51
|
Major BP, McDonald SJ, O'Brien WT, Symons GF, Clough M, Costello D, Sun M, Brady RD, Mccullough J, Aniceto R, Lin IH, Law M, Mychasiuk R, O'Brien TJ, Agoston DV, Shultz SR. Serum Protein Biomarker Findings Reflective of Oxidative Stress and Vascular Abnormalities in Male, but Not Female, Collision Sport Athletes. Front Neurol 2020; 11:549624. [PMID: 33117257 PMCID: PMC7561422 DOI: 10.3389/fneur.2020.549624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
Studies have indicated that concussive and sub-concussive brain injuries that are frequent during collision sports may lead to long-term neurological abnormalities, however there is a knowledge gap on how biological sex modifies outcomes. Blood-based biomarkers can help to identify the molecular pathology induced by brain injuries and to better understand how biological sex affects the molecular changes. We therefore analyzed serum protein biomarkers in male (n = 50) and female (n = 33) amateur Australian rules footballers (i.e., Australia's most participated collision sport), both with a history of concussion (HoC) and without a history of concussion (NoHoC). These profiles were compared to those of age-matched control male (n = 24) and female (n = 20) athletes with no history of neurotrauma or participation in collision sports. Serum levels of protein markers indicative of neuronal, axonal and glial injury (UCH-L1, NfL, tau, p-tau, GFAP, BLBP, PEA15), metabolic (4-HNE) and vascular changes (VEGF-A, vWF, CLDN5), and inflammation (HMGB1) were assessed using reverse phase protein microarrays. Male, but not female, footballers had increased serum levels of VEGF-A compared to controls regardless of concussion history. In addition, only male footballers who had HoC had increased serum levels of 4-HNE. These findings being restricted to males may be related to shorter collision sport career lengths for females compared to males. In summary, these findings show that male Australian rules footballers have elevated levels of serum biomarkers indicative of vascular abnormalities (VEGF-A) and oxidative stress (4-HNE) in comparison to non-collision control athletes. While future studies are required to determine how these findings relate to neurological function, serum levels of VEGF-A and 4-HNE may be useful to monitor subclinical neurological injury in males participating in collision sports.
Collapse
Affiliation(s)
- Brendan P Major
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - William T O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Georgia F Symons
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Meaghan Clough
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Daniel Costello
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Jesse Mccullough
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Roxanne Aniceto
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - I-Hsuan Lin
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Meng Law
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia.,Departments of Neurological Surgery and Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
52
|
Puig J, Ellis MJ, Kornelsen J, Figley TD, Figley CR, Daunis-i-Estadella P, Mutch WAC, Essig M. Magnetic Resonance Imaging Biomarkers of Brain Connectivity in Predicting Outcome after Mild Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2020; 37:1761-1776. [DOI: 10.1089/neu.2019.6623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Josep Puig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Radiology (IDI), Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Michael J. Ellis
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Department of Surgery and Pediatrics and Child Health, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Concussion Program, Winnipeg, Manitoba, Canada
- Childrens Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer Kornelsen
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa D. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| | - Chase R. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pepus Daunis-i-Estadella
- Department of Computer Science, Applied Mathematics and Statistics, Universitat de Girona, Girona, Spain
| | - W. Alan C. Mutch
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marco Essig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| |
Collapse
|
53
|
Baker TL, Sun M, Semple BD, Tyebji S, Tonkin CJ, Mychasiuk R, Shultz SR. Catastrophic consequences: can the feline parasite Toxoplasma gondii prompt the purrfect neuroinflammatory storm following traumatic brain injury? J Neuroinflammation 2020; 17:222. [PMID: 32711529 PMCID: PMC7382044 DOI: 10.1186/s12974-020-01885-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/02/2020] [Indexed: 12/02/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide; however, treatment development is hindered by the heterogenous nature of TBI presentation and pathophysiology. In particular, the degree of neuroinflammation after TBI varies between individuals and may be modified by other factors such as infection. Toxoplasma gondii, a parasite that infects approximately one-third of the world’s population, has a tropism for brain tissue and can persist as a life-long infection. Importantly, there is notable overlap in the pathophysiology between TBI and T. gondii infection, including neuroinflammation. This paper will review current understandings of the clinical problems, pathophysiological mechanisms, and functional outcomes of TBI and T. gondii, before considering the potential synergy between the two conditions. In particular, the discussion will focus on neuroinflammatory processes such as microglial activation, inflammatory cytokines, and peripheral immune cell recruitment that occur during T. gondii infection and after TBI. We will present the notion that these overlapping pathologies in TBI individuals with a chronic T. gondii infection have the strong potential to exacerbate neuroinflammation and related brain damage, leading to amplified functional deficits. The impact of chronic T. gondii infection on TBI should therefore be investigated in both preclinical and clinical studies as the possible interplay could influence treatment strategies.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Shiraz Tyebji
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia. .,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
54
|
Pinar C, Trivino-Paredes J, Perreault ST, Christie BR. Hippocampal cognitive impairment in juvenile rats after repeated mild traumatic brain injury. Behav Brain Res 2020; 387:112585. [DOI: 10.1016/j.bbr.2020.112585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 11/25/2022]
|
55
|
Lavender AP, Rawlings S, Warnock A, McGonigle T, Hiles-Murison B, Nesbit M, Lam V, Hackett MJ, Fitzgerald M, Takechi R. Repeated Long-Term Sub-concussion Impacts Induce Motor Dysfunction in Rats: A Potential Rodent Model. Front Neurol 2020; 11:491. [PMID: 32547485 PMCID: PMC7274030 DOI: 10.3389/fneur.2020.00491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023] Open
Abstract
Whilst detrimental effects of repeated sub-concussive impacts on neurophysiological and behavioral function are increasingly reported, the underlying mechanisms are largely unknown. Here, we report that repeated sub-concussion with a light weight drop (25 g) in wild-type PVG rats for 2 weeks does not induce detectable neuromotor dysfunction assessed by beamwalk and rotarod tests. However, after 12 weeks of repeated sub-concussion, the rats exhibited moderate neuromotor dysfunction. This is the first study to demonstrate development of neuromotor dysfunction following multiple long-term sub-concussive impacts in rats. The outcomes may offer significant opportunity for future studies to understand the mechanisms of sub-concussion-induced neuropsychological changes.
Collapse
Affiliation(s)
- Andrew P Lavender
- School of Health and Life Sciences, Federation University, Ballarat, VIC, Australia.,School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Samuel Rawlings
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Terry McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Bailey Hiles-Murison
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Mark J Hackett
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Molecular and Life Science, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia.,Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
56
|
Sun M, Brady RD, Wanrooy B, Mychasiuk R, Yamakawa GR, Casillas-Espinosa PM, Wong CHY, Shultz SR, McDonald SJ. Experimental traumatic brain injury does not lead to lung infection. J Neuroimmunol 2020; 343:577239. [PMID: 32302792 DOI: 10.1016/j.jneuroim.2020.577239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) patients often experience post-traumatic infections, especially in the lung. Pulmonary infection is associated with unfavorable outcomes and increased mortality rates in TBI patients; however, our understanding of the underlying mechanisms is poor. Here we used a lateral fluid percussion injury (LFPI) model in rats to investigate whether TBI could lead to spontaneous lung infection. Analysis of bacterial load in lung tissue indicated no occurrence of spontaneous lung infection at 24 h, 48 h, and 7 d following LFPI. This may suggest that exogenous infectious agents play a crucial role in post-TBI infection in patients.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Brooke Wanrooy
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC 3168, Australia.
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC 3168, Australia.
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
57
|
Brady RD, Zhao MZ, Wong KR, Casilla-Espinosa PM, Yamakawa GR, Wortman RC, Sun M, Grills BL, Mychasiuk R, O'Brien TJ, Agoston DV, Lee PVS, McDonald SJ, Robinson DL, Shultz SR. A novel rat model of heterotopic ossification after polytrauma with traumatic brain injury. Bone 2020; 133:115263. [PMID: 32032779 DOI: 10.1016/j.bone.2020.115263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/08/2023]
Abstract
Neurological heterotopic ossification (NHO) is characterized by abnormal bone growth in soft tissue and joints in response to injury to the central nervous system. The ectopic bone frequently causes pain, restricts mobility, and decreases the quality of life for those affected. NHO commonly develops in severe traumatic brain injury (TBI) patients, particularly in the presence of concomitant musculoskeletal injuries (i.e. polytrauma). There are currently no animal models that accurately mimic these combinations of injuries, which has limited our understanding of NHO pathobiology, as well as the development of biomarkers and treatments, in TBI patients. In order to address this shortcoming, here we present a novel rat model that combines TBI, femoral fracture, and muscle crush injury. Young adult male Sprague Dawley rats were randomly assigned into three different injury groups: triple sham-injury, peripheral injury only (i.e., sham-TBI + fracture + muscle injury) or triple injury (i.e., TBI + fracture + muscle injury). Evidence of ectopic bone in the injured hind-limb, as confirmed by micro-computed tomography (μCT), was found at 6-weeks post-injury in 70% of triple injury rats, 20% of peripheral injury rats, and 0% of the sham-injured controls. Furthermore, the triple injury rats had higher ectopic bone severity scores than the sham-injured group. This novel model will provide a platform for future studies to identify underlying mechanisms, biomarkers, and develop evidence based pharmacological treatments to combat this debilitating long-term complication of TBI and polytrauma.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Michael Z Zhao
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ker R Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pablo M Casilla-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ryan C Wortman
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Brian L Grills
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Peter V S Lee
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
58
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
59
|
Wu T, Antona-Makoshi J, Alshareef A, Giudice JS, Panzer MB. Investigation of Cross-Species Scaling Methods for Traumatic Brain Injury Using Finite Element Analysis. J Neurotrauma 2020; 37:410-422. [DOI: 10.1089/neu.2019.6576] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Taotao Wu
- Center for Applied Biomechanics, University of Virginia, Charlottesville, Virginia
| | | | - Ahmed Alshareef
- Center for Applied Biomechanics, University of Virginia, Charlottesville, Virginia
| | - J. Sebastian Giudice
- Center for Applied Biomechanics, University of Virginia, Charlottesville, Virginia
| | - Matthew B. Panzer
- Center for Applied Biomechanics, University of Virginia, Charlottesville, Virginia
- Brain Injury and Sports Concussion Center, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
60
|
Fesharaki-Zadeh A, Miyauchi JT, St. Laurent-Arriot K, Tsirka SE, Bergold PJ. Increased Behavioral Deficits and Inflammation in a Mouse Model of Co-Morbid Traumatic Brain Injury and Post-Traumatic Stress Disorder. ASN Neuro 2020; 12:1759091420979567. [PMID: 33342261 PMCID: PMC7755938 DOI: 10.1177/1759091420979567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 01/21/2023] Open
Abstract
Comorbid post-traumatic stress disorder with traumatic brain injury (TBI) produce more severe affective and cognitive deficits than PTSD or TBI alone. Both PTSD and TBI produce long-lasting neuroinflammation, which may be a key underlying mechanism of the deficits observed in co-morbid TBI/PTSD. We developed a model of co-morbid TBI/PTSD by combining the closed head (CHI) model of TBI with the chronic variable stress (CVS) model of PTSD and examined multiple behavioral and neuroinflammatory outcomes. Male C57/Bl6 mice received sham treatment, CHI, CVS, CHI then CVS (CHI → CVS) or CVS then CHI (CVS → CHI). The CVS → CHI group had deficits in Barnes maze or active place avoidance not seen in the other groups. The CVS → CHI, CVS and CHI → CVS groups displayed increased basal anxiety level, based on performance on elevated plus maze. The CVS → CHI had impaired performance on Barnes Maze, and Active Place Avoidance. These performance deficits were strongly correlated with increased hippocampal Iba-1 level an indication of activated MP/MG. These data suggest that greater cognitive deficits in the CVS → CHI group were due to increased inflammation. The increased deficits and neuroinflammation in the CVS → CHI group suggest that the order by which a subject experiences TBI and PTSD is a major determinant of the outcome of brain injury in co-morbid TBI/PTSD.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Psychiatry, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Jeremy T. Miyauchi
- Department of Physiology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Karrah St. Laurent-Arriot
- Department of Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Stella E. Tsirka
- Department of Physiology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Peter J. Bergold
- Department of Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York
- Department of Pharmacological Sciences, Stony Brook Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
61
|
Wright DK, Brady RD, Kamnaksh A, Trezise J, Sun M, McDonald SJ, Mychasiuk R, Kolbe SC, Law M, Johnston LA, O'Brien TJ, Agoston DV, Shultz SR. Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat. Sci Rep 2019; 9:14626. [PMID: 31602002 PMCID: PMC6787341 DOI: 10.1038/s41598-019-51267-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/28/2019] [Indexed: 01/05/2023] Open
Abstract
A single mild traumatic brain injury (mTBI) typically causes only transient symptoms, but repeated mTBI (RmTBI) is associated with cumulative and chronic neurological abnormalities. Clinical management of mTBI is challenging due to the heterogeneous, subjective and transient nature of symptoms, and thus would be aided by objective biomarkers. Promising biomarkers including advanced magnetic resonance imaging (MRI) and plasma levels of select proteins were examined here in a rat model of RmTBI. Rats received either two mild fluid percussion or sham injuries administered five days apart. Rats underwent MRI and behavioral testing 1, 3, 5, 7, and 30 days after the second injury and blood samples were collected on days 1, 7, and 30. Structural and diffusion-weighted MRI revealed that RmTBI rats had abnormalities in the cortex and corpus callosum. Proteomic analysis of plasma found that RmTBI rats had abnormalities in markers indicating axonal and vascular injury, metabolic and mitochondrial dysfunction, and glial reactivity. These changes occurred in the presence of ongoing cognitive and sensorimotor deficits in the RmTBI rats. Our findings demonstrate that RmTBI can result in chronic neurological abnormalities, provide insight into potential contributing pathophysiological mechanisms, and supports the use of MRI and plasma protein measures as RmTBI biomarkers.
Collapse
Affiliation(s)
- David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Jack Trezise
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Scott C Kolbe
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Leigh A Johnston
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia. .,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
62
|
Tan XL, Zheng P, Wright DK, Sun M, Brady RD, Liu S, McDonald SJ, Mychasiuk R, Cenap S, Jones NC, O’Brien TJ, Shultz SR. The genetic ablation of tau improves long-term, but not short-term, functional outcomes after experimental traumatic brain injury in mice. Brain Inj 2019; 34:131-139. [DOI: 10.1080/02699052.2019.1667539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xin Lin Tan
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Ping Zheng
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Rhys D. Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Shijie Liu
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sitare Cenap
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Nigel C. Jones
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Terence J. O’Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
63
|
The Recovery of GABAergic Function in the Hippocampus CA1 Region After mTBI. Mol Neurobiol 2019; 57:23-31. [DOI: 10.1007/s12035-019-01753-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
|
64
|
Weber B, Lackner I, Haffner-Luntzer M, Palmer A, Pressmar J, Scharffetter-Kochanek K, Knöll B, Schrezenemeier H, Relja B, Kalbitz M. Modeling trauma in rats: similarities to humans and potential pitfalls to consider. J Transl Med 2019; 17:305. [PMID: 31488164 PMCID: PMC6728963 DOI: 10.1186/s12967-019-2052-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Trauma is the leading cause of mortality in humans below the age of 40. Patients injured by accidents frequently suffer severe multiple trauma, which is life-threatening and leads to death in many cases. In multiply injured patients, thoracic trauma constitutes the third most common cause of mortality after abdominal injury and head trauma. Furthermore, 40-50% of all trauma-related deaths within the first 48 h after hospital admission result from uncontrolled hemorrhage. Physical trauma and hemorrhage are frequently associated with complex pathophysiological and immunological responses. To develop a greater understanding of the mechanisms of single and/or multiple trauma, reliable and reproducible animal models, fulfilling the ethical 3 R's criteria (Replacement, Reduction and Refinement), established by Russell and Burch in 'The Principles of Human Experimental Technique' (published 1959), are required. These should reflect both the complex pathophysiological and the immunological alterations induced by trauma, with the objective to translate the findings to the human situation, providing new clinical treatment approaches for patients affected by severe trauma. Small animal models are the most frequently used in trauma research. Rattus norvegicus was the first mammalian species domesticated for scientific research, dating back to 1830. To date, there exist numerous well-established procedures to mimic different forms of injury patterns in rats, animals that are uncomplicated in handling and housing. Nevertheless, there are some physiological and genetic differences between humans and rats, which should be carefully considered when rats are chosen as a model organism. The aim of this review is to illustrate the advantages as well as the disadvantages of rat models, which should be considered in trauma research when selecting an appropriate in vivo model. Being the most common and important models in trauma research, this review focuses on hemorrhagic shock, blunt chest trauma, bone fracture, skin and soft-tissue trauma, burns, traumatic brain injury and polytrauma.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Jochen Pressmar
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Bernd Knöll
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | - Hubert Schrezenemeier
- Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
65
|
Mayer AR, Dodd AB, Vermillion MS, Stephenson DD, Chaudry IH, Bragin DE, Gigliotti AP, Dodd RJ, Wasserott BC, Shukla P, Kinsler R, Alonzo SM. A systematic review of large animal models of combined traumatic brain injury and hemorrhagic shock. Neurosci Biobehav Rev 2019; 104:160-177. [PMID: 31255665 PMCID: PMC7307133 DOI: 10.1016/j.neubiorev.2019.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
Traumatic brain injury (TBI) and severe blood loss (SBL) frequently co-occur in human trauma, resulting in high levels of mortality and morbidity. Importantly, each of the individual post-injury cascades is characterized by complex and potentially opposing pathophysiological responses, complicating optimal resuscitation and therapeutic approaches. Large animal models of poly-neurotrauma closely mimic human physiology, but a systematic literature review of published models has been lacking. The current review suggests a relative paucity of large animal poly-neurotrauma studies (N = 52), with meta-statistics revealing trends for animal species (exclusively swine), characteristics (use of single biological sex, use of juveniles) and TBI models. Although most studies have targeted blood loss volumes of 35-45%, the associated mortality rates are much lower relative to Class III/IV human trauma. This discrepancy may result from potentially mitigating experimental factors (e.g., mechanical ventilation prior to or during injury, pausing/resuming blood loss based on physiological parameters, administration of small volume fluid resuscitation) that are rarely associated with human trauma, highlighting the need for additional work in this area.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States; Neurology Department, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Psychiatry Department, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Psychology Department, University of New Mexico, Albuquerque, NM 87131, United States.
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Meghan S Vermillion
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - David D Stephenson
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States
| | - Denis E Bragin
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Andrew P Gigliotti
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Rebecca J Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Benjamin C Wasserott
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Priyank Shukla
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Rachel Kinsler
- Department of the Army Civilian, U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362-0577, United States
| | - Sheila M Alonzo
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| |
Collapse
|
66
|
Hajiaghamemar M, Seidi M, Oeur RA, Margulies SS. Toward development of clinically translatable diagnostic and prognostic metrics of traumatic brain injury using animal models: A review and a look forward. Exp Neurol 2019; 318:101-123. [PMID: 31055005 PMCID: PMC6612432 DOI: 10.1016/j.expneurol.2019.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. There is an increasing interest in both clinical and pre-clinical studies to discover biomarkers to accurately diagnose traumatic brain injury (TBI), predict its outcomes, and monitor its progression especially in the developing brain. In humans, the heterogeneity of TBI in terms of clinical presentation, injury causation, and mechanism has contributed to the many challenges associated with finding unifying diagnosis, treatment, and management practices. In addition, findings from adult human research may have little application to pediatric TBI, as age and maturation levels affect the injury biomechanics and neurophysiological consequences of injury. Animal models of TBI are vital to address the variability and heterogeneity of TBI seen in human by isolating the causation and mechanism of injury in reproducible manner. However, a gap between the pre-clinical findings and clinical applications remains in TBI research today. To take a step toward bridging this gap, we reviewed several potential TBI tools such as biofluid biomarkers, electroencephalography (EEG), actigraphy, eye responses, and balance that have been explored in both clinical and pre-clinical studies and have shown potential diagnostic, prognostic, or monitoring utility for TBI. Each of these tools measures specific deficits following TBI, is easily accessible, non/minimally invasive, and is potentially highly translatable between animals and human outcomes because they involve effort-independent and non-verbal tasks. Especially conspicuous is the fact that these biomarkers and techniques can be tailored for infants and toddlers. However, translation of preclinical outcomes to clinical applications of these tools necessitates addressing several challenges. Among the challenges are the heterogeneity of clinical TBI, age dependency of some of the biomarkers, different brain structure, life span, and possible variation between temporal profiles of biomarkers in human and animals. Conducting parallel clinical and pre-clinical research, in addition to the integration of findings across species from several pre-clinical models to generate a spectrum of TBI mechanisms and severities is a path toward overcoming some of these challenges. This effort is possible through large scale collaborative research and data sharing across multiple centers. In addition, TBI causes dynamic deficits in multiple domains, and thus, a panel of biomarkers combining these measures to consider different deficits is more promising than a single biomarker for TBI. In this review, each of these tools are presented along with the clinical and pre-clinical findings, advantages, challenges and prospects of translating the pre-clinical knowledge into the human clinical setting.
Collapse
Affiliation(s)
- Marzieh Hajiaghamemar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Morteza Seidi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
67
|
Sun M, Brady RD, Casillas-Espinosa PM, Wright DK, Semple BD, Kim HA, Mychasiuk R, Sobey CG, O'Brien TJ, Vinh A, McDonald SJ, Shultz SR. Aged rats have an altered immune response and worse outcomes after traumatic brain injury. Brain Behav Immun 2019; 80:536-550. [PMID: 31039431 DOI: 10.1016/j.bbi.2019.04.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
Initial studies suggest that increased age is associated with worse outcomes after traumatic brain injury (TBI), though the pathophysiological mechanisms responsible for this remain unclear. Immunosenescence (i.e., dysregulation of the immune system due to aging) may play a significant role in influencing TBI outcomes. This study therefore examined neurological outcomes and immune response in young-adult (i.e., 10 weeks old) compared to middle-aged (i.e., 1 year old) rats following a TBI (i.e., fluid percussion) or sham-injury. Rats were euthanized at either 24 h or one-week post-injury to analyze immune cell populations in the brain and periphery via flow cytometry, as well as telomere length (i.e., a biomarker of neurological health). Behavioral testing, as well as volumetric and diffusion-weighted MRI, were also performed in the one-week recovery rats to assess for functional deficits and brain damage. Middle-aged rats had worse sensorimotor deficits and shorter telomeres after TBI compared to young rats. Both aging and TBI independently worsened cognitive function and cortical volume. These changes occurred in the presence of fewer total leukocytes, fewer infiltrating myeloid cells, and fewer microglia in the brains of middle-aged TBI rats compared to young rats. These findings indicate that middle-aged rats have worse sensorimotor deficits and shorter telomeres after TBI than young rats, and this may be related to an altered neuroimmune response. Although further studies are required, these findings have important implications for understanding the pathophysiology and optimal treatment strategies in TBI patients across the life span.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
68
|
Christie BR, Trivino‐Paredes J, Pinar C, Neale KJ, Meconi A, Reid H, Hutton CP. A Rapid Neurological Assessment Protocol for Repeated Mild Traumatic Brain Injury in Awake Rats. ACTA ACUST UNITED AC 2019; 89:e80. [DOI: 10.1002/cpns.80] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Brian R. Christie
- Division of Medical SciencesUniversity of Victoria Victoria British Columbia Canada
- Island Medical ProgramUniversity of British Columbia Vancouver British Columbia Canada
| | - Juan Trivino‐Paredes
- Division of Medical SciencesUniversity of Victoria Victoria British Columbia Canada
- Island Medical ProgramUniversity of British Columbia Vancouver British Columbia Canada
| | - Cristina Pinar
- Division of Medical SciencesUniversity of Victoria Victoria British Columbia Canada
- Island Medical ProgramUniversity of British Columbia Vancouver British Columbia Canada
| | - Katie J. Neale
- Division of Medical SciencesUniversity of Victoria Victoria British Columbia Canada
- Island Medical ProgramUniversity of British Columbia Vancouver British Columbia Canada
| | - Alicia Meconi
- Division of Medical SciencesUniversity of Victoria Victoria British Columbia Canada
- Island Medical ProgramUniversity of British Columbia Vancouver British Columbia Canada
| | - Hannah Reid
- Division of Medical SciencesUniversity of Victoria Victoria British Columbia Canada
- Island Medical ProgramUniversity of British Columbia Vancouver British Columbia Canada
| | - Craig P. Hutton
- Division of Medical SciencesUniversity of Victoria Victoria British Columbia Canada
- Island Medical ProgramUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
69
|
Pham L, Shultz SR, Kim HA, Brady RD, Wortman RC, Genders SG, Hale MW, O'Shea RD, Djouma E, van den Buuse M, Church JE, Christie BR, Drummond GR, Sobey CG, McDonald SJ. Mild Closed-Head Injury in Conscious Rats Causes Transient Neurobehavioral and Glial Disturbances: A Novel Experimental Model of Concussion. J Neurotrauma 2019; 36:2260-2271. [DOI: 10.1089/neu.2018.6169] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Louise Pham
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Sandy R. Shultz
- Department Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Rhys D. Brady
- Department Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Ryan C. Wortman
- Department Neuroscience, Monash University, Melbourne, Australia
| | - Shannyn G. Genders
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Matthew W. Hale
- Department of Psychology and Counseling, La Trobe University, Bundoora, Australia
| | - Ross D. O'Shea
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Elvan Djouma
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Maarten van den Buuse
- Department of Psychology and Counseling, La Trobe University, Bundoora, Australia
- Department of Pharmacology, University of Melbourne, Melbourne, Australia
- The College of Public Health, Medical, and Veterinary Sciences, James Cook University, Queensland, Australia
| | - Jarrod E. Church
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Grant R. Drummond
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Christopher G. Sobey
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
| | - Stuart J. McDonald
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Australia
- Department Neuroscience, Monash University, Melbourne, Australia
| |
Collapse
|
70
|
Hoogenboom WS, Rubin TG, Ye K, Cui MH, Branch KC, Liu J, Branch CA, Lipton ML. Diffusion Tensor Imaging of the Evolving Response to Mild Traumatic Brain Injury in Rats. J Exp Neurosci 2019; 13:1179069519858627. [PMID: 31308735 PMCID: PMC6613065 DOI: 10.1177/1179069519858627] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/29/2019] [Indexed: 12/30/2022] Open
Abstract
Mild traumatic brain injury (mTBI), also known as concussion, is a serious public health challenge. Although most patients recover, a substantial minority suffers chronic disability. The mechanisms underlying mTBI-related detrimental effects remain poorly understood. Although animal models contribute valuable preclinical information and improve our understanding of the underlying mechanisms following mTBI, only few studies have used diffusion tensor imaging (DTI) to study the evolution of axonal injury following mTBI in rodents. It is known that DTI shows changes after human concussion and the role of delineating imaging findings in animals is therefore to facilitate understanding of related mechanisms. In this work, we used a rodent model of mTBI to investigate longitudinal indices of axonal injury. We present the results of 45 animals that received magnetic resonance imaging (MRI) at multiple time points over a 2-week period following concussive or sham injury yielding 109 serial observations. Overall, the evolution of DTI metrics following concussive or sham injury differed by group. Diffusion tensor imaging changes within the white matter were most noticeable 1 week following injury and returned to baseline values after 2 weeks. More specifically, we observed increased fractional anisotropy in combination with decreased radial diffusivity and mean diffusivity, in the absence of changes in axial diffusivity, within the white matter of the genu corpus callosum at 1 week post-injury. Our study shows that DTI can detect microstructural white matter changes in the absence of gross abnormalities as indicated by visual screening of anatomical MRI and hematoxylin and eosin (H&E)-stained sections in a clinically relevant animal model of mTBI. Whereas additional histopathologic characterization is required to better understand the neurobiological correlates of DTI measures, our findings highlight the evolving nature of the brain’s response to injury following concussion.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Clinical Investigation, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Todd G Rubin
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Min-Hui Cui
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Kelsey C Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Jinyuan Liu
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Craig A Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Physiology and Biophysics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Michael L Lipton
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
71
|
Vonder Haar C, Martens KM, Bashir A, McInnes KA, Cheng WH, Cheung H, Stukas S, Barron C, Ladner T, Welch KA, Cripton PA, Winstanley CA, Wellington CL. Repetitive closed-head impact model of engineered rotational acceleration (CHIMERA) injury in rats increases impulsivity, decreases dopaminergic innervation in the olfactory tubercle and generates white matter inflammation, tau phosphorylation and degeneration. Exp Neurol 2019; 317:87-99. [DOI: 10.1016/j.expneurol.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/20/2023]
|
72
|
Abstract
The underlying mechanisms that result in neurophysiological changes and cognitive sequelae in the context of repetitive mild traumatic brain injury (rmTBI) remain poorly understood. Animal models provide a unique opportunity to examine cellular and molecular responses using histological assessment, which can give important insights on the neurophysiological changes associated with the evolution of brain injury. To better understand the potential cumulative effects of multiple concussions, the focus of animal models is shifting from single to repetitive head impacts. With a growing body of literature on this subject, a review and discussion of current findings is valuable to better understand the neuropathology associated with rmTBI, to evaluate the current state of the field, and to guide future research efforts. Despite variability in experimental settings, existing animal models of rmTBI have contributed to our understanding of the underlying mechanisms following repeat concussion. However, how to reconcile the various impact methods remains one of the major challenges in the field today.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Clinical Investigation, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA.
| | - Craig A Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Physiology and Biophysics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Michael L Lipton
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; Departments of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
73
|
Hiskens MI, Angoa-Pérez M, Schneiders AG, Vella RK, Fenning AS. Modeling sports-related mild traumatic brain injury in animals-A systematic review. J Neurosci Res 2019; 97:1194-1222. [PMID: 31135069 DOI: 10.1002/jnr.24472] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Sports-related head trauma has emerged as an important public health issue, as mild traumatic brain injuries (mTBIs) may result in neurodegenerative disorders such as chronic traumatic encephalopathy (CTE). Research into mTBI and CTE pathophysiology are difficult to undertake in athletes, with observational trials and post-mortem analysis the current mainstays. Thus, animal models play an important role in the study of mTBI, however, traditional animal models have focused on acute, severe injuries rather than the more typical mTBI's seen in sport injuries. Recently, a number of animal models have been developed that are both appropriately scaled and biomechanically relevant to the forces sustained by athletes. This review aimed to examine the literature for variables included in these animal models, and the resulting neurotrauma as evidenced by pathology and behavioral deficits. A systematic search of the literature was performed in multiple electronic databases. The inclusion criteria required mimicry of athlete mTBI conditions: freedom of head movement, lack of surgical alteration of the skull, and application of direct contact force. Studies were analyzed for variables including apparatus design features (impact force, change in animal head velocity, and kinetic energy transfer to the head), demonstrated pathology (phosphorylated tau, TDP-43 aggregation, diffuse axonal injury, gliosis, cytokine inflammation response, and genetic integrity), and behavioral changes. These studies suggested that appropriate animal models can assist in understanding the pathological and functional outcomes of athlete mTBI, and could be used as a platform for future studies of diagnostic/prognostic markers and in the development of treatment interventions.
Collapse
Affiliation(s)
- Matthew I Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Mariana Angoa-Pérez
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Anthony G Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Branyan, Australia
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
74
|
Knoll RM, Reinshagen KL, Barber SR, Ghanad I, Swanson R, Smith DH, Abdullah KG, Jung DH, Remenschneider AK, Kozin ED. High Resolution Computed Tomography Atlas of the Porcine Temporal Bone and Skull Base: Anatomical Correlates for Traumatic Brain Injury Research. J Neurotrauma 2019; 36:1029-1039. [PMID: 29969939 PMCID: PMC8349728 DOI: 10.1089/neu.2018.5808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brain injuries are a significant cause of morbidity and mortality worldwide. Auditory and vestibular dysfunction may occur following trauma to the temporal bone (TB), including the lateral skull base. The porcine model is a commonly used large animal model for investigating brain injury. Reports detailing porcine TB anatomy based on high resolution computed tomography (HRCT) imaging, however, are limited. Herein, we employ HRCT to evaluate and describe the bony anatomy of the porcine TB and lateral skull base. High-resolution multi-detector and cone beam CT were used to image porcine TBs (n = 16). TBs were analyzed for major anatomical structures and compared to human species. Porcine temporal bone anatomy was readily identifiable by HRCT. Although some variability exists, the ossicular chain, vestibule, cochlea, course of the facial nerve, and skull base are similar to those of humans. Major differences included position of the external auditory canal and mastoid, as well as presence of the petrous carotid canal. Study findings may serve as an atlas to evaluate the porcine middle and inner ear, as well as lateral skull base injuries for future porcine brain injury models or other studies that require CT-based analysis.
Collapse
Affiliation(s)
- Renata M. Knoll
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts
| | | | - Samuel R. Barber
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, Arizona
| | - Iman Ghanad
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Randel Swanson
- Department of Physical Medicine and Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas H. Smith
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kalil G. Abdullah
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David H. Jung
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Aaron K. Remenschneider
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Elliott D. Kozin
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts
| |
Collapse
|
75
|
Kao YCJ, Lui YW, Lu CF, Chen HL, Hsieh BY, Chen CY. Behavioral and Structural Effects of Single and Repeat Closed-Head Injury. AJNR Am J Neuroradiol 2019; 40:601-608. [PMID: 30923084 DOI: 10.3174/ajnr.a6014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/16/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The effects of multiple head impacts, even without detectable primary injury, on subsequent behavioral impairment and structural abnormality is yet well explored. Our aim was to uncover the dynamic changes and long-term effects of single and repetitive head injury without focal contusion on tissue microstructure and macrostructure. MATERIALS AND METHODS We introduced a repetitive closed-head injury rodent model (n = 70) without parenchymal lesions. We performed a longitudinal MR imaging study during a 50-day study period (T2-weighted imaging, susceptibility-weighted imaging, and diffusion tensor imaging) as well as sequential behavioral assessment. Immunohistochemical staining for astrogliosis was examined in a subgroup of animals. Paired and independent t tests were used to evaluate the outcome change after injury and the cumulative effects of impact load, respectively. RESULTS There was no gross morphologic evidence for head injury such as skull fracture, contusion, or hemorrhage on micro-CT and MR imaging. A significant decrease of white matter fractional anisotropy from day 21 on and an increase of gray matter fractional anisotropy from day 35 on were observed. Smaller mean cortical volume in the double-injury group was shown at day 50 compared with sham and single injury (P < .05). Behavioral deficits (P < .05) in neurologic outcome, balance, and locomotor activity were also aggravated after double injury. Histologic analysis showed astrogliosis 24 hours after injury, which persisted throughout the study period. CONCLUSIONS There are measurable and dynamic changes in microstructure, cortical volume, behavior, and histopathology after both single and double injury, with more severe effects seen after double injury. This work bridges cross-sectional evidence from human subject and pathologic studies using animal models with a multi-time point, longitudinal research paradigm.
Collapse
Affiliation(s)
- Y-C J Kao
- From the Neuroscience Research Center (Y.-C.J.K., C.-Y.C.).,Translational Imaging Research Center (Y.-C.J.K., C.-Y.C.), Taipei Medical University, Taipei, Taiwan.,Department of Radiology (Y.-C.J.K., C.-Y.C.), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Radiogenomic Research Center (Y.-C.J.K., C.-Y.C.), Taipei Medical University Hospital, Taipei, Taiwan
| | - Y W Lui
- Department of Radiology (Y.W.L.), NYU School of Medicine/NYU Langone Health, New York, New York
| | - C-F Lu
- Department of Biomedical Imaging and Radiological Sciences (C.-F.L.), National Yang-Ming University, Taipei, Taiwan
| | - H-L Chen
- Departments of Medical Research (H.-L.C.)
| | - B-Y Hsieh
- Department of Biomedical Imaging and Radiological Science (B.-Y.H.), China Medical University, Taichung, Taiwan
| | - C-Y Chen
- From the Neuroscience Research Center (Y.-C.J.K., C.-Y.C.) .,Translational Imaging Research Center (Y.-C.J.K., C.-Y.C.), Taipei Medical University, Taipei, Taiwan.,Department of Radiology (Y.-C.J.K., C.-Y.C.), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Medical Imaging (C.-Y.C.).,Radiogenomic Research Center (Y.-C.J.K., C.-Y.C.), Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
76
|
Sun M, Brady RD, van der Poel C, Apted D, Semple BD, Church JE, O'Brien TJ, McDonald SJ, Shultz SR. A Concomitant Muscle Injury Does Not Worsen Traumatic Brain Injury Outcomes in Mice. Front Neurol 2018; 9:1089. [PMID: 30619048 PMCID: PMC6297867 DOI: 10.3389/fneur.2018.01089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/28/2018] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI) often involves multitrauma in which concurrent extracranial injury occurs. We previously demonstrated that a long bone fracture exacerbates neuroinflammation and functional outcomes in mice given a TBI. Whether other forms of concomitant peripheral trauma that are common in the TBI setting, such as skeletal muscle injury, have similar effects is unknown. As such, here we developed a novel mouse multitrauma model by combining a closed-skull TBI with a cardiotoxin (CTX)-induced muscle injury to investigate whether muscle injury affects TBI outcomes. Adult male mice were assigned to four groups: sham-TBI + sham-muscle injury (SHAM); sham-TBI + CTX-muscle injury (CTX); TBI + sham-muscle injury (TBI); TBI + CTX-muscle injury (MULTI). Some mice were euthanized at 24 h post-injury to assess neuroinflammation and cerebral edema. The remaining mice underwent behavioral testing after a 30-day recovery period, and were euthanized at 35 days post-injury for post-mortem analysis. At 24 h post-injury, both TBI and MULTI mice had elevated edema, increased expression of GFAP (i.e., a marker for reactive astrocytes), and increased mRNA levels of inflammatory chemokines. There was also an effect of injury on cytokine levels at 35 days post-injury. However, the TBI and MULTI mice did not significantly differ on any of the measures assessed. These initial findings suggest that a concomitant muscle injury does not significantly affect preclinical TBI outcomes. Future studies should investigate the combination of different injury models, additional outcomes, and other post-injury time points.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Rhys D Brady
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Chris van der Poel
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Danielle Apted
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jarrod E Church
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
77
|
Transient disruption of mouse home cage activities and assessment of orexin immunoreactivity following concussive- or blast-induced brain injury. Brain Res 2018; 1700:138-151. [DOI: 10.1016/j.brainres.2018.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 11/21/2022]
|
78
|
DeWitt DS, Hawkins BE, Dixon CE, Kochanek PM, Armstead W, Bass CR, Bramlett HM, Buki A, Dietrich WD, Ferguson AR, Hall ED, Hayes RL, Hinds SR, LaPlaca MC, Long JB, Meaney DF, Mondello S, Noble-Haeusslein LJ, Poloyac SM, Prough DS, Robertson CS, Saatman KE, Shultz SR, Shear DA, Smith DH, Valadka AB, VandeVord P, Zhang L. Pre-Clinical Testing of Therapies for Traumatic Brain Injury. J Neurotrauma 2018; 35:2737-2754. [PMID: 29756522 PMCID: PMC8349722 DOI: 10.1089/neu.2018.5778] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the large number of promising neuroprotective agents identified in experimental traumatic brain injury (TBI) studies, none has yet shown meaningful improvements in long-term outcome in clinical trials. To develop recommendations and guidelines for pre-clinical testing of pharmacological or biological therapies for TBI, the Moody Project for Translational Traumatic Brain Injury Research hosted a symposium attended by investigators with extensive experience in pre-clinical TBI testing. The symposium participants discussed issues related to pre-clinical TBI testing including experimental models, therapy and outcome selection, study design, data analysis, and dissemination. Consensus recommendations included the creation of a manual of standard operating procedures with sufficiently detailed descriptions of modeling and outcome measurement procedures to permit replication. The importance of the selection of clinically relevant outcome variables, especially related to behavior testing, was noted. Considering the heterogeneous nature of human TBI, evidence of therapeutic efficacy in multiple, diverse (e.g., diffuse vs. focused) rodent models and a species with a gyrencephalic brain prior to clinical testing was encouraged. Basing drug doses, times, and routes of administration on pharmacokinetic and pharmacodynamic data in the test species was recommended. Symposium participants agreed that the publication of negative results would reduce costly and unnecessary duplication of unsuccessful experiments. Although some of the recommendations are more relevant to multi-center, multi-investigator collaborations, most are applicable to pre-clinical therapy testing in general. The goal of these consensus guidelines is to increase the likelihood that therapies that improve outcomes in pre-clinical studies will also improve outcomes in TBI patients.
Collapse
Affiliation(s)
- Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Bridget E. Hawkins
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - C. Edward Dixon
- Department of Neurological Surgery, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cameron R. Bass
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Helen M. Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida
| | - Andras Buki
- Department of Neurosurgery, Medical University of Pécs, Pécs, Hungary
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Adam R. Ferguson
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco (UCSF), San Francisco, California
| | - Edward D. Hall
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky Medical Center, Lexington, Kentucky
| | - Ronald L. Hayes
- University of Florida, Virginia Commonwealth University, Banyan Biomarkers, Inc., Alachua, Florida
| | - Sidney R. Hinds
- United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | | | - Joseph B. Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefania Mondello
- Department of Neurosciences, University of Messina, Via Consolare Valeria, Messina, Italy
| | - Linda J. Noble-Haeusslein
- Departments of Neurology and Psychology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Samuel M. Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | | | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky
| | - Sandy R. Shultz
- Department of Medicine, Melbourne Brain Center, The University of Melbourne, Parkville, Victoria, Australia
| | - Deborah A. Shear
- Brain Trauma Neuroprotection Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| |
Collapse
|
79
|
Kaushal M, España LY, Nencka AS, Wang Y, Nelson LD, McCrea MA, Meier TB. Resting-state functional connectivity after concussion is associated with clinical recovery. Hum Brain Mapp 2018; 40:1211-1220. [PMID: 30451340 DOI: 10.1002/hbm.24440] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
There has been a recent call for longitudinal imaging studies to better characterize the time course of physiological recovery following sport-related concussion (SRC) and its relationship with clinical recovery. To address this, we evaluated changes to resting-state functional connectivity (rs-FC) of the whole-brain network following SRC and explored associations between rs-FC and measures of clinical outcome. High school and collegiate football athletes were enrolled during preseason. Athletes that suffered SRC (N = 62) were assessed across the acute (within 48 hr) and sub-acute (days 8, 15, and 45) phases. Matched football athletes without concussion served as controls (N = 60) and participated in similar visits. Multi-band resting-state fMRI was used to assess whole-brain rs-FC at each visit using network-based statistic and average nodal strength from regions of interest defined using a common whole-brain parcellation. Concussed athletes had elevated symptoms, psychological distress, and oculomotor, balance, and memory deficits at 48 hr postconcussion relative to controls, with diminished yet significant elevations in symptoms and psychological distress at 8 days. Both rs-FC analyses showed that concussed athletes had a global increase in connectivity at 8 days postconcussion relative to controls, with no differences at the 48-hr, 15-day, or 45-day visits. Further analysis revealed the group effect at the 8-day visit was driven by the large minority of concussed athletes still symptomatic at their visit; asymptomatic concussed athletes did not differ from controls. Findings from this large-scale, prospective study suggest whole-brain rs-FC alterations following SRC are delayed in onset but associated with the presence of self-reported symptoms.
Collapse
Affiliation(s)
- Mayank Kaushal
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lezlie Y España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrew S Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
80
|
Wortman RC, Meconi A, Neale KJ, Brady RD, McDonald SJ, Christie BR, Wright DK, Shultz SR. Diffusion MRI abnormalities in adolescent rats given repeated mild traumatic brain injury. Ann Clin Transl Neurol 2018; 5:1588-1598. [PMID: 30564624 PMCID: PMC6292182 DOI: 10.1002/acn3.667] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Objective Mild traumatic brain injury (mTBI) is a serious health concern in the adolescent population. Repeated mTBI may result in more pronounced deficits, and has been associated with long‐term neurological consequences including neurodegeneration. As such, there is a critical need for the development of objective mTBI biomarkers to help guide medical management. Diffusion‐weighted imaging (DWI) is an advanced magnetic resonance imaging (MRI) technique that may detect brain abnormalities after mTBI. Diffusion tensor imaging (DTI) is the most commonly applied DWI method, and initial studies have reported DTI changes in mTBI patients. Furthermore, new DWI methods (e.g., track‐weighted imaging; TWI) are being developed that may also be sensitive to mTBIs, but remain to be comprehensively studied. Methods This study utilized the Awake Closed Head Injury (ACHI) model of mTBI to investigate changes in DTI and TWI following repeated mTBI in adolescent male and female rats. A total of four ACHI impacts, two/day over two consecutive days, were delivered beginning on postnatal day 25. At 1 day and 7 days postinjury, rats were euthanized and brains were collected for DWI analyses. Results Rats given repeated mTBI displayed changes in fractional anisotropy and radial diffusivity (i.e., DTI measures), as well as track density (i.e., TWI). Interpretation These findings are consistent with initial DTI findings in mTBI patients, suggest that TWI may complement DTI, support the utility of DWI measures as biomarkers in mTBI, and further validate the ACHI rat model of mTBI.
Collapse
Affiliation(s)
- Ryan C Wortman
- Department of Neuroscience Central Clinical School Monash University Melbourne Victoria 3004 Australia.,Division of Medical Sciences University of Victoria Victoria BC V8P 5C2 Canada
| | - Alicia Meconi
- Department of Neuroscience Central Clinical School Monash University Melbourne Victoria 3004 Australia
| | - Katie J Neale
- Division of Medical Sciences University of Victoria Victoria BC V8P 5C2 Canada
| | - Rhys D Brady
- Department of Neuroscience Central Clinical School Monash University Melbourne Victoria 3004 Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy, and Microbiology La Trobe University Bundoora Victoria 3086 Australia
| | - Brian R Christie
- Division of Medical Sciences University of Victoria Victoria BC V8P 5C2 Canada
| | - David K Wright
- Department of Neuroscience Central Clinical School Monash University Melbourne Victoria 3004 Australia.,The Florey Institute of Neuroscience and Mental Health Parkville Victoria 3052 Australia
| | - Sandy R Shultz
- Department of Neuroscience Central Clinical School Monash University Melbourne Victoria 3004 Australia.,Division of Medical Sciences University of Victoria Victoria BC V8P 5C2 Canada.,Department of Medicine The Royal Melbourne Hospital The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
81
|
Lunter CM, Carroll EL, Housden C, Outtrim J, Forsyth F, Rivera A, Maimaris C, Boyle A, Sahakian BJ, Menon DK, Newcombe VF. Neurocognitive testing in the emergency department: A potential assessment tool for mild traumatic brain injury. Emerg Med Australas 2018; 31:355-361. [PMID: 30175893 DOI: 10.1111/1742-6723.13163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Despite mild traumatic brain injury (mTBI) accounting for 80% of head injury diagnoses, recognition of individuals at risk of cognitive dysfunction remains a challenge in the acute setting. The objective of this study was to evaluate the feasibility and potential role for computerised cognitive testing as part of a complete ED head injury assessment. METHODS mTBI patients (n = 36) who incurred a head injury within 24 h of presentation to the ED were compared to trauma controls (n = 20) and healthy controls (n = 20) on tests assessing reaction time, speed and attention, episodic memory, working memory and executive functioning. Testing occurred during their visit to the ED at a mean of 12 h post-injury for mTBI and 9.4 h for trauma controls. These tasks were part of the Cambridge Neuropsychological Test Automated Battery iPad application. Healthy controls were tested in both a quiet environment and the ED to investigate the potential effects of noise and distraction on neurocognitive function. RESULTS Reaction time was significantly slower in the mTBI group compared to trauma patients (P = 0.015) and healthy controls (P = 0.011), and deficits were also seen in working memory compared to healthy controls (P ≤ 0.001) and in executive functioning (P = 0.021 and P < 0.001) compared to trauma and healthy controls. Performances in the control group did not differ between testing environments. CONCLUSION Computerised neurocognitive testing in the ED is feasible and can be utilised to detect deficits in cognitive performance in the mTBI population as part of a routine head injury assessment.
Collapse
Affiliation(s)
- Catherine M Lunter
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Ellen L Carroll
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | | | - Joanne Outtrim
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Faye Forsyth
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Annie Rivera
- National Institute of Health Research/Wellcome Trust Clinical Research Facility, Cambridge, UK
| | - Chris Maimaris
- Department of Emergency Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Adrian Boyle
- Department of Emergency Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
82
|
Brady RD, Casillas-Espinosa PM, Agoston DV, Bertram EH, Kamnaksh A, Semple BD, Shultz SR. Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiol Dis 2018; 123:8-19. [PMID: 30121231 DOI: 10.1016/j.nbd.2018.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic epilepsy (PTE) is one of the most debilitating and understudied consequences of traumatic brain injury (TBI). It is challenging to study the effects, underlying pathophysiology, biomarkers, and treatment of TBI and PTE purely in human patients for a number of reasons. Rodent models can complement human PTE studies as they allow for the rigorous investigation into the causal relationship between TBI and PTE, the pathophysiological mechanisms of PTE, the validation and implementation of PTE biomarkers, and the assessment of PTE treatments, in a tightly controlled, time- and cost-efficient manner in experimental subjects known to be experiencing epileptogenic processes. This article will review several common rodent models of TBI and/or PTE, including their use in previous studies and discuss their relative strengths, limitations, and avenues for future research to advance our understanding and treatment of PTE.
Collapse
Affiliation(s)
- Rhys D Brady
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia.
| | - Pablo M Casillas-Espinosa
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia.
| | - Denes V Agoston
- Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Edward H Bertram
- Department of Neurology, University of Virginia, P.O. Box 800394, Charlottesville, VA 22908-0394, USA
| | - Alaa Kamnaksh
- Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Bridgette D Semple
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia
| | - Sandy R Shultz
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia
| |
Collapse
|
83
|
Chuckowree JA, Zhu Z, Brizuela M, Lee KM, Blizzard CA, Dickson TC. The Microtubule-Modulating Drug Epothilone D Alters Dendritic Spine Morphology in a Mouse Model of Mild Traumatic Brain Injury. Front Cell Neurosci 2018; 12:223. [PMID: 30104961 PMCID: PMC6077201 DOI: 10.3389/fncel.2018.00223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
Microtubule dynamics underpin a plethora of roles involved in the intricate development, structure, function, and maintenance of the central nervous system. Within the injured brain, microtubules are vulnerable to misalignment and dissolution in neurons and have been implicated in injury-induced glial responses and adaptive neuroplasticity in the aftermath of injury. Unfortunately, there is a current lack of therapeutic options for treating traumatic brain injury (TBI). Thus, using a clinically relevant model of mild TBI, lateral fluid percussion injury (FPI) in adult male Thy1-YFPH mice, we investigated the potential therapeutic effects of the brain-penetrant microtubule-stabilizing agent, epothilone D. At 7 days following a single mild lateral FPI the ipsilateral hemisphere was characterized by mild astroglial activation and a stereotypical and widespread pattern of axonal damage in the internal and external capsule white matter tracts. These alterations occurred in the absence of other overt signs of trauma: there were no alterations in cortical thickness or in the number of cortical projection neurons, axons or dendrites expressing YFP. Interestingly, a single low dose of epothilone D administered immediately following FPI (and sham-operation) caused significant alterations in the dendritic spines of layer 5 cortical projection neurons, while the astroglial response and axonal pathology were unaffected. Specifically, spine length was significantly decreased, whereas the density of mushroom spines was significantly increased following epothilone D treatment. Together, these findings have implications for the use of microtubule stabilizing agents in manipulating injury-induced synaptic plasticity and indicate that further study into the viability of microtubule stabilization as a therapeutic strategy in combating TBI is warranted.
Collapse
Affiliation(s)
- Jyoti A. Chuckowree
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Zhendan Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Mariana Brizuela
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - Ka M. Lee
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Catherine A. Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C. Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
84
|
Semple BD, Zamani A, Rayner G, Shultz SR, Jones NC. Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiol Dis 2018; 123:27-41. [PMID: 30059725 DOI: 10.1016/j.nbd.2018.07.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Survivors of traumatic brain injury (TBI) often develop chronic neurological, neurocognitive, psychological, and psychosocial deficits that can have a profound impact on an individual's wellbeing and quality of life. TBI is also a common cause of acquired epilepsy, which is itself associated with significant behavioral morbidity. This review considers the clinical and preclinical evidence that post-traumatic epilepsy (PTE) acts as a 'second-hit' insult to worsen chronic behavioral outcomes for brain-injured patients, across the domains of emotional, cognitive, and psychosocial functioning. Surprisingly, few well-designed studies have specifically examined the relationship between seizures and behavioral outcomes after TBI. The complex mechanisms underlying these comorbidities remain incompletely understood, although many of the biological processes that precipitate seizure occurrence and epileptogenesis may also contribute to the development of chronic behavioral deficits. Further, the relationship between PTE and behavioral dysfunction is increasingly recognized to be a bidirectional one, whereby premorbid conditions are a risk factor for PTE. Clinical studies in this arena are often challenged by the confounding effects of anti-seizure medications, while preclinical studies have rarely examined an adequately extended time course to fully capture the time course of epilepsy development after a TBI. To drive the field forward towards improved treatment strategies, it is imperative that both seizures and neurobehavioral outcomes are assessed in parallel after TBI, both in patient populations and preclinical models.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Akram Zamani
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia.
| | - Genevieve Rayner
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre (Austin Campus), Heidelberg, VIC, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Comprehensive Epilepsy Program, Alfred Health, Australia.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Nigel C Jones
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| |
Collapse
|
85
|
Jiang J, Dai C, Niu X, Sun H, Cheng S, Zhang Z, Zhu X, Wang Y, Zhang T, Duan F, Chen X, Zhang S. Establishment of a precise novel brain trauma model in a large animal based on injury of the cerebral motor cortex. J Neurosci Methods 2018; 307:95-105. [PMID: 29960029 DOI: 10.1016/j.jneumeth.2018.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Animal models are essential in simulating clinical diseases and facilitating relevant studies. NEW METHOD We established a precise canine model of traumatic brain injury (TBI) based on cerebral motor cortex injury which was confirmed by neuroimaging, electrophysiology, and a series of motor function assessment methods. Twelve beagles were divided into control, sham, and model groups. The cerebral motor cortex was identified by diffusion tensor imaging (DTI), a simple marker method, and intraoperative electrophysiological measurement. Bony windows were designed by magnetic resonance imaging (MRI) scan and DTI. During the operation, canines in the control group were under general anesthesia. The canines were operated via bony window craniotomy and dura mater opening in the sham group. After opening of the bony window and dura mater, the motor cortex was impacted by a modified electronic cortical contusion impactor (eCCI) in the model group. RESULTS Postoperative measurements revealed damage to the cerebral motor cortex and functional defects. Comparisons between preoperative and postoperative results demonstrated that the established model was successful. COMPARISON WITH EXISTING METHOD(S) Compared with conventional models, this is the first brain trauma model in large animal that was constructed based on injury to the cerebral motor cortex under the guidance of DTI, a simple marker method, and electrophysiology. CONCLUSION The method used to establish this model can be standardized to enhance reproducibility and provide a stable and precise large animal model of TBI for clinical and basic research.
Collapse
Affiliation(s)
- Jipeng Jiang
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China.
| | - Chen Dai
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Xuegang Niu
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Hongtao Sun
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Shixiang Cheng
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Zhiwen Zhang
- Department of Automation, College of Computer and Control Engineering, Nankai University, Tongyan Road No.38, Tianjin 300350, China
| | - Xu Zhu
- Tianjin Medical University, Qixiangtai Road No.22, Tianjin 300070, China
| | - Yuting Wang
- Tianjin Medical University, Qixiangtai Road No.22, Tianjin 300070, China
| | - Tongshuo Zhang
- Department of Clinical Laboratory of Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Feng Duan
- Department of Automation, College of Computer and Control Engineering, Nankai University, Tongyan Road No.38, Tianjin 300350, China
| | - Xuyi Chen
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China.
| | - Sai Zhang
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China.
| |
Collapse
|
86
|
Robinson S, Winer JL, Chan LAS, Oppong AY, Yellowhair TR, Maxwell JR, Andrews N, Yang Y, Sillerud LO, Meehan WP, Mannix R, Brigman JL, Jantzie LL. Extended Erythropoietin Treatment Prevents Chronic Executive Functional and Microstructural Deficits Following Early Severe Traumatic Brain Injury in Rats. Front Neurol 2018; 9:451. [PMID: 29971038 PMCID: PMC6018393 DOI: 10.3389/fneur.2018.00451] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/29/2018] [Indexed: 01/30/2023] Open
Abstract
Survivors of infant traumatic brain injury (TBI) are prone to chronic neurological deficits that impose lifelong individual and societal burdens. Translation of novel interventions to clinical trials is hampered in part by the lack of truly representative preclinical tests of cognition and corresponding biomarkers of functional outcomes. To address this gap, the ability of a high-dose, extended, post-injury regimen of erythropoietin (EPO, 3000U/kg/dose × 6d) to prevent chronic cognitive and imaging deficits was tested in a postnatal day 12 (P12) controlled-cortical impact (CCI) model in rats, using touchscreen operant chambers and regional analysis of diffusion tensor imaging (DTI). Results indicate that EPO prevents functional injury and MRI injury after infant TBI. Specifically, subacute DTI at P30 revealed widespread microstructural damage that is prevented by EPO. Assessment of visual discrimination on a touchscreen operant chamber platform demonstrated that all groups can perform visual discrimination. However, CCI rats treated with vehicle failed to pass reversal learning, and perseverated, in contrast to sham and CCI-EPO rats. Chronic DTI at P90 showed EPO treatment prevented contralateral white matter and ipsilateral lateral prefrontal cortex damage. This DTI improvement correlated with cognitive performance. Taken together, extended EPO treatment restores executive function and prevents microstructural brain abnormalities in adult rats with cognitive deficits in a translational preclinical model of infant TBI. Sophisticated testing with touchscreen operant chambers and regional DTI analyses may expedite translation and effective yield of interventions from preclinical studies to clinical trials. Collectively, these data support the use of EPO in clinical trials for human infants with TBI.
Collapse
Affiliation(s)
- Shenandoah Robinson
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jesse L Winer
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lindsay A S Chan
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Akosua Y Oppong
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Jessie R Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States
| | - Nicholas Andrews
- F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yirong Yang
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Laurel O Sillerud
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - William P Meehan
- Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rebekah Mannix
- Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Lauren L Jantzie
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States.,Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
87
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
88
|
McColl TJ, Brady RD, Shultz SR, Lovick L, Webster KM, Sun M, McDonald SJ, O'Brien TJ, Semple BD. Mild Traumatic Brain Injury in Adolescent Mice Alters Skull Bone Properties to Influence a Subsequent Brain Impact at Adulthood: A Pilot Study. Front Neurol 2018; 9:372. [PMID: 29887828 PMCID: PMC5980957 DOI: 10.3389/fneur.2018.00372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/24/2022] Open
Abstract
Mild traumatic brain injuries (mTBI) are common during adolescence, and limited clinical evidence suggests that a younger age at first exposure to a mTBI may lead to worse long-term outcomes. In this study, we hypothesized that a mTBI during adolescence would predispose toward poorer neurobehavioral and neuropathological outcomes after a subsequent injury at adulthood. Mice received a mild weight drop injury (mTBI) at adolescence (postnatal day 35; P35) and/or at adulthood (P70). Mice were randomized to 6 groups: 'sham' (sham-surgery at P35 only); 'P35' (mTBI at P35 only); 'P35 + sham' (mTBI at P35 + sham at P70); 'sham + P70' (sham at P35 + mTBI at P70); 'sham + sham' (sham at both P35 and P70); or 'P35 + P70' (mTBI at both P35 and P70). Acute apnea and an extended righting reflex time confirmed a mTBI injury at P35 and/or P70. Cognitive, psychosocial, and sensorimotor function was assessed over 1-week post-injury. Injured groups performed similarly to sham controls across all tasks. Immunofluorescence staining at 1 week detected an increase in glial activation markers in Sham + P70 brains only. Strikingly, 63% of Sham + P70 mice exhibited a skull fracture at impact, compared to 13% of P35 + P70 mice. Micro computed tomography of parietal skull bones found that a mTBI at P35 resulted in increased bone volume and strength, which may account for the difference in fracture incidence. In summary, a single mTBI to the adolescent mouse brain did not exacerbate the cerebral effects of a subsequent mTBI in adulthood. However, the head impact at P35 induced significant changes in skull bone structure and integrity. These novel findings support future investigation into the consequences of mTBI on skull bone.
Collapse
Affiliation(s)
- Thomas J McColl
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Rhys D Brady
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Lauren Lovick
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Kyria M Webster
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Mujun Sun
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
89
|
Aldag M, Armstrong RC, Bandak F, Bellgowan PSF, Bentley T, Biggerstaff S, Caravelli K, Cmarik J, Crowder A, DeGraba TJ, Dittmer TA, Ellenbogen RG, Greene C, Gupta RK, Hicks R, Hoffman S, Latta RC, Leggieri MJ, Marion D, Mazzoli R, McCrea M, O'Donnell J, Packer M, Petro JB, Rasmussen TE, Sammons-Jackson W, Shoge R, Tepe V, Tremaine LA, Zheng J. The Biological Basis of Chronic Traumatic Encephalopathy following Blast Injury: A Literature Review. J Neurotrauma 2018; 34:S26-S43. [PMID: 28937953 DOI: 10.1089/neu.2017.5218] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The United States Department of Defense Blast Injury Research Program Coordinating Office organized the 2015 International State-of-the-Science meeting to explore links between blast-related head injury and the development of chronic traumatic encephalopathy (CTE). Before the meeting, the planning committee examined articles published between 2005 and October 2015 and prepared this literature review, which summarized broadly CTE research and addressed questions about the pathophysiological basis of CTE and its relationship to blast- and nonblast-related head injury. It served to inform participants objectively and help focus meeting discussion on identifying knowledge gaps and priority research areas. CTE is described generally as a progressive neurodegenerative disorder affecting persons exposed to head injury. Affected individuals have been participants primarily in contact sports and military personnel, some of whom were exposed to blast. The symptomatology of CTE overlaps with Alzheimer's disease and includes neurological and cognitive deficits, psychiatric and behavioral problems, and dementia. There are no validated diagnostic criteria, and neuropathological evidence of CTE has come exclusively from autopsy examination of subjects with histories of exposure to head injury. The perivascular accumulation of hyperphosphorylated tau (p-tau) at the depths of cortical sulci is thought to be unique to CTE and has been proposed as a diagnostic requirement, although the contribution of p-tau and other reported pathologies to the development of clinical symptoms of CTE are unknown. The literature on CTE is limited and is focused predominantly on head injuries unrelated to blast exposure (e.g., football players and boxers). In addition, comparative analyses of clinical case reports has been challenging because of small case numbers, selection biases, methodological differences, and lack of matched controls, particularly for blast-exposed individuals. Consequently, the existing literature is not sufficient to determine whether the development of CTE is associated with head injury frequency (e.g., single vs. multiple exposures) or head injury type (e.g., impact, nonimpact, blast-related). Moreover, the incidence and prevalence of CTE in at-risk populations is unknown. Future research priorities should include identifying additional risk factors, pursuing population-based longitudinal studies, and developing the ability to detect and diagnose CTE in living persons using validated criteria.
Collapse
Affiliation(s)
- Matt Aldag
- 1 Booz Allen Hamilton , McLean, Virginia
| | - Regina C Armstrong
- 2 Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Faris Bandak
- 3 Defense Advanced Research Projects Agency , Arlington, Virginia
| | | | | | - Sean Biggerstaff
- 6 Office of the Assistant Secretary of Defense , Health Affairs, Falls Church, Virginia
| | | | - Joan Cmarik
- 7 Office of the Principal Assistant for Acquisition, United States Army Medical Research and Materiel Command , Frederick, Maryland
| | - Alicia Crowder
- 8 Combat Casualty Care Research Program , United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | | | | | - Richard G Ellenbogen
- 10 Departments of Neurological Surgery and Global Health Medicine, University of Washington , Seattle, Washington
| | - Colin Greene
- 11 Joint Trauma Analysis and Prevention of Injuries in Combat Program, Frederick, Maryland
| | - Raj K Gupta
- 12 Department of Defense Blast Injury Research Program Coordinating Office, United States Army Medical Research and Materiel Command , Frederick, Maryland
| | | | | | | | - Michael J Leggieri
- 12 Department of Defense Blast Injury Research Program Coordinating Office, United States Army Medical Research and Materiel Command , Frederick, Maryland
| | - Donald Marion
- 16 Defense and Veterans Brain Injury Center , Silver Spring, Maryland
| | | | | | | | - Mark Packer
- 20 Hearing Center of Excellence , Lackland, Texas
| | - James B Petro
- 21 Office of the Assistant Secretary of Defense, Research and Engineering, Arlington, Virginia
| | - Todd E Rasmussen
- 8 Combat Casualty Care Research Program , United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Wendy Sammons-Jackson
- 22 Office of the Principal Assistant for Research and Technology , United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Richard Shoge
- 23 Military Operational Medicine Research Program, United States Army Medical Research and Materiel Command , Fort Detrick, Maryland
| | | | | | - James Zheng
- 25 Program Executive Office Soldier , Fort Belvoir, Virginia
| |
Collapse
|
90
|
Kamins J, Charles A. Posttraumatic Headache: Basic Mechanisms and Therapeutic Targets. Headache 2018; 58:811-826. [DOI: 10.1111/head.13312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Joshua Kamins
- UCLA Goldberg Migraine Program; David Geffen School of Medicine at UCLA; Los Angeles CA USA
- Tisch Brainsport Program; David Geffen School of Medicine at UCLA; Los Angeles CA USA
| | - Andrew Charles
- UCLA Goldberg Migraine Program; David Geffen School of Medicine at UCLA; Los Angeles CA USA
| |
Collapse
|
91
|
Meconi A, Wortman RC, Wright DK, Neale KJ, Clarkson M, Shultz SR, Christie BR. Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats. PLoS One 2018; 13:e0197187. [PMID: 29738554 PMCID: PMC5940222 DOI: 10.1371/journal.pone.0197187] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Repeated concussion is becoming increasingly recognized as a serious public health concern around the world. Moreover, there is a greater awareness amongst health professionals of the potential for repeated pediatric concussions to detrimentally alter the structure and function of the developing brain. To better study this issue, we developed an awake closed head injury (ACHI) model that enabled repeated concussions to be performed reliably and reproducibly in juvenile rats. A neurological assessment protocol (NAP) score was generated immediately after each ACHI to help quantify the cumulative effects of repeated injury on level of consciousness, and basic motor and reflexive capacity. Here we show that we can produce a repeated ACHI (4 impacts in two days) in both male and female juvenile rats without significant mortality or pain. We show that both single and repeated injuries produce acute neurological deficits resembling clinical concussion symptoms that can be quantified using the NAP score. Behavioural analyses indicate repeated ACHI acutely impaired spatial memory in the Barnes maze, and an interesting sex effect was revealed as memory impairment correlated moderately with poorer NAP score performance in a subset of females. These cognitive impairments occurred in the absence of motor impairments on the Rotarod, or emotional changes in the open field and elevated plus mazes. Cresyl violet histology and structural magnetic resonance imaging (MRI) indicated that repeated ACHI did not produce significant structural damage. MRI also confirmed there was no volumetric loss in the cortex, hippocampus, or corpus callosum of animals at 1 or 7 days post-ACHI. Together these data indicate that the ACHI model can provide a reliable, high throughput means to study the effects of concussions in juvenile rats.
Collapse
Affiliation(s)
- Alicia Meconi
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Ryan C. Wortman
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - David K. Wright
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Katie J. Neale
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Melissa Clarkson
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Sandy R. Shultz
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Centre for Brain Health and Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
92
|
Schmidt J, Hayward KS, Brown KE, Zwicker JG, Ponsford J, van Donkelaar P, Babul S, Boyd LA. Imaging in Pediatric Concussion: A Systematic Review. Pediatrics 2018; 141:peds.2017-3406. [PMID: 29678928 DOI: 10.1542/peds.2017-3406] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 11/24/2022] Open
Abstract
CONTEXT Pediatric mild traumatic brain injury (mTBI) is a common and poorly understood injury. Neuroimaging indexes brain injury and outcome after pediatric mTBI, but remains largely unexplored. OBJECTIVE To investigate the differences in neuroimaging findings in children/youth with mTBI. Measures of behavior, symptoms, time since injury, and age at injury were also considered. DATA SOURCES A systematic review was conducted up to July 6, 2016. STUDY SELECTION Studies were independently screened by 2 authors and included if they met predetermined eligibility criteria: (1) children/youth (5-18 years of age), (2) diagnosis of mTBI, and (3) use of neuroimaging. DATA EXTRACTION Two authors independently appraised study quality and extracted demographic and outcome data. RESULTS Twenty-two studies met the eligibility criteria, involving 448 participants with mTBI (mean age = 12.7 years ± 2.8). Time postinjury ranged from 1 day to 5 years. Seven different neuroimaging methods were investigated in included studies. The most frequently used method, diffusion tensor imaging (41%), had heterogeneous findings with respect to the specific regions and tracts that showed group differences. However, group differences were observed in many regions containing the corticospinal tract, portions of the corpus callosum, or frontal white-matter regions; fractional anisotropy was increased in 88% of the studies. LIMITATIONS This review included a heterogeneous sample with regard to participant ages, time since injury, symptoms, and imaging methods which prevented statistical pooling/modelling. CONCLUSIONS These data highlight essential priorities for future research (eg, common data elements) that are foundational to progress the understanding of pediatric concussion.
Collapse
Affiliation(s)
- Julia Schmidt
- Department of Physical Therapy, The University of British Columbia, Vancouver, Canada; .,School of Allied Health, College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Kathryn S Hayward
- Department of Physical Therapy, The University of British Columbia, Vancouver, Canada.,Florey Institute of Neuroscience and Mental Health, National Health and Medical Research Council and University of Melbourne, Parkville, Australia.,Centre for Research Excellence in Stroke Rehabilitation and Brain Recovery, Melbourne, Australia
| | - Katlyn E Brown
- Department of Physical Therapy, The University of British Columbia, Vancouver, Canada
| | - Jill G Zwicker
- Department of Physical Therapy, The University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada; and
| | | | - Paul van Donkelaar
- Department of Physical Therapy, The University of British Columbia, Vancouver, Canada
| | - Shelina Babul
- Department of Physical Therapy, The University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada; and
| | - Lara A Boyd
- Department of Physical Therapy, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
93
|
Wright AD, Smirl JD, Bryk K, Fraser S, Jakovac M, van Donkelaar P. Sport-Related Concussion Alters Indices of Dynamic Cerebral Autoregulation. Front Neurol 2018; 9:196. [PMID: 29636724 PMCID: PMC5880892 DOI: 10.3389/fneur.2018.00196] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Sport-related concussion is known to affect a variety of brain functions. However, the impact of this brain injury on cerebral autoregulation (CA) is poorly understood. Thus, the goal of the current study was to determine the acute and cumulative effects of sport-related concussion on indices of dynamic CA. Toward this end, 179 elite, junior-level (age 19.6 ± 1.5 years) contact sport (ice hockey, American football) athletes were recruited for preseason testing, 42 with zero prior concussions and 31 with three or more previous concussions. Eighteen athletes sustained a concussion during that competitive season and completed follow-up testing at 72 h, 2 weeks, and 1 month post injury. Beat-by-beat arterial blood pressure (BP) and middle cerebral artery blood velocity (MCAv) were recorded using finger photoplethysmography and transcranial Doppler ultrasound, respectively. Five minutes of repetitive squat-stand maneuvers induced BP oscillations at 0.05 and 0.10 Hz (20- and 10-s cycles, respectively). The BP-MCAv relationship was quantified using transfer function analysis to estimate Coherence (correlation), Gain (amplitude ratio), and Phase (timing offset). At a group level, repeated-measures ANOVA indicated that 0.10 Hz Phase was significantly reduced following an acute concussion, compared to preseason, by 23% (-0.136 ± 0.033 rads) at 72 h and by 18% (-0.105 ± 0.029 rads) at 2 weeks post injury, indicating impaired autoregulatory functioning; recovery to preseason values occurred by 1 month. Athletes were cleared to return to competition after a median of 14 days (range 7-35), implying that physiologic dysfunction persisted beyond clinical recovery in many cases. When comparing dynamic pressure buffering between athletes with zero prior concussions and those with three or more, no differences were observed. Sustaining an acute sport-related concussion induces transient impairments in the capabilities of the cerebrovascular pressure-buffering system that may persist beyond 2 weeks and may be due to a period of autonomic dysregulation. Athletes with a history of three or more concussions did not exhibit impairments relative to those with zero prior concussions, suggesting recovery of function over time. Findings from this study support the potential need to consider physiological recovery in deciding when patients should return to play following a concussion.
Collapse
Affiliation(s)
- Alexander D Wright
- MD/PhD Program, University of British Columbia, Vancouver, BC, Canada.,Southern Medical Program, Reichwald Health Sciences Centre, University of British Columbia Okanagan, Kelowna, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jonathan D Smirl
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Kelsey Bryk
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Sarah Fraser
- Southern Medical Program, Reichwald Health Sciences Centre, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Michael Jakovac
- Southern Medical Program, Reichwald Health Sciences Centre, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
94
|
Tucker LB, Velosky AG, McCabe JT. Applications of the Morris water maze in translational traumatic brain injury research. Neurosci Biobehav Rev 2018; 88:187-200. [PMID: 29545166 DOI: 10.1016/j.neubiorev.2018.03.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
Abstract
Acquired traumatic brain injury (TBI) is frequently accompanied by persistent cognitive symptoms, including executive function disruptions and memory deficits. The Morris Water Maze (MWM) is the most widely-employed laboratory behavioral test for assessing cognitive deficits in rodents after experimental TBI. Numerous protocols exist for performing the test, which has shown great robustness in detecting learning and memory deficits in rodents after infliction of TBI. We review applications of the MWM for the study of cognitive deficits following TBI in pre-clinical studies, describing multiple ways in which the test can be employed to examine specific aspects of learning and memory. Emphasis is placed on dependent measures that are available and important controls that must be considered in the context of TBI. Finally, caution is given regarding interpretation of deficits as being indicative of dysfunction of a single brain region (hippocampus), as experimental models of TBI most often result in more diffuse damage that disrupts multiple neural pathways and larger functional networks that participate in complex behaviors required in MWM performance.
Collapse
Affiliation(s)
- Laura B Tucker
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Alexander G Velosky
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Joseph T McCabe
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
95
|
Clough M, Mutimer S, Wright DK, Tsang A, Costello DM, Gardner AJ, Stanwell P, Mychasiuk R, Sun M, Brady RD, McDonald SJ, Webster KM, Johnstone MR, Semple BD, Agoston DV, White OB, Frayne R, Fielding J, O'Brien TJ, Shultz SR. Oculomotor Cognitive Control Abnormalities in Australian Rules Football Players with a History of Concussion. J Neurotrauma 2018; 35:730-738. [DOI: 10.1089/neu.2017.5204] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Meaghan Clough
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Steven Mutimer
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - David K. Wright
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Adrian Tsang
- The Department of Radiology, The University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Center, Foothills Medical Center, Calgary, Alberta, Canada
| | - Daniel M. Costello
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J. Gardner
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Peter Stanwell
- School of Health Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Richelle Mychasiuk
- The Department of Psychology, The University of Calgary, Calgary, Alberta, Canada
| | - Mujun Sun
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Rhys D. Brady
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Kyria M. Webster
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Maddison R. Johnstone
- Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Bridgette D. Semple
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Denes V. Agoston
- Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, Maryland
| | - Owen B. White
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richard Frayne
- The Department of Radiology, The University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Center, Foothills Medical Center, Calgary, Alberta, Canada
| | - Joanne Fielding
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Terence J. O'Brien
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R. Shultz
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
96
|
Sun M, McDonald SJ, Brady RD, O'Brien TJ, Shultz SR. The influence of immunological stressors on traumatic brain injury. Brain Behav Immun 2018; 69:618-628. [PMID: 29355823 DOI: 10.1016/j.bbi.2018.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, and typically involves a robust immune response. Although a great deal of preclinical research has been conducted to identify an effective treatment, all phase III clinical trials have been unsuccessful to date. These translational shortcomings are in part due to a failure to recognize and account for the heterogeneity of TBI, including how extracranial factors can influence the aftermath of TBI. For example, most preclinical studies have utilized isolated TBI models in young adult males, while clinical trials typically involve highly heterogeneous patient populations (e.g., different mechanisms of injury, a range of ages, presence of polytrauma or infection). This paper will review the current, albeit limited literature related to how TBI is affected by common concomitant immunological stressors. In particular, discussion will focus on whether extracranial trauma (i.e., polytrauma), infection, and age/immunosenescence can influence TBI pathophysiology, and thereby may result in a different brain injury than what would have occurred in an isolated TBI. It is concluded that these immunological stressors are all likely to be TBI modifiers that should be further studied and could impact translational treatment strategies.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
97
|
Wright DK, O'Brien TJ, Mychasiuk R, Shultz SR. Telomere length and advanced diffusion MRI as biomarkers for repetitive mild traumatic brain injury in adolescent rats. Neuroimage Clin 2018; 18:315-324. [PMID: 29876252 PMCID: PMC5987845 DOI: 10.1016/j.nicl.2018.01.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Mild traumatic brain injuries (mTBI) are of worldwide concern in adolescents of both sexes, and repeated mTBI (RmTBI) may have serious long-term neurological consequences. As such, the study of RmTBI and discovery of objective biomarkers that can help guide medical decisions is an important undertaking. Diffusion-weighted MRI (DWI), which provides markers of axonal injury, and telomere length (TL) are two clinically relevant biomarkers that have been implicated in a number of neurological conditions, and may also be affected by RmTBI. Therefore, this study utilized the lateral impact injury model of RmTBI to investigate changes in diffusion MRI and TL, and how these changes relate to each other. Adolescent male and female rats received either three mTBIs or three sham injuries. The first injury was given on postnatal day 30 (P30), with the repeated injuries separated by four days each. Seven days after the final injury, a sample of ear tissue was collected for TL analysis. Rats were then euthanized and whole brains were collected and fixated for MRI analyses that included diffusion and high-resolution structural sequences. Compared to the sham-injured group, RmTBI rats had significantly shorter TL at seven days post-injury. Analysis of advanced DWI measures found that RmTBI rats had abnormalities in the corpus callosum and cortex at seven days post-injury. Notably, many of the DWI changes were correlated with TL. These findings demonstrate that TL and DWI measurements are changed by RmTBI and may represent clinically applicable biomarkers for this.
Collapse
Affiliation(s)
- David K Wright
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3010, Australia
| | - Richelle Mychasiuk
- Alberta Children's Hospital Research Institute, University of Calgary, Department of Psychology, Calgary, AB, Canada
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
98
|
Ho CH, Liang FW, Wang JJ, Chio CC, Kuo JR. Impact of grouping complications on mortality in traumatic brain injury: A nationwide population-based study. PLoS One 2018; 13:e0190683. [PMID: 29324771 PMCID: PMC5764255 DOI: 10.1371/journal.pone.0190683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022] Open
Abstract
Traumatic brain injury (TBI) is an important health issue with high mortality. Various complications of physiological and cognitive impairment may result in disability or death after TBI. Grouping of these complications could be treated as integrated post-TBI syndromes. To improve risk estimation, grouping TBI complications should be investigated, to better predict TBI mortality. This study aimed to estimate mortality risk based on grouping of complications among TBI patients. Taiwan's National Health Insurance Research Database was used in this study. TBI was defined according to the International Classification of Diseases, Ninth Revision, Clinical Modification codes: 801-804 and 850-854. The association rule data mining method was used to analyze coexisting complications after TBI. The mortality risk of post-TBI complication sets with the potential risk factors was estimated using Cox regression. A total 139,254 TBI patients were enrolled in this study. Intracerebral hemorrhage was the most common complication among TBI patients. After frequent item set mining, the most common post-TBI grouping of complications comprised pneumonia caused by acute respiratory failure (ARF) and urinary tract infection, with mortality risk 1.55 (95% C.I.: 1.51-1.60), compared with those without the selected combinations. TBI patients with the combined combinations have high mortality risk, especially those aged <20 years with septicemia, pneumonia, and ARF (HR: 4.95, 95% C.I.: 3.55-6.88). We used post-TBI complication sets to estimate mortality risk among TBI patients. According to the combinations determined by mining, especially the combination of septicemia with pneumonia and ARF, TBI patients have a 1.73-fold increased mortality risk, after controlling for potential demographic and clinical confounders. TBI patients aged<20 years with each combination of complications also have increased mortality risk. These results could provide physicians and caregivers with important information to increase their awareness about sequences of clinical syndromes among TBI patients, to prevent possible deaths among these patients.
Collapse
Affiliation(s)
- Chung-Han Ho
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Fu-Wen Liang
- National Cheng Kung University Research Center for Health Data and Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chung-Ching Chio
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jinn-Rung Kuo
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| |
Collapse
|
99
|
Johnstone MR, Sun M, Taylor CJ, Brady RD, Grills BL, Church JE, Shultz SR, McDonald SJ. Gambogic amide, a selective TrkA agonist, does not improve outcomes from traumatic brain injury in mice. Brain Inj 2017; 32:257-268. [PMID: 29227174 DOI: 10.1080/02699052.2017.1394492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES There is evidence that treatment with nerve growth factor (NGF) may reduce neuroinflammation and apoptosis after a traumatic brain injury (TBI). NGF is thought to exert its effects via binding to either TrkA or p75 neurotrophin receptors. This study aimed to investigate the effects of a selective TrkA agonist, gambogic amide (GA), on TBI pathology and outcomes in mice following lateral fluid percussion injury. METHODS Male C57BL/6 mice were given either a TBI or sham injury, and then received subcutaneous injections of either 2 mg/kg of GA or vehicle at 1, 24, and 48 h post-injury. Following behavioural studies, mice were euthanized at 72 h post-injury for analysis of neuroinflammatory, apoptotic, and neurite outgrowth markers. RESULTS Behavioural testing revealed that GA did not mitigate motor deficits after TBI. TBI caused an increase in cortical and hippocampal expression of several markers of neuroinflammation and apoptosis compared to sham groups. GA treatment did not attenuate these increases in expression, possibly contributed to by our finding of TrkA receptor down-regulation post-TBI. CONCLUSIONS These findings suggest that GA treatment may not be suitable for attenuating TBI pathology and improving outcomes.
Collapse
Affiliation(s)
- Maddison R Johnstone
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Mujun Sun
- b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia
| | - Caroline J Taylor
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Rhys D Brady
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia.,b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia
| | - Brian L Grills
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Jarrod E Church
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Sandy R Shultz
- b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia.,c Department of Neuroscience , Central Clinical School, Monash University , Melbourne , VIC , Australia
| | - Stuart J McDonald
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| |
Collapse
|
100
|
Abstract
Purpose/Aim: Animal models of traumatic brain injury (TBI) provide powerful tools to study TBI in a controlled, rigorous and cost-efficient manner. The mostly used animals in TBI studies so far are rodents. However, compared with rodents, large animals (e.g. swine, rabbit, sheep, ferret, etc.) show great advantages in modeling TBI due to the similarity of their brains to human brain. The aim of our review was to summarize the development and progress of common large animal TBI models in past 30 years. MATERIALS AND METHODS Mixed published articles and books associated with large animal models of TBI were researched and summarized. RESULTS We majorly sumed up current common large animal models of TBI, including discussion on the available research methodologies in previous studies, several potential therapies in large animal trials of TBI as well as advantages and disadvantages of these models. CONCLUSIONS Large animal models of TBI play crucial role in determining the underlying mechanisms and screening putative therapeutic targets of TBI.
Collapse
Affiliation(s)
- Jun-Xi Dai
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yan-Bin Ma
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Nan-Yang Le
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jun Cao
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yang Wang
- b Department of Emergency , Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|