51
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
52
|
Du J, Zhu S, Lim RR, Chao JR. Proline metabolism and transport in retinal health and disease. Amino Acids 2021; 53:1789-1806. [PMID: 33871679 PMCID: PMC8054134 DOI: 10.1007/s00726-021-02981-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
The retina is one of the most energy-demanding tissues in the human body. Photoreceptors in the outer retina rely on nutrient support from the neighboring retinal pigment epithelium (RPE), a monolayer of epithelial cells that separate the retina and choroidal blood supply. RPE dysfunction or cell death can result in photoreceptor degeneration, leading to blindness in retinal degenerative diseases including some inherited retinal degenerations and age-related macular degeneration (AMD). In addition to having ready access to rich nutrients from blood, the RPE is also supplied with lactate from adjacent photoreceptors. Moreover, RPE can phagocytose lipid-rich outer segments for degradation and recycling on a daily basis. Recent studies show RPE cells prefer proline as a major metabolic substrate, and they are highly enriched for the proline transporter, SLC6A20. In contrast, dysfunctional or poorly differentiated RPE fails to utilize proline. RPE uses proline to fuel mitochondrial metabolism, synthesize amino acids, build the extracellular matrix, fight against oxidative stress, and sustain differentiation. Remarkably, the neural retina rarely imports proline directly, but it uptakes and utilizes intermediates and amino acids derived from proline catabolism in the RPE. Mutations of genes in proline metabolism are associated with retinal degenerative diseases, and proline supplementation is reported to improve RPE-initiated vision loss. This review will cover proline metabolism in RPE and highlight the importance of proline transport and utilization in maintaining retinal metabolism and health.
Collapse
Affiliation(s)
- Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,One Medical Center Dr, WVU Eye Institute, PO Box 9193, Morgantown, WV, 26505, USA.
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
53
|
Kunze S, Cecil A, Prehn C, Möller G, Ohlmann A, Wildner G, Thurau S, Unger K, Rößler U, Hölter SM, Tapio S, Wagner F, Beyerlein A, Theis F, Zitzelsberger H, Kulka U, Adamski J, Graw J, Dalke C. Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice. Int J Radiat Biol 2021; 97:529-540. [PMID: 33464160 DOI: 10.1080/09553002.2021.1876951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The long-term effect of low and moderate doses of ionizing radiation on the lens is still a matter of debate and needs to be evaluated in more detail. MATERIAL AND METHODS We conducted a detailed histological analysis of eyes from B6C3F1 mice cohorts after acute gamma irradiation (60Co source; 0.063 Gy/min) at young adult age of 10 weeks with doses of 0.063, 0.125, and 0.5 Gy. Sham irradiated (0 Gy) mice were used as controls. To test for genetic susceptibility heterozygous Ercc2 mutant mice were used and compared to wild-type mice of the same strain background. Mice of both sexes were included in all cohorts. Eyes were collected 4 h, 12, 18 and 24 months after irradiation. For a better understanding of the underlying mechanisms, metabolomics analyses were performed in lenses and plasma samples of the same mouse cohorts at 4 and 12 h as well as 12, 18 and 24 months after irradiation. For this purpose, a targeted analysis was chosen. RESULTS This analysis revealed histological changes particularly in the posterior part of the lens that rarely can be observed by using Scheimpflug imaging, as we reported previously. We detected a significant increase of posterior subcapsular cataracts (PSCs) 18 and 24 months after irradiation with 0.5 Gy (odds ratio 9.3; 95% confidence interval 2.1-41.3) independent of sex and genotype. Doses below 0.5 Gy (i.e. 0.063 and 0.125 Gy) did not significantly increase the frequency of PSCs at any time point. In lenses, we observed a clear effect of sex and aging but not of irradiation or genotype. While metabolomics analyses of plasma from the same mice showed only a sex effect. CONCLUSIONS This article demonstrates a significant radiation-induced increase in the incidence of PSCs, which could not be identified using Scheimpflug imaging as the only diagnostic tool.
Collapse
Affiliation(s)
- Sarah Kunze
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexander Cecil
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Stephan Thurau
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ute Rößler
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wagner
- Institute of Radiation Medicine, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Fabian Theis
- Institute of Computational Biology, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ulrike Kulka
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technical University of Munich, Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
54
|
Murenu E, Kostidis S, Lahiri S, Geserich AS, Imhof A, Giera M, Michalakis S. Metabolic Analysis of Vitreous/Lens and Retina in Wild Type and Retinal Degeneration Mice. Int J Mol Sci 2021; 22:ijms22052345. [PMID: 33652907 PMCID: PMC7956175 DOI: 10.3390/ijms22052345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Photoreceptors are the light-sensing cells of the retina and the major cell type affected in most inherited retinal degenerations. Different metabolic pathways sustain their high energetic demand in physiological conditions, particularly aerobic glycolysis. The principal metabolome of the mature retina has been studied, but only limited information is available on metabolic adaptations in response to key developmental events, such as eye opening. Moreover, dynamic metabolic changes due to retinal degeneration are not well understood. Here, we aimed to explore and map the ocular metabolic dynamics induced by eye opening in healthy (wild type) or Pde6b-mutant (retinal degeneration 1, Rd1) mice, in which photoreceptors degenerate shortly after eye opening. To unravel metabolic differences emerging before and after eye opening under physiological and pathophysiological conditions, we performed nuclear magnetic resonance (NMR) spectroscopy-based metabolome analysis of wild type and Rd1 retina and vitreous/lens. We show that eye opening is accompanied by changes in the concentration of selected metabolites in the retina and by alterations in the vitreous/lens composition only in the retinal degeneration context. As such, we identify NAcetylaspartate as a potential novel vitreous/lens marker reflecting progressive retinal degeneration. Thus, our data can help elucidating mechanisms underlying key events in retinal physiology and reveal changes occurring in pathology, while highlighting the importance of the vitreous/lens in the characterization of retinal diseases.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Mathildenstraße 8, 80336 Munich, Germany;
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
| | - Sarantos Kostidis
- Leiden University Medical Center, Center for Proteomics & Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.K.); (M.G.)
| | - Shibojyoti Lahiri
- Biomedical Center Munich-Molecular Biology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany; (S.L.); (A.I.)
| | - Anna S. Geserich
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
| | - Axel Imhof
- Biomedical Center Munich-Molecular Biology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany; (S.L.); (A.I.)
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.K.); (M.G.)
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Mathildenstraße 8, 80336 Munich, Germany;
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
- Correspondence: ; Tel.: +49-89-2180-77325
| |
Collapse
|
55
|
Long P, He M, Yan W, Chen W, Wei D, Wang S, Zhang Z, Ge W, Chen T. ALDH2 protects naturally aged mouse retina via inhibiting oxidative stress-related apoptosis and enhancing unfolded protein response in endoplasmic reticulum. Aging (Albany NY) 2020; 13:2750-2767. [PMID: 33411685 PMCID: PMC7880320 DOI: 10.18632/aging.202325] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
During the process of aging, the retina exhibits chronic oxidative stress (OS) damage. Our preliminary experiment showed that acetaldehyde dehydrogenase 2 (ALDH2) could alleviate retinal damage caused by OS. This study aimed to explore whether ALDH2 could inhibit mice retinal cell apoptosis and enhance the function of unfolded protein response in endoplasmic reticulum (UPRER) through reducing OS in aging process. Retinal function and structure in vivo and in vitro were examined in aged ALDH2+ overexpression mice and ALDH2 agonist Alda1-treated aged mice. Levels of ALDH2, endoplasmic reticulum stress (ERS), apoptosis and inflammatory cytokines were evaluated. Higher expression of ALDH2 was observed at the outer nuclear layer (ONL) and the inner nuclear layer (INL) in aged ALDH2+ overexpression and aged Alda1-treated mice. Moreover, aged ALDH2+ overexpression mice and aged Alda1-treated mice exhibited better retinal function and structure. Increased expression of glucose-regulated protein 78 (GRP78) and ERS-related protein phosphorylated eukaryotic initiation factor 2 (peIF2α) and decreased expression of apoptosis-related protein, including C/EBP homologous protein (CHOP), caspase12 and caspase9, and retinal inflammatory cytokines were detected in the retina of aged ALDH2+ overexpression mice and aged Alda1-treated mice. The expression of ALDH2 in the retina was decreased in aging process. ALDH2 could reduce retinal oxidative stress and apoptosis, strengthen UPRER during the aging process to improve retinal function and structure.
Collapse
Affiliation(s)
- Pan Long
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China.,Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Mengshan He
- Department of Chinese Material Medical and Natural Medicines, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Weiming Yan
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, Fujian Province, China
| | - Wei Chen
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Dongyu Wei
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Aviation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Siwang Wang
- Department of Chinese Material Medical and Natural Medicines, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zuoming Zhang
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Aviation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wei Ge
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Aviation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
56
|
Khan SY, Ali M, Riazuddin SA. Metabolome profiling of the developing murine lens. Exp Eye Res 2020; 202:108343. [PMID: 33159909 DOI: 10.1016/j.exer.2020.108343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023]
Abstract
Metabolomics is a study of the entire repertoire of metabolites in a cell at a particular time point. Here, we investigate the mouse lens at multiple embryonic and postnatal time points to establish the metabolome profile during early lens development. The lenses were isolated at six time points including embryonic day 15 (E15) and E18 and postnatal day 0 (P0), P3, P6, and P9. A total of four biological replicates of each time point, each consisting of 25 mg of lens tissue were preserved. Sample preparation was performed by protein precipitation followed by centrifugation to remove proteins and recover metabolites. The resulting extract was subjected to reverse phase/ultra-performance liquid chromatography-tandem mass spectrometry. Metabolome profiling identified a total of 353 metabolites in mouse lens, marked with an abundance of collagen, antioxidant, glycosaminoglycans, lipid, amino acid, and energy-related metabolites. A comparative metabolome analysis identified >200 metabolites exhibiting increased levels (p < 0.05) at latter time points relative to E15. Principal component analysis revealed distinct metabolomic signatures running from E15 to P9 while random forest analysis categorized lipid-, amino acid-, and nucleotide-related metabolites contributing significantly to the separation of the time points. To the best of our knowledge, this is the first report investigating the mouse lens metabolome at multiple embryonic and postnatal time points.
Collapse
Affiliation(s)
- Shahid Y Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
57
|
Seidel U, Lüersen K, Huebbe P, Rimbach G. Taurine Enhances Iron-Related Proteins and Reduces Lipid Peroxidation in Differentiated C2C12 Myotubes. Antioxidants (Basel) 2020; 9:E1071. [PMID: 33142756 PMCID: PMC7693586 DOI: 10.3390/antiox9111071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022] Open
Abstract
Taurine is a nonproteinogenic amino sulfonic acid in mammals. Interestingly, skeletal muscle is unable to synthesize taurine endogenously, and the processing of muscular taurine changes throughout ageing and under specific pathophysiological conditions, such as muscular dystrophy. Ageing and disease are also associated with altered iron metabolism, especially when there is an excess of labile iron. The present study addresses the question of whether taurine connects cytoprotective effects and redox homeostasis in a previously unknown iron-dependent manner. Using cultured differentiated C2C12 myotubes, the impact of taurine on markers of lipid peroxidation, redox-sensitive enzymes and iron-related proteins was studied. Significant increases in the heme protein myoglobin and the iron storage protein ferritin were observed in response to taurine treatment. Taurine supplementation reduced lipid peroxidation and BODIPY oxidation by ~60 and 25%, respectively. Furthermore, the mRNA levels of redox-sensitive heme oxygenase (Hmox1), catalase (Cat) and glutamate-cysteine ligase (Gclc) and the total cellular glutathione content were lower in taurine-supplemented cells than they were in the control cells. We suggest that taurine may inhibit the initiation and propagation of lipid peroxidation by lowering basal levels of cellular stress, perhaps through reduction of the cellular labile iron pool.
Collapse
Affiliation(s)
- Ulrike Seidel
- Institute of Human Nutrition and Food Science, University of Kiel, 24118 Kiel, Germany; (K.L.); (P.H.); (G.R.)
| | | | | | | |
Collapse
|
58
|
Zhang R, Engel AL, Wang Y, Li B, Shen W, Gillies MC, Chao JR, Du J. Inhibition of Mitochondrial Respiration Impairs Nutrient Consumption and Metabolite Transport in Human Retinal Pigment Epithelium. J Proteome Res 2020; 20:909-922. [PMID: 32975122 DOI: 10.1021/acs.jproteome.0c00690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitochondrial respiration in mammalian cells not only generates ATP to meet their own energy needs but also couples with biosynthetic pathways to produce metabolites that can be exported to support neighboring cells. However, how defects in mitochondrial respiration influence these biosynthetic and exporting pathways remains poorly understood. Mitochondrial dysfunction in retinal pigment epithelium (RPE) cells is an emerging contributor to the death of their neighboring photoreceptors in degenerative retinal diseases including age-related macular degeneration. In this study, we used targeted-metabolomics and 13C tracing to investigate how inhibition of mitochondrial respiration influences the intracellular and extracellular metabolome. We found inhibition of mitochondrial respiration strikingly influenced both the intracellular and extracellular metabolome in primary RPE cells. Intriguingly, the extracellular metabolic changes sensitively reflected the intracellular changes. These changes included substantially enhanced glucose consumption and lactate production; reduced release of pyruvate, citrate, and ketone bodies; and massive accumulation of multiple amino acids and nucleosides. In conclusion, these findings reveal a metabolic signature of nutrient consumption and release in mitochondrial dysfunction in RPE cells. Testing medium metabolites provides a sensitive and noninvasive method to assess mitochondrial function in nutrient utilization and transport.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States.,Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, United States
| | - Yekai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Bo Li
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Weiyong Shen
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, United States
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
59
|
Jiang Y, Yang C, Zheng Y, Liu Y, Chen Y. A Set of Global Metabolomic Biomarker Candidates to Predict the Risk of Dry Eye Disease. Front Cell Dev Biol 2020; 8:344. [PMID: 32582687 PMCID: PMC7295093 DOI: 10.3389/fcell.2020.00344] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose We used ultraperformance liquid chromatography coupled with quadrupole/time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS/MS) to analyze the metabolic profile of reflex tears obtained from patients with dry eye disorders. Methods We performed a cross-sectional study involving 113 subjects: 85 patients diagnosed with dry eye syndrome (dry eye group) and 28 healthy volunteers (control group). Reflex tears (20–30 μl) were collected from the tear meniscus of both eyes of each subject using a Schirmer I test strip. MS data were acquired with a standard workflow by UPLC-Q/TOF-MS/MS. Metabolites were quantitatively analyzed and matched with entries in the Metlin, Massbank, and HMDB databases. Least absolute shrinkage and selection operator (LASSO) regression was conducted to detect important metabolites. Multiple logistic regression was used to identify the significant metabolic biomarker candidates for dry eye syndrome. Open database sources, including the Kyoto Encyclopedia of Genes and Genomes and MetaboAnalyst, were used to identify metabolic pathways. Results After the LASSO regression and multiple logistic regression analysis, 4 of 20 metabolic biomarker candidates were significantly correlated with Ocular Surface Disease Index score, 42 of 57 with fluorescein breakup time, and 26 of 57 with fluorescein staining. By focusing on the overlap of these three sets, 48 of 51 metabolites contributed to the incidence of dry eye and there were obvious changes in different age groups. Metabolic pathway analysis revealed that the main pathways were glucose metabolism, amino acid metabolism, and glutathione metabolism. Conclusion Dry eye syndrome induces changes in the metabolic profile of tears, and the trend differs with age. This evidence reveals the relationship between changes in metabolites, symptoms of dry eye syndrome, and age.
Collapse
Affiliation(s)
- Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanxi Yang
- Department of Cardiology, Jiangsu Province Hospital, Medical School of Southeast University, Nanjing, China
| | - Yuxiang Zheng
- Yangpu Daqiao Community Health Service Center, Shanghai, China
| | - Yining Liu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
60
|
Jiang P, Zhang S, Cheng C, Gao S, Tang M, Lu L, Yang G, Chai R. The Roles of Exosomes in Visual and Auditory Systems. Front Bioeng Biotechnol 2020; 8:525. [PMID: 32582658 PMCID: PMC7283584 DOI: 10.3389/fbioe.2020.00525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Exosomes are nanoscale membrane-enclosed vesicles 30-150 nm in diameter that are originated from a number of type cells by the endocytic pathway and consist of proteins, lipids, RNA, and DNA. Although, exosomes were initially considered to be cellular waste, they have gradually been recognized to join in cell-cell communication and cell signal transmission. In addition, exosomal contents can be applied as biomarkers for clinical judgment and exosomes can as potential carriers in a novel drug delivery system. Unfortunately, purification methods of exosomes remain an obstacle. We described some common purification methods and highlight Morpho Menelaus (M. Menelaus) butterfly wings can be developed as efficient methods for exosome isolation. Furthermore, the current research on exosomes mainly focused on their roles in cancer, while related studies on exosomes in the visual and auditory systems are limited. Here we reviewed the biogenesis and contents of exosomes. And more importantly, we summarized the roles of exosomes and provided prospective for exosome research in the visual and auditory systems.
Collapse
Affiliation(s)
- Pei Jiang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Song Gao
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Cardiovascular Science, Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Guang Yang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
61
|
Implications of NAD + Metabolism in the Aging Retina and Retinal Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2692794. [PMID: 32454935 PMCID: PMC7238357 DOI: 10.1155/2020/2692794] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) plays an important role in various key biological processes including energy metabolism, DNA repair, and gene expression. Accumulating clinical and experimental evidence highlights an age-dependent decline in NAD+ levels and its association with the development and progression of several age-related diseases. This supports the establishment of NAD+ as a critical regulator of aging and longevity and, relatedly, a promising therapeutic target to counter adverse events associated with the normal process of aging and/or the development and progression of age-related disease. Relative to the above, the metabolism of NAD+ has been the subject of numerous investigations in various cells, tissues, and organ systems; however, interestingly, studies of NAD+ metabolism in the retina and its relevance to the regulation of visual health and function are comparatively few. This is surprising given the critical causative impact of mitochondrial oxidative damage and bioenergetic crises on the development and progression of degenerative disease of the retina. Hence, the role of NAD+ in this tissue, normally and aging and/or disease, should not be ignored. Herein, we discuss important findings in the field of NAD+ metabolism, with particular emphasis on the importance of the NAD+ biosynthesizing enzyme NAMPT, the related metabolism of NAD+ in the retina, and the consequences of NAMPT and NAD+ deficiency or depletion in this tissue in aging and disease. We discuss also the implications of potential therapeutic strategies that augment NAD+ levels on the preservation of retinal health and function in the above conditions. The overarching goal of this review is to emphasize the importance of NAD+ metabolism in normal, aging, and/or diseased retina and, by so doing, highlight the necessity of additional clinical studies dedicated to evaluating the therapeutic utility of strategies that enhance NAD+ levels in improving vision.
Collapse
|
62
|
Sinha T, Naash MI, Al-Ubaidi MR. The Symbiotic Relationship between the Neural Retina and Retinal Pigment Epithelium Is Supported by Utilizing Differential Metabolic Pathways. iScience 2020; 23:101004. [PMID: 32252018 PMCID: PMC7132098 DOI: 10.1016/j.isci.2020.101004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/09/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The neural retina and retinal pigment epithelium (RPE) maintain a symbiotic metabolic relationship, disruption of which leads to debilitating vision loss. The current study was undertaken to identify the differences in the steady-state metabolite levels and the pathways functioning between bona fide neural retina and RPE. Global metabolomics and cluster analyses identified 650 metabolites differentially modulated between the murine neural retina and RPE. Of these, 387 and 163 were higher in the RPE and the neural retina, respectively. Further analysis coupled with transcript and protein level investigations revealed that under normal physiological conditions, the RPE utilizes the pentose phosphate (>3-fold in RPE), serine (>10-fold in RPE), and sphingomyelin biosynthesis (>5-fold in RPE) pathways. Conversely, the neural retina relied mostly on glycolysis. These results show how the RPE and the neural retina have acquired an efficient, complementary and metabolically diverse symbiotic niche to support each other's distinct functions.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
63
|
Autophagy and Age-Related Eye Diseases. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5763658. [PMID: 31950044 PMCID: PMC6948295 DOI: 10.1155/2019/5763658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Background Autophagy is a catabolic process that depends on the lysosome. It is usually used to maintain cellular homeostasis, survival and development by degrading abnormal substances and dysfunctional organelles, especially when the cell is exposed to starvation or other stresses. Increasing studies have reported that autophagy is associated with various eye diseases, of which aging is one of the important factors. Objective To summarize the functional and regulatory role of autophagy in ocular diseases with aging, and discuss the possibility of autophagy-targeted therapy in age-related diseases. Methods PubMed searches were performed to identify relevant articles published mostly in the last 5 years. The key words were used to retrieve including “autophagy”, “aging”, “oxidative stress AND autophagy”, “dry eye AND autophagy”, “corneal disease AND autophagy”, “glaucoma AND autophagy”, “cataract AND autophagy”, “AMD AND autophagy”, “cardiovascular diseases AND autophagy”, “diabetes AND autophagy”. After being classified and assessed, the most relevant full texts in English were chosen. Results Apart from review articles, more than two research articles for each age-related eye diseases related to autophagy were retrieved. We only included the most relevant and recent studies for summary and discussion. Conclusion Autophagy has both protective and detrimental effects on the progress of age-related eye diseases. Different types of studies based on certain situations in vitro showed distinct results, which do not necessarily coincide with the actual situation in human bodies completely. It means the exact role and regulatory function of autophagy in ocular diseases remains largely unknown. Although autophagy as a potential therapeutic target has been proposed, many problems still need to be solved before it applies to clinical practice.
Collapse
|
64
|
Nadal-Nicolás FM, Vidal-Sanz M, Agudo-Barriuso M. The senescent vision: dysfunction or neuronal loss? Aging (Albany NY) 2019; 11:15-17. [PMID: 30591618 PMCID: PMC6339788 DOI: 10.18632/aging.101734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, John Edward Porter Neuroscience Research Center, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manuel Vidal-Sanz
- Dpto de Otalmología, Facultad de Medicina, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, Murcia, Spain
| | - Marta Agudo-Barriuso
- Dpto de Otalmología, Facultad de Medicina, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
65
|
Yam M, Engel AL, Wang Y, Zhu S, Hauer A, Zhang R, Lohner D, Huang J, Dinterman M, Zhao C, Chao JR, Du J. Proline mediates metabolic communication between retinal pigment epithelial cells and the retina. J Biol Chem 2019; 294:10278-10289. [PMID: 31110046 PMCID: PMC6664195 DOI: 10.1074/jbc.ra119.007983] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/16/2019] [Indexed: 01/16/2023] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of pigmented cells between the choroid and the retina. RPE dysfunction underlies many retinal degenerative diseases, including age-related macular degeneration, the leading cause of age-related blindness. To perform its various functions in nutrient transport, phagocytosis of the outer segment, and cytokine secretion, the RPE relies on an active energy metabolism. We previously reported that human RPE cells prefer proline as a nutrient and transport proline-derived metabolites to the apical, or retinal, side. In this study, we investigated how RPE utilizes proline in vivo and why proline is a preferred substrate. By using [13C]proline labeling both ex vivo and in vivo, we found that the retina rarely uses proline directly, whereas the RPE utilizes it at a high rate, exporting proline-derived mitochondrial intermediates for use by the retina. We observed that in primary human RPE cell culture, proline is the only amino acid whose uptake increases with cellular maturity. In human RPE, proline was sufficient to stimulate de novo serine synthesis, increase reductive carboxylation, and protect against oxidative damage. Blocking proline catabolism in RPE impaired glucose metabolism and GSH production. Notably, in an acute model of RPE-induced retinal degeneration, dietary proline improved visual function. In conclusion, proline is an important nutrient that supports RPE metabolism and the metabolic demand of the retina.
Collapse
Affiliation(s)
- Michelle Yam
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Abbi L Engel
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Yekai Wang
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Siyan Zhu
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Allison Hauer
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Rui Zhang
- From the Departments of Ophthalmology and
- the Save Sight Institute, University of Sydney, 8 Macquarie Street, Sydney, New South Wales 2000, Australia
| | - Daniel Lohner
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Jiancheng Huang
- From the Departments of Ophthalmology and
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
- the Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Marlee Dinterman
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Chen Zhao
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
| | - Jennifer R Chao
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109,
| | - Jianhai Du
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
66
|
Buisset A, Gohier P, Leruez S, Muller J, Amati-Bonneau P, Lenaers G, Bonneau D, Simard G, Procaccio V, Annweiler C, Milea D, Reynier P, Chao de la Barca JM. Metabolomic Profiling of Aqueous Humor in Glaucoma Points to Taurine and Spermine Deficiency: Findings from the Eye-D Study. J Proteome Res 2019; 18:1307-1315. [PMID: 30701980 DOI: 10.1021/acs.jproteome.8b00915] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We compared the metabolomic profile of aqueous humor from patients with primary open-angle glaucoma (POAG; n = 26) with that of a group of age- and sex-matched non-POAG controls (n = 26), all participants undergoing cataract surgery. Supervised paired partial least-squares discriminant analysis showed good predictive performance for test sets with a median area under the receiver operating characteristic of 0.89 and a p-value of 0.0087. Twenty-three metabolites allowed discrimination between the two groups. Univariate analysis after the Benjamini-Hochberg correction showed significant differences for 13 of these metabolites. The POAG metabolomic signature indicated reduced concentrations of taurine and spermine and increased concentrations of creatinine, carnitine, three short-chain acylcarnitines, 7 amino acids (glutamine, glycine, alanine, leucine, isoleucine, hydroxyl-proline, and acetyl-ornithine), 7 phosphatidylcholines, one lysophosphatidylcholine, and one sphingomyelin. This suggests an alteration of metabolites involved in osmoprotection (taurine and creatinine), neuroprotection (spermine, taurine, and carnitine), amino acid metabolism (7 amino acids and three acylcarnitines), and the remodeling of cell membranes drained by the aqueous humor (hydroxyproline and phospholipids). Five of these metabolic alterations, already reported in POAG plasma, concern spermine, C3 and C4 acylcarnitines, PC aa 34:2, and PC aa 36:4, thus highlighting their importance in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Adrien Buisset
- Département d'Ophtalmologie , Centre Hospitalier Universitaire , Angers 49100 , France
| | - Philippe Gohier
- Département d'Ophtalmologie , Centre Hospitalier Universitaire , Angers 49100 , France
| | - Stéphanie Leruez
- Département d'Ophtalmologie , Centre Hospitalier Universitaire , Angers 49100 , France.,Unité Mixte de Recherche MITOVASC, équipe Mitolab, Centre National de la Recherche Scientifique 6015, Institut National de la Santé et de la Recherche Médicale U1083 , Université d'Angers , Angers 49035 , France
| | - Jeanne Muller
- Département d'Ophtalmologie , Centre Hospitalier Universitaire , Angers 49100 , France
| | - Patrizia Amati-Bonneau
- Unité Mixte de Recherche MITOVASC, équipe Mitolab, Centre National de la Recherche Scientifique 6015, Institut National de la Santé et de la Recherche Médicale U1083 , Université d'Angers , Angers 49035 , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , Angers 49933 , France
| | - Guy Lenaers
- Unité Mixte de Recherche MITOVASC, équipe Mitolab, Centre National de la Recherche Scientifique 6015, Institut National de la Santé et de la Recherche Médicale U1083 , Université d'Angers , Angers 49035 , France
| | - Dominique Bonneau
- Unité Mixte de Recherche MITOVASC, équipe Mitolab, Centre National de la Recherche Scientifique 6015, Institut National de la Santé et de la Recherche Médicale U1083 , Université d'Angers , Angers 49035 , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , Angers 49933 , France
| | - Gilles Simard
- Département de Biochimie et Génétique , Centre Hospitalier Universitaire , Angers 49933 , France
| | - Vincent Procaccio
- Unité Mixte de Recherche MITOVASC, équipe Mitolab, Centre National de la Recherche Scientifique 6015, Institut National de la Santé et de la Recherche Médicale U1083 , Université d'Angers , Angers 49035 , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , Angers 49933 , France
| | - Cédric Annweiler
- Department of Geriatric Medicine, Angers University Hospital; Angers University Memory Clinic; Research Center on Autonomy and Longevity; UPRES EA 4638 , University of Angers , Angers 49035 , France.,Robarts Research Institute, Department of Medical Biophysics, Schulich School of Medicine and Dentistry , the University of Western Ontario , London , Ontario N6A 3K7 , Canada
| | - Dan Milea
- Singapore Eye Research Institute , Singapore National Eye Centre , Duke-NUS 168751 , Singapore
| | - Pascal Reynier
- Unité Mixte de Recherche MITOVASC, équipe Mitolab, Centre National de la Recherche Scientifique 6015, Institut National de la Santé et de la Recherche Médicale U1083 , Université d'Angers , Angers 49035 , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , Angers 49933 , France
| | - Juan Manuel Chao de la Barca
- Unité Mixte de Recherche MITOVASC, équipe Mitolab, Centre National de la Recherche Scientifique 6015, Institut National de la Santé et de la Recherche Médicale U1083 , Université d'Angers , Angers 49035 , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , Angers 49933 , France
| |
Collapse
|
67
|
Chen M, Luo C, Zhao J, Devarajan G, Xu H. Immune regulation in the aging retina. Prog Retin Eye Res 2018; 69:159-172. [PMID: 30352305 DOI: 10.1016/j.preteyeres.2018.10.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
The retina is an immune privileged tissue, which is protected from external and internal insults by its blood-retina barriers and immune suppressive microenvironment. Apart from the avoidance and tolerance strategies, the retina is also protected by its own defense system, i.e., microglia and the complement system. The immune privilege and defense mechanisms work together to maintain retinal homeostasis. During aging, the retina is at an increased risk of developing various degenerative diseases such as age-related macular degeneration, diabetic retinopathy, and glaucomatous retinopathy. Previously, we have shown that aging induces a para-inflammatory response in the retina. In this review, we explore the impact of aging on retinal immune regulation and the connection between homeostatic control of retinal immune privilege and para-inflammation under aging conditions and present a view that may explain why aging puts the retina at risk of developing degenerative diseases.
Collapse
Affiliation(s)
- Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK
| | - Chang Luo
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK; Aier Eye Institute, Aier School of Ophthalmology, Central South University, China
| | - Jiawu Zhao
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK
| | | | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK; Aier Eye Institute, Aier School of Ophthalmology, Central South University, China.
| |
Collapse
|