton, AB T6E 2G4, Canada.
| | - Zacnicte May
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6E 2G4, Canada; Faculty of Rehabilitation Medicine, University of Alberta, 3-88 Corbett Hall, Edmonton, AB T6E 2G4, Canada
| | - Caitlin Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6E 2G4, Canada; Faculty of Rehabilitation Medicine, University of Alberta, 3-88 Corbett Hall, Edmonton, AB T6E 2G4, Canada
| | - Carolyn E Boychuk
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6E 2G4, Canada; Faculty of Rehabilitation Medicine, University of Alberta, 3-88 Corbett Hall, Edmonton, AB T6E 2G4, Canada
| | - Jan Kowalczewski
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6E 2G4, Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6E 2G4, Canada; Faculty of Rehabilitation Medicine, University of Alberta, 3-88 Corbett Hall, Edmonton, AB T6E 2G4, Canada
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6E 2G4, Canada; Faculty of Rehabilitation Medicine, University of Alberta, 3-88 Corbett Hall, Edmonton, AB T6E 2G4, Canada
| |
Collapse
|
63
|
Quantitative Kinematic Characterization of Reaching Impairments in Mice After a Stroke. Neurorehabil Neural Repair 2014; 29:382-92. [DOI: 10.1177/1545968314545174] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background and Objective. Kinematic analysis of reaching movements is increasingly used to evaluate upper extremity function after cerebrovascular insults in humans and has also been applied to rodent models. Such analyses can require time-consuming frame-by-frame inspections and are affected by the experimenter’s bias. In this study, we introduce a semi-automated algorithm for tracking forepaw movements in mice. This methodology allows us to calculate several kinematic measures for the quantitative assessment of performance in a skilled reaching task before and after a focal cortical stroke. Methods. Mice were trained to reach for food pellets with their preferred paw until asymptotic performance was achieved. Photothrombosis was then applied to induce a focal ischemic injury in the motor cortex, contralateral to the trained limb. Mice were tested again once a week for 30 days. A high frame rate camera was used to record the movements of the paw, which was painted with a nontoxic dye. An algorithm was then applied off-line to track the trajectories and to compute kinematic measures for motor performance evaluation. Results. The tracking algorithm proved to be fast, accurate, and robust. A number of kinematic measures were identified as sensitive indicators of poststroke modifications. Based on end-point measures, ischemic mice appeared to improve their motor performance after 2 weeks. However, kinematic analysis revealed the persistence of specific trajectory adjustments up to 30 days poststroke, indicating the use of compensatory strategies. Conclusions. These results support the use of kinematic analysis in mice as a tool for both detection of poststroke functional impairments and tracking of motor improvements following rehabilitation. Similar studies could be performed in parallel with human studies to exploit the translational value of this skilled reaching analysis.
Collapse
|
64
|
Bell JA, Wolke ML, Ortez RC, Jones TA, Kerr AL. Training Intensity Affects Motor Rehabilitation Efficacy Following Unilateral Ischemic Insult of the Sensorimotor Cortex in C57BL/6 Mice. Neurorehabil Neural Repair 2014; 29:590-8. [PMID: 25323461 DOI: 10.1177/1545968314553031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Motor rehabilitative training improves behavioral functionality and promotes beneficial neural reorganization following stroke but is often insufficient to normalize function. Rodent studies have relied on skilled reaching tasks to model motor rehabilitation and explore factors contributing to its efficacy. It has been found that greater training intensity (sessions/day) and duration (training days) facilitates motor skill learning in intact animals. Whether rehabilitative training efficacy varies with intensity following stroke is unclear. METHODS Mice were trained preoperatively on a skilled reaching task. Following focal ischemic lesions, mice received rehabilitative training either twice daily (high intensity [HI]), once daily (low intensity [LI]), or not at all (control) to determine the effects of rehabilitative training intensity on skilled motor performance. RESULTS Within 7 days, the HI-trained mice achieved preischemic levels of performance. Mice receiving LI training eventually reached similar performance levels but required a greater quantity of training. Training intensity did not consistently affect the maintenance of performance gains, which were partially lost over time in both groups. DISCUSSION These data indicate that increased training intensity increases the rate of functional improvements per time and per training session following ischemic insult. Thus, training intensity is an important variable to consider in efforts to optimize rehabilitation efficacy.
Collapse
|
65
|
Alaverdashvili M, Hackett MJ, Pickering IJ, Paterson PG. Laminar-specific distribution of zinc: evidence for presence of layer IV in forelimb motor cortex in the rat. Neuroimage 2014; 103:502-510. [PMID: 25192655 DOI: 10.1016/j.neuroimage.2014.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/29/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022] Open
Abstract
The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a "Zn valley" in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding is also critical for future investigation of the biochemical mechanisms through which therapeutic interventions can enhance neural plasticity, particularly through Zn dependent pathways.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- Neuroscience Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Mark J Hackett
- Neuroscience Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ingrid J Pickering
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Phyllis G Paterson
- Neuroscience Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
66
|
Nishibe M, Urban ETR, Barbay S, Nudo RJ. Rehabilitative training promotes rapid motor recovery but delayed motor map reorganization in a rat cortical ischemic infarct model. Neurorehabil Neural Repair 2014; 29:472-82. [PMID: 25055836 DOI: 10.1177/1545968314543499] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND In preclinical stroke models, improvement in motor performance is associated with reorganization of cortical motor maps. However, the temporal relationship between performance gains and map plasticity is not clear. OBJECTIVE This study was designed to assess the effects of rehabilitative training on the temporal dynamics of behavioral and neurophysiological endpoints in a rat model of focal cortical infarct. METHODS Eight days after an ischemic infarct in primary motor cortex, adult rats received either rehabilitative training or were allowed to recover spontaneously. Motor performance and movement quality of the paretic forelimb was assessed on a skilled reach task. Intracortical microstimulation mapping procedures were conducted to assess the topography of spared forelimb representations either at the end of training (post-lesion day 18) or at the end of a 3-week follow-up period (post-lesion day 38). RESULTS Rats receiving rehabilitative training demonstrated more rapid improvement in motor performance and movement quality during the training period that persisted through the follow-up period. Motor maps in both groups were unusually small on post-lesion day 18. On post-lesion day 38, forelimb motor maps in the rehabilitative training group were significantly enlarged compared with the no-rehab group, and within the range of normal maps. CONCLUSIONS Postinfarct rehabilitative training rapidly improves motor performance and movement quality after an ischemic infarct in motor cortex. However, training-induced motor improvements are not reflected in spared motor maps until substantially later, suggesting that early motor training after stroke can help shape the evolving poststroke neural network.
Collapse
Affiliation(s)
| | | | - Scott Barbay
- University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
67
|
Kerr AL, Tennant KA. Compensatory limb use and behavioral assessment of motor skill learning following sensorimotor cortex injury in a mouse model of ischemic stroke. J Vis Exp 2014. [PMID: 25045916 DOI: 10.3791/51602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mouse models have become increasingly popular in the field of behavioral neuroscience, and specifically in studies of experimental stroke. As models advance, it is important to develop sensitive behavioral measures specific to the mouse. The present protocol describes a skilled motor task for use in mouse models of stroke. The Pasta Matrix Reaching Task functions as a versatile and sensitive behavioral assay that permits experimenters to collect accurate outcome data and manipulate limb use to mimic human clinical phenomena including compensatory strategies (i.e., learned non-use) and focused rehabilitative training. When combined with neuroanatomical tools, this task also permits researchers to explore the mechanisms that support behavioral recovery of function (or lack thereof) following stroke. The task is both simple and affordable to set up and conduct, offering a variety of training and testing options for numerous research questions concerning functional outcome following injury. Though the task has been applied to mouse models of stroke, it may also be beneficial in studies of functional outcome in other upper extremity injury models.
Collapse
|
68
|
Kolb B, Muhammad A. Harnessing the power of neuroplasticity for intervention. Front Hum Neurosci 2014; 8:377. [PMID: 25018713 PMCID: PMC4072970 DOI: 10.3389/fnhum.2014.00377] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 05/14/2014] [Indexed: 01/06/2023] Open
Abstract
A fundamental property of the brain is its capacity to change with a wide variety of experiences, including injury. Although there are spontaneous reparative changes following injury, these changes are rarely sufficient to support significant functional recovery. Research on the basic principles of brain plasticity is leading to new approaches to treating the injured brain. We review factors that affect synaptic organization in the normal brain, evidence of spontaneous neuroplasticity after injury, and the evidence that factors including postinjury experience, pharmacotherapy, and cell-based therapies, can form the basis of rehabilitation strategies after brain injuries early in life and in adulthood.
Collapse
Affiliation(s)
- Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| | - Arif Muhammad
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| |
Collapse
|
69
|
Linden J, Fassotte L, Tirelli E, Plumier JC, Ferrara A. Assessment of behavioral flexibility after middle cerebral artery occlusion in mice. Behav Brain Res 2013; 258:127-37. [PMID: 24157337 DOI: 10.1016/j.bbr.2013.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/09/2013] [Accepted: 10/14/2013] [Indexed: 02/04/2023]
Abstract
Middle cerebral artery occlusion (MCAO) is the most common animal model of cerebral ischemia and induces various functional impairments. Long-lasting deficits resulting from MCAO however, remain insufficiently characterized, especially regarding cognition. Yet, behavioral flexibility, a prominent cognitive process is found impaired after stroke in humans. We thus used an operant-based task to assess behavioral flexibility in mice after MCAO. Three weeks after 30 min MCAO surgery, mice were subjected to a battery of sensorimotor tests (rotarod, vertical pole test, spontaneous locomotion and grip-strength test). Behavioral flexibility was then assessed in an operant task, in which mice, rewarded according to a FR5 schedule of reinforcement, had to alternate their operant responses between two levers from trial to trial. Regarding sensory and motor functioning, only the pole test yielded a significant difference between MCAO and sham mice. In the operant flexibility task, results showed a behavioral flexibility deficit in MCAO mice; neither the operant response acquisition nor the appeal for food rewards was altered. In conclusion, our operant-based task revealed a long-lasting behavioral flexibility deficit after MCAO in mice.
Collapse
Affiliation(s)
- Jérôme Linden
- Département de Psychologie, Cognition et Comportement, Université de Liège, 4000 Liège, Belgium.
| | | | | | | | | |
Collapse
|