51
|
Qi W, Gao S, Liu C, Lan G, Yang X, Guo Q. Diffusion tensor MR imaging characteristics of cerebral white matter development in fetal pigs. BMC Med Imaging 2017; 17:50. [PMID: 28830463 PMCID: PMC5568215 DOI: 10.1186/s12880-017-0205-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/03/2017] [Indexed: 01/16/2023] Open
Abstract
Background The purpose of this study was to investigate the anisotropic features of fetal pig cerebral white matter (WM) development by magnetic resonance diffusion tensor imaging, and to evaluate the developmental status of cerebral WM in different anatomical sites at different times. Methods Fetal pigs were divided into three groups according to gestational age: E69 (n = 8), E85 (n = 11), and E114 (n = 6). All pigs were subjected to conventional magnetic resonance imaging (MRI) and diffusion tensor imaging using a GE Signa 3.0 T MRI system (GE Healthcare, Sunnyvale, CA, USA). Fractional anisotropy (FA) was measured in deep WM structures and peripheral WM regions. After the MRI scans,the animals were sacrificed and pathology sections were prepared for hematoxylin & eosin (HE) staining and luxol fast blue (LFB) staining. Data were statistically analyzed with SPSS version 16.0 (SPSS, Chicago, IL, USA). A P-value < 0.05 was considered statistically significant. Mean FA values for each subject region of interest (ROI), and deep and peripheral WM at different gestational ages were calculated, respectively, and were plotted against gestational age with linear correlation statistical analyses. The differences of data were analyzed with univariate ANOVA analyses. Results There were no significant differences in FAs between the right and left hemispheres. Differences were observed between peripheral WM and deep WM in fetal brains. A significant FA growth with increased gestational age was found when comparing E85 group and E114 group. There was no difference in the FA value of deep WM between the E69 group and E85 group. The HE staining and LFB staining of fetal cerebral WM showed that the development from the E69 group to the E85 group, and the E85 group to the E114 group corresponded with myelin gliosis and myelination, respectively. Conclusions FA values can be used to quantify anisotropy of the different cerebral WM areas. FA values did not change significantly between 1/2 way and 3/4 of the way through gestation but was then increased dramatically at term, which could be explained by myelin gliosis and myelination ,respectively.
Collapse
Affiliation(s)
- Wenxu Qi
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Song Gao
- Morphology Teaching and Reasearch Section, Liaoning Vocational College of Medcine, Shenyang, 110100, People's Republic of China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Gongyu Lan
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Xue Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
52
|
Bültmann E, Mußgnug HJ, Zapf A, Hartmann H, Nägele T, Lanfermann H. Changes in brain microstructure during infancy and childhood using clinical feasible ADC-maps. Childs Nerv Syst 2017; 33:735-745. [PMID: 28364169 DOI: 10.1007/s00381-017-3391-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/17/2017] [Indexed: 11/27/2022]
Abstract
PURPOSE The purpose of this study was to examine age-related changes in apparent diffusion coefficient (ADC) during infancy and childhood using routine MRI data. METHODS A total of 112 investigations of patients aged 0 to 17.2 years showing a normal degree of myelination and no signal abnormalities on conventional MRI were retrospectively selected from our pool of pediatric MRI examinations at 1.5T. ADC maps based on our routinely included axial diffusion weighted sequence were created from the scanner. ADC values were measured in 35 different brain regions investigating normal age-related changes during the maturation of the human brain in infancy and childhood using clinical feasible sequences at 1.5T. RESULTS The relationship between ADC values and age in infancy and childhood can be described as an exponential function. With increasing age, the ADC values decrease significantly in all brain regions, especially during the first 2 years of life. Except in the peritrigonal white matter, no significant differences were found between both hemispheres. Between 0 and 2 years of life, no significant gender differences were detected. CONCLUSIONS Using ADC maps based on a routinely performed axial diffusion weighted sequence, it was possible first to describe the relationship between ADC values and age in infancy and childhood as exponential function in the whole brain and second to determine normative age-related ADC values in multiple brain regions.
Collapse
Affiliation(s)
- Eva Bültmann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Hans Joachim Mußgnug
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Antonia Zapf
- Department of Medical Statistics, University Medical Center, Göttingen, Germany
| | - Hans Hartmann
- Clinic for Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Thomas Nägele
- Department of Diagnostic and Interventional Neuroradiology, Radiological University Hospital, University of Tübingen, Tübingen, Germany
| | - Heinrich Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| |
Collapse
|
53
|
Pecheva D, Yushkevich P, Batalle D, Hughes E, Aljabar P, Wurie J, Hajnal JV, Edwards AD, Alexander DC, Counsell SJ, Zhang H. A tract-specific approach to assessing white matter in preterm infants. Neuroimage 2017; 157:675-694. [PMID: 28457976 PMCID: PMC5607355 DOI: 10.1016/j.neuroimage.2017.04.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 11/23/2022] Open
Abstract
Diffusion-weighted imaging (DWI) is becoming an increasingly important tool for studying brain development. DWI analyses relying on manually-drawn regions of interest and tractography using manually-placed waypoints are considered to provide the most accurate characterisation of the underlying brain structure. However, these methods are labour-intensive and become impractical for studies with large cohorts and numerous white matter (WM) tracts. Tract-specific analysis (TSA) is an alternative WM analysis method applicable to large-scale studies that offers potential benefits. TSA produces a skeleton representation of WM tracts and projects the group's diffusion data onto the skeleton for statistical analysis. In this work we evaluate the performance of TSA in analysing preterm infant data against results obtained from native space tractography and tract-based spatial statistics. We evaluate TSA's registration accuracy of WM tracts and assess the agreement between native space data and template space data projected onto WM skeletons, in 12 tracts across 48 preterm neonates. We show that TSA registration provides better WM tract alignment than a previous protocol optimised for neonatal spatial normalisation, and that TSA projects FA values that match well with values derived from native space tractography. We apply TSA for the first time to a preterm neonatal population to study the effects of age at scan on WM tracts around term equivalent age. We demonstrate the effects of age at scan on DTI metrics in commissural, projection and association fibres. We demonstrate the potential of TSA for WM analysis and its suitability for infant studies involving multiple tracts. Evaluation of tract-specific analysis (TSA) for white matter studies in infants. TSA improves white matter tract alignment over scalar-based registration. TSA closely approximates native space tractography DTI values. The first application of TSA to a neonatal population.
Collapse
Affiliation(s)
- Diliana Pecheva
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK; Department of Computer Science and Centre for Medical Image Computing, University College London, UK
| | - Paul Yushkevich
- Penn Image Computing and Science Laboratory (PISCL), Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Dafnis Batalle
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Emer Hughes
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Julia Wurie
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Daniel C Alexander
- Department of Computer Science and Centre for Medical Image Computing, University College London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK.
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, UK
| |
Collapse
|
54
|
Marami B, Mohseni Salehi SS, Afacan O, Scherrer B, Rollins CK, Yang E, Estroff JA, Warfield SK, Gholipour A. Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. Neuroimage 2017; 156:475-488. [PMID: 28433624 DOI: 10.1016/j.neuroimage.2017.04.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/14/2017] [Indexed: 01/29/2023] Open
Abstract
Diffusion weighted magnetic resonance imaging, or DWI, is one of the most promising tools for the analysis of neural microstructure and the structural connectome of the human brain. The application of DWI to map early development of the human connectome in-utero, however, is challenged by intermittent fetal and maternal motion that disrupts the spatial correspondence of data acquired in the relatively long DWI acquisitions. Fetuses move continuously during DWI scans. Reliable and accurate analysis of the fetal brain structural connectome requires careful compensation of motion effects and robust reconstruction to avoid introducing bias based on the degree of fetal motion. In this paper we introduce a novel robust algorithm to reconstruct in-vivo diffusion-tensor MRI (DTI) of the moving fetal brain and show its effect on structural connectivity analysis. The proposed algorithm involves multiple steps of image registration incorporating a dynamic registration-based motion tracking algorithm to restore the spatial correspondence of DWI data at the slice level and reconstruct DTI of the fetal brain in the standard (atlas) coordinate space. A weighted linear least squares approach is adapted to remove the effect of intra-slice motion and reconstruct DTI from motion-corrected data. The proposed algorithm was tested on data obtained from 21 healthy fetuses scanned in-utero at 22-38 weeks gestation. Significantly higher fractional anisotropy values in fiber-rich regions, and the analysis of whole-brain tractography and group structural connectivity, showed the efficacy of the proposed method compared to the analyses based on original data and previously proposed methods. The results of this study show that slice-level motion correction and robust reconstruction is necessary for reliable in-vivo structural connectivity analysis of the fetal brain. Connectivity analysis based on graph theoretic measures show high degree of modularity and clustering, and short average characteristic path lengths indicative of small-worldness property of the fetal brain network. These findings comply with previous findings in newborns and a recent study on fetuses. The proposed algorithm can provide valuable information from DWI of the fetal brain not available in the assessment of the original 2D slices and may be used to more reliably study the developing fetal brain connectome.
Collapse
Affiliation(s)
- Bahram Marami
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Seyed Sadegh Mohseni Salehi
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Department of Electrical Engineering, Northeastern University, Boston, MA, USA
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Benoit Scherrer
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Judy A Estroff
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
55
|
Brown-Lum M, Zwicker JG. Neuroimaging and Occupational Therapy: Bridging the Gap to Advance Rehabilitation in Developmental Coordination Disorder. J Mot Behav 2017; 49:98-110. [DOI: 10.1080/00222895.2016.1271295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Meisan Brown-Lum
- Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jill G. Zwicker
- Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Sunny Hill Health Centre for Children, Vancouver, Canada
- CanChild Centre for Childhood Disability Research, Hamilton, Canada
| |
Collapse
|
56
|
Wu D, Chang L, Akazawa K, Oishi K, Skranes J, Ernst T, Oishi K. Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI. Neuroimage 2017; 149:33-43. [PMID: 28111189 DOI: 10.1016/j.neuroimage.2017.01.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/07/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the "critical" GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth.
Collapse
Affiliation(s)
- Dan Wu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kentaro Akazawa
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kumiko Oishi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jon Skranes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas Ernst
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
57
|
Dubois J, Adibpour P, Poupon C, Hertz-Pannier L, Dehaene-Lambertz G. MRI and M/EEG studies of the White Matter Development in Human Fetuses and Infants: Review and Opinion. Brain Plast 2016; 2:49-69. [PMID: 29765848 PMCID: PMC5928537 DOI: 10.3233/bpl-160031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Already during the last trimester of gestation, functional responses are recorded in foetuses and preterm newborns, attesting an already complex cerebral architecture. Then throughout childhood, anatomical connections are further refined but at different rates and over asynchronous periods across functional networks. Concurrently, infants gradually achieve new psychomotor and cognitive skills. Only the recent use of non-invasive techniques such as magnetic resonance imaging (MRI) and magneto- and electroencephalography (M/EEG) has opened the possibility to understand the relationships between brain maturation and skills development in vivo. In this review, we describe how these techniques have been applied to study the white matter maturation. At the structural level, the early architecture and myelination of bundles have been assessed with diffusion and relaxometry MRI, recently integrated in multi-compartment models and multi-parametric approaches. Nevertheless, technical limitations prevent us to map major developmental mechanisms such as fibers growth and pruning, and the progressive maturation at the bundle scale in case of mixing trajectories. At the functional level, M/EEG have been used to record different visual, somatosensory and auditory evoked responses. Because the conduction velocity of neural impulses increases with the myelination of connections, major changes in the components latency are observed throughout development. But so far, only a few studies have related structural and functional markers of white matter myelination. Such multi-modal approaches will be a major challenge in future research, not only to understand normal development, but also to characterize early mechanisms of pathologies and the influence of fetal and perinatal interventions on later outcome.
Collapse
Affiliation(s)
- Jessica Dubois
- INSERM, UMR992; CEA, NeuroSpin Center; University Paris Saclay, Gif-sur-Yvette, France
| | - Parvaneh Adibpour
- INSERM, UMR992; CEA, NeuroSpin Center; University Paris Saclay, Gif-sur-Yvette, France
| | - Cyril Poupon
- CEA, NeuroSpin Center, UNIRS; University Paris Saclay, Gif-sur-Yvette, France
| | - Lucie Hertz-Pannier
- CEA, NeuroSpin Center, UNIACT; University Paris Saclay, Gif-sur-Yvette, France; INSERM, UMR1129; University Paris Descartes, Paris, France
| | | |
Collapse
|
58
|
Rasmussen JM, Kruggel F, Gilmore JH, Styner M, Entringer S, Consing KNZ, Potkin SG, Wadhwa PD, Buss C. A novel maturation index based on neonatal diffusion tensor imaging reflects typical perinatal white matter development in humans. Int J Dev Neurosci 2016; 56:42-51. [PMID: 27988340 DOI: 10.1016/j.ijdevneu.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Human birth presents an abrupt transition from intrauterine to extrauterine life. Here we introduce a novel Maturation Index (MI) that considers the relative importance of gestational age at birth and postnatal age at scan in a General Linear Model. The MI is then applied to Diffusion Tensor Imaging (DTI) in newborns for characterizing typical white matter development in neonates. DTI was performed cross-sectionally in 47 neonates (gestational age at birth=39.1±1.6 weeks [GA], postnatal age at scan=25.5±12.2days [SA]). Radial diffusivity (RD), axial diffusivity (AD) and fractional anisotropy (FA) along 27 white matter fiber tracts were considered. The MI was used to characterize inflection in maturation at the time of birth using GLM estimated rates of change before and after birth. It is proposed that the sign (positive versus negative) of MI reflects the period of greatest maturation rate. Two general patterns emerged from the MI analysis. First, RD and AD (but not FA) had positive MI on average across the whole brain (average MIAD=0.31±0.42, average MIRD=0.22±0.34). Second, significant regions of negative MI in RD and FA (but not AD) were observed in the inferior corticospinal regions, areas known to myelinate early. Observations using the proposed method are consistent with proposed models of the white matter maturation process in which pre-myelination is described by changes in AD and RD due to oligodendrocyte proliferation while true myelination is characterized by changes in RD and FA due to myelin formation.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health, and Disease Research Program, University of California, Irvine. Irvine, CA, United States; Department of Pediatrics, University of California, Irvine. Irvine, CA, United States; Department of Biomedical Engineering, University of California, Irvine. Irvine, CA, United States
| | - Frithjof Kruggel
- Department of Biomedical Engineering, University of California, Irvine. Irvine, CA, United States
| | - John H Gilmore
- Departments of Psychiatry and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Martin Styner
- Departments of Psychiatry and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sonja Entringer
- Development, Health, and Disease Research Program, University of California, Irvine. Irvine, CA, United States; Charité University Medicine Berlin, Institute for Medical Psychology,
Luisenstraße 57, 10117 Berlin, Germany
| | - Kirsten N Z Consing
- Departments of Psychiatry and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine. Irvine, CA, United States
| | - Pathik D Wadhwa
- Development, Health, and Disease Research Program, University of California, Irvine. Irvine, CA, United States; Department of Pediatrics, University of California, Irvine. Irvine, CA, United States; Department of Psychiatry and Human Behavior, University of California, Irvine. Irvine, CA, United States
| | - Claudia Buss
- Development, Health, and Disease Research Program, University of California, Irvine. Irvine, CA, United States; Department of Pediatrics, University of California, Irvine. Irvine, CA, United States; Charité University Medicine Berlin, Institute for Medical Psychology,
Luisenstraße 57, 10117 Berlin, Germany.
| |
Collapse
|
59
|
Verriotis M, Chang P, Fitzgerald M, Fabrizi L. The development of the nociceptive brain. Neuroscience 2016; 338:207-219. [DOI: 10.1016/j.neuroscience.2016.07.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 06/28/2016] [Accepted: 07/16/2016] [Indexed: 12/20/2022]
|
60
|
Kim DY, Park HK, Kim NS, Hwang SJ, Lee HJ. Neonatal diffusion tensor brain imaging predicts later motor outcome in preterm neonates with white matter abnormalities. Ital J Pediatr 2016; 42:104. [PMID: 27906083 PMCID: PMC5134238 DOI: 10.1186/s13052-016-0309-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND White matter (WM) abnormalities associated with prematurity are one of the most important causes of neurological disability that involves spastic motor deficits in preterm newborns. This study aimed to evaluate regional microstructural changes in diffusion tensor imaging (DTI) associated with WM abnormalities. METHODS We prospectively studied extremely low birth weight (ELBW; <1000 g) preterm infants who were admitted to the Neonatal Intensive Care Unit of Hanyang University Hospital between February 2011 and February 2014. WM abnormalities were assessed with conventional magnetic resonance (MR) imaging and DTI near term-equivalent age before discharge. Region-of-interests (ROIs) measurements were performed to examine the regional distribution of fractional anisotropy (FA) values. RESULTS Thirty-two out of 72 ELBW infants underwent conventional MR imaging and DTI at term-equivalent age. Ten of these infants developed WM abnormalities associated with prematurity. Five of ten of those with WM abnormalities developed cerebral palsy (CP). DTI in the WM abnormalities with CP showed a significant reduction of mean FA in the genu of the corpus callosum (p = 0.022), the ipsilateral posterior limb of the internal capsule (p = 0.019), and the ipsilateral centrum semiovale (p = 0.012) compared to normal WM and WM abnormalities without CP. In infants having WM abnormalities with CP, early FA values in neonatal DTI revealed abnormalities of the WM regions prior to the manifestation of hemiparesis. CONCLUSIONS DTI performed at term equivalent age shows different FA values in WM regions among infants with or without WM abnormalities associated with prematurity and/or CP. Low FA values of ROIs in DTI are related with later development of spastic CP in preterm infants with WM abnormalities.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Nam-Su Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Se-Jin Hwang
- Division of Neuroanatomy, Department of Anatomy and Histology, Hanyang University College of Medicine, Seoul, South Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea.
| |
Collapse
|
61
|
Cui J, Tymofiyeva O, Desikan R, Flynn T, Kim H, Gano D, Hess CP, Ferriero DM, Barkovich AJ, Xu D. Microstructure of the Default Mode Network in Preterm Infants. AJNR Am J Neuroradiol 2016; 38:343-348. [PMID: 28059709 DOI: 10.3174/ajnr.a4997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/06/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Diffusion and fMRI has been providing insights to brain development in addition to anatomic imaging. This study aimed to evaluate the microstructure of white matter tracts underlying the default mode network in premature infants by using resting-state functional MR imaging in conjunction with diffusion tensor imaging-based tractography. MATERIALS AND METHODS A cohort of 44 preterm infants underwent structural T1-weighted imaging, resting-state fMRI, and DTI at 3T, including 21 infants with brain injuries and 23 infants with normal-appearing structural imaging as controls. Neurodevelopment was evaluated with the Bayley Scales of Infant Development at 12 months' adjusted age. Probabilistic independent component analysis was applied to resting-state fMRI data to explore resting-state networks. The localized clusters of the default mode network were used as seeding for probabilistic tractography. The DTI metrics (fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity) of the reconstructed primary tracts within the default mode network-cingula were measured. RESULTS Results revealed decreased fractional anisotropy (0.20 ± 0.03) and elevated radial diffusivity values (1.24 ± 0.16) of the cingula in the preterm infants with brain injuries compared with controls (fractional anisotropy, 0.25 ± 0.03; P < .001; radial diffusivity, 1.06 ± 0.16; P = .001). The Bayley Scales of Infant Development cognitive scores were significantly associated with cingulate fractional anisotropy (P = .004) and radial diffusivity (P = .021); this association suggests that the microstructural properties of interconnecting axonal pathways within the default mode network are of critical importance in the early neurocognitive development of infants. CONCLUSIONS This study of combined resting-state fMRI and DTI at rest suggests that such studies may allow the investigation of key functional brain circuits in premature infants, which could function not only as diagnostic tools but also as biomarkers for long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- J Cui
- From the Departments of Radiology and Biomedical Imaging (J.C., O.T., R.D., T.F., H.K., C.P.H., A.J.B., D.X.)
| | - O Tymofiyeva
- From the Departments of Radiology and Biomedical Imaging (J.C., O.T., R.D., T.F., H.K., C.P.H., A.J.B., D.X.)
| | - R Desikan
- From the Departments of Radiology and Biomedical Imaging (J.C., O.T., R.D., T.F., H.K., C.P.H., A.J.B., D.X.)
| | - T Flynn
- From the Departments of Radiology and Biomedical Imaging (J.C., O.T., R.D., T.F., H.K., C.P.H., A.J.B., D.X.)
| | - H Kim
- From the Departments of Radiology and Biomedical Imaging (J.C., O.T., R.D., T.F., H.K., C.P.H., A.J.B., D.X.)
| | - D Gano
- Pediatrics and Neurology (D.G., D.M.F.), University of California, San Francisco, San Francisco, California
| | - C P Hess
- From the Departments of Radiology and Biomedical Imaging (J.C., O.T., R.D., T.F., H.K., C.P.H., A.J.B., D.X.)
| | - D M Ferriero
- Pediatrics and Neurology (D.G., D.M.F.), University of California, San Francisco, San Francisco, California
| | - A J Barkovich
- From the Departments of Radiology and Biomedical Imaging (J.C., O.T., R.D., T.F., H.K., C.P.H., A.J.B., D.X.)
| | - D Xu
- From the Departments of Radiology and Biomedical Imaging (J.C., O.T., R.D., T.F., H.K., C.P.H., A.J.B., D.X.)
| |
Collapse
|
62
|
Bekiesińska-Figatowska M, Helwich E, Rutkowska M, Stankiewicz J, Terczyńska I. Magnetic resonance imaging of neonates in the magnetic resonance compatible incubator. Arch Med Sci 2016; 12:1064-1070. [PMID: 27695498 PMCID: PMC5016588 DOI: 10.5114/aoms.2016.61913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/14/2014] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The authors present the first experience in neonatal magnetic resonance imaging (MRI) examinations using an MR compatible incubator (INC) at the Institute of Mother and Child. MATERIAL AND METHODS Forty-nine examinations of 47 newborns (20 girls, 27 boys) were performed using the GE Signa HDxt 1.5T system and INC Nomag IC 1.5. Demographic data, anesthetic methods and MRI findings in the INC in comparison with previously performed imaging were analyzed. RESULTS Thirty-two neonates were prematurely born (68.1%) at gestational age 23-37 weeks, mean: 29.9 weeks. They were examined at 26 weeks postmenstrual age to 1 month corrected age, mean: 37.5 weeks. Body weight of newborns on the study day was 600-4300 g, mean: 2724 g. Seventeen (34.7%) children were examined in physiological sleep, 32 (65.3%) anesthetized. In none of them did anesthesiological complications or disease worsening occur. In 43 (91.5%) children brain MRI was performed, in 4 (8.5%) MRI of the spinal cord and canal and of the abdomen/pelvis. In children prenatally examined by MRI, the INC provided new diagnostic information in 5 (83.3%) cases, in neonates studied after birth by ultrasound in 32 (82%). Magnetic resonance imaging in the INC did not entail additional knowledge in 9 (18.7%) cases. CONCLUSIONS The INC enables MRI in preterm newborns and those with low/extremely low body weight. These studies are necessary to assess the extent of changes in the central nervous system and other organs. Incubator coils, designed specifically for neonates, allow more accurate diagnosis than previously used coils for adults. MRI results allow one to determine prognosis, for more accurate planning of diagnostics, helping to make appropriate therapeutic decisions.
Collapse
Affiliation(s)
| | - Ewa Helwich
- Clinic of Neonatology and Neonatal Intensive Care, Institute of Mother and Child, Warsaw, Poland
| | - Magdalena Rutkowska
- Clinic of Neonatology and Neonatal Intensive Care, Institute of Mother and Child, Warsaw, Poland
| | - Joanna Stankiewicz
- Intensive Care and Anesthesiology Clinic, Institute of Mother and Child, Warsaw, Poland
| | - Iwona Terczyńska
- Clinic of Neurology of Children and Adolescents, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
63
|
Jacob RM, Mudd AT, Alexander LS, Lai CS, Dilger RN. Comparison of Brain Development in Sow-Reared and Artificially Reared Piglets. Front Pediatr 2016; 4:95. [PMID: 27672632 PMCID: PMC5018487 DOI: 10.3389/fped.2016.00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Provision of adequate nutrients is critical for proper growth and development of the neonate, yet the impact of breastfeeding versus formula feeding on neural maturation has to be fully determined. Using the piglet as a model for the human infant, our objective was to compare neurodevelopment of piglets that were either sow-reared (SR) or artificially reared (AR) in an artificial setting. METHODS Over a 25-day feeding study, piglets (1.5 ± 0.2 kg initial bodyweight) were either SR (n = 10) with ad libitum intake or AR (n = 29) receiving an infant formula modified to mimic the nutritional profile and intake pattern of sow's milk. At study conclusion, piglets were subjected to a standardized set of magnetic resonance imaging (MRI) procedures to quantify structure and composition of the brain. RESULTS Diffusion tensor imaging, an MRI sequence that characterizes brain microstructure, revealed that SR piglets had greater (P < 0.05) average white matter (WM) (generated from a piglet specific brain atlas) fractional anisotropy (FA), and lower (P < 0.05) mean and radial and axial diffusivity values compared with AR piglets, suggesting differences in WM organization. Voxel-based morphometric analysis, a measure of white and gray matter (GM) volumes concentrations, revealed differences (P < 0.05) in bilateral development of GM clusters in the cortical brain regions of the AR piglets compared with SR piglets. Region of interest analysis revealed larger (P < 0.05) whole brain volumes in SR animals compared with AR, and certain subcortical regions to be larger (P < 0.05) as a percentage of whole brain volume in AR piglets compared with SR animals. Quantification of brain metabolites using magnetic resonance spectroscopy revealed SR piglets had higher (P < 0.05) concentrations of myo-inositol, glycerophosphocholine + phosphocholine, and creatine + phosphocreatine compared with AR piglets. However, glutamate + glutamine levels were higher (P < 0.05) in AR piglets when compared with SR animals. CONCLUSION Overall, increases in brain metabolite concentrations, coupled with greater FA values in WM tracts and volume differences in GM of specific brain regions, suggest differences in myelin development and cell proliferation in SR versus AR piglets.
Collapse
Affiliation(s)
- Reeba M. Jacob
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Austin T. Mudd
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Neuroscience Program, University of Illinois, Urbana, IL, USA
| | - Lindsey S. Alexander
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Chron-Si Lai
- Abbott Nutrition, Abbott Laboratories, Columbus, OH, USA
| | - Ryan N. Dilger
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Neuroscience Program, University of Illinois, Urbana, IL, USA
| |
Collapse
|
64
|
The motor and visual networks in preterm infants: An fMRI and DTI study. Brain Res 2016; 1642:603-611. [PMID: 27117868 DOI: 10.1016/j.brainres.2016.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/23/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022]
Abstract
Knowledge regarding the association between functional connectivity and white-matter (WM) maturation of motor and visual networks in preterm infants at term equivalent age (TEA) and their association with behavioral outcome is currently limited. Thirty-two preterm infants born <34 weeks gestational-age without major brain abnormalities were included in this study, underwent resting-state fMRI at TEA. Thirteen infants also underwent diffusion tensor imaging (DTI). Neurobehavioral assessments were performed at one and two years corrected age using the Griffiths Mental Developmental Scales. Functional connectivity between homolog motor and visual regions were detected, which may reflect that a level of organization in these domains is present already at TEA. DTI parameters of WM tracts at TEA demonstrated spatial-temporal variability, with the splenium of the corpus-callosum (CC) found to be the most mature fiber bundle. Correlations between DTI parameters, functional connectivity and behavioral outcome were detected, yet did not show the same pattern of diffusivity changes in the different networks. Visual functional connectivity was negatively correlated with radial-diffusivity (RD) in the optic radiation, while motor functional connectivity was positively correlated with RD in the splenium. In addition, axial-diffusivity (AD) and RD in the genu and midbody of the CC were positively correlated with neurobehavioral outcome at one and 2 years of age. This study highlights the importance of understanding the spatial-temporal changes occurring during this sensitive period of development and the potential effect of extrauterine exposure on the microstructural changes as measured by DTI; their correlation with functional connectivity; and their long term relationship with neuro-behavioral development.
Collapse
|
65
|
Zhang F, Liu C, Qian L, Hou H, Guo Z. Diffusion Tensor Imaging of White Matter Injury Caused by Prematurity-Induced Hypoxic-Ischemic Brain Damage. Med Sci Monit 2016; 22:2167-74. [PMID: 27338673 PMCID: PMC4933547 DOI: 10.12659/msm.896471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background This investigation aimed to evaluate changes in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of white matter injury (WMI) in preterm neonates with hypoxic-ischemic encephalopathy (HIE) using diffusion tension imaging (DTI). Material/Methods Thirty-eight neonates less than 37 weeks of gestation with leukoencephalopathy (as observation group) and 38 full-term infants with no leukoencephalopathy (as control group) were selected from the Neonatal Care Center in Taian Central Hospital from January 2012 to December 2013. A DTI scan was obtained within 1 week after birth. Results In the observation group, on both sides the ADC values in regions of interest (ROI) of white matter, lesions were greater and FA values were lower than in the control group. ADC and FA values in genu and splenum of corpus callosum were statistically different between the mild and severe injury groups (p<0.05). Conclusions This study demonstrates that DTI provides sensitive detection and early diagnosis of WMI in brains of premature infants with HIE.
Collapse
Affiliation(s)
- Fuyong Zhang
- , Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Chunli Liu
- , Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Linlin Qian
- , Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Haifeng Hou
- , Taishan Medical University, Taian, Shandong, China (mainland)
| | - Zhengyi Guo
- , Taian City Central Hospital, Taian, Shandong, China (mainland)
| |
Collapse
|
66
|
Eixarch E, Muñoz-Moreno E, Bargallo N, Batalle D, Gratacos E. Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction. Am J Obstet Gynecol 2016; 214:725.e1-9. [PMID: 26719213 DOI: 10.1016/j.ajog.2015.12.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/02/2015] [Accepted: 12/16/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND Intrauterine growth restriction is associated with short- and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction. OBJECTIVES In this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether these parameters were related with their specific function in order to explore its potential use as an imaging biomarker of altered neurodevelopment. METHODS We included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age. RESULTS Reduced fractional anisotropy (cortico-striatal-thalamic, 0.319 ± 0.018 vs 0.315 ± 0.015; P = .010; motor, 0.322 ± 0.019 vs 0.319 ± 0.020; P = .019) and integrity cortico-striatal-thalamic (0.407 ± 0.040 vs 0.399 ± 0.034; P = .018; motor, 0.417 ± 0.044 vs 0.409 ± 0.046; P = .016) in both networks were observed in the intrauterine growth restriction group, with no differences in number of streamlines. More importantly, strong specific correlation was found between tractography-related metrics and its relative function in both networks in intrauterine growth restricted children. Motor network metrics were correlated specifically with motor scale results (fractional anisotropy: rho = 0.857; integrity: rho = 0.740); cortico-striatal-thalamic network metrics were correlated with cognitive (fractional anisotropy: rho = 0.793; integrity, rho = 0.762) and socioemotional scale (fractional anisotropy: rho = 0.850; integrity: rho = 0.877). CONCLUSIONS These results support the existence of altered brain connectivity in intrauterine growth restriction demonstrated by altered connectivity in motor and cortico-striatal-thalamic networks, with reduced fractional anisotropy and integrity. The specific correlation between tractography-related metrics and neurodevelopmental outcomes in intrauterine growth restriction shows the potential to use this approach to develop imaging biomarkers to predict specific neurodevelopmental outcome in infants who are at risk because of intrauterine growth restriction and other prenatal diseases.
Collapse
Affiliation(s)
- Elisenda Eixarch
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), IDIBAPS, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases, Barcelona, Spain.
| | - Emma Muñoz-Moreno
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Nuria Bargallo
- Department of Radiology, Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic, and the Magnetic Resonance core facility, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Dafnis Batalle
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), IDIBAPS, University of Barcelona, Barcelona, Spain; Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Eduard Gratacos
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), IDIBAPS, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| |
Collapse
|
67
|
Kansagra AP, Mabray MC, Ferriero DM, Barkovich AJ, Xu D, Hess CP. Microstructural maturation of white matter tracts in encephalopathic neonates. Clin Imaging 2016; 40:1009-13. [PMID: 27314214 DOI: 10.1016/j.clinimag.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aims to apply neurite orientation dispersion and density imaging (NODDI) to measure white matter microstructural features during early development. METHODS NODDI parameters were measured in twelve newborns and thirteen 6-month infants, all with perinatal clinical encephalopathy. RESULTS Between 0 and 6 months, there were significant differences in fractional anisotropy (FA) for all tracts; in neurite density for internal capsules, optic radiations, and splenium; and in orientation dispersion for anterior limb of internal capsule and optic radiations. There were no appreciable differences in NODDI parameters related to outcome. CONCLUSION NODDI may allow more detailed characterization of microstructural maturation than FA.
Collapse
Affiliation(s)
- Akash P Kansagra
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus Box 8131, Saint Louis, MO 63110.
| | - Marc C Mabray
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143
| | - Donna M Ferriero
- Departments of Pediatrics and Neurology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143; Departments of Pediatrics and Neurology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143
| |
Collapse
|
68
|
Tam EW, Chau V, Barkovich AJ, Ferriero DM, Miller SP, Rogers EE, Grunau RE, Synnes AR, Xu D, Foong J, Brant R, Innis SM. Early postnatal docosahexaenoic acid levels and improved preterm brain development. Pediatr Res 2016; 79:723-30. [PMID: 26761122 PMCID: PMC4853254 DOI: 10.1038/pr.2016.11] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/12/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Preterm birth has a dramatic impact on polyunsaturated fatty acid exposures for the developing brain. This study examined the association between postnatal fatty acid levels and measures of brain injury and development, as well as outcomes. METHODS A cohort of 60 preterm newborns (24-32 wk gestational age) was assessed using early and near-term magnetic resonance imaging (MRI) studies. Red blood cell fatty acid composition was analyzed coordinated with each scan. Outcome at a mean of 33 mo corrected age was assessed using the Bayley Scales of Infant Development, 3rd edition. RESULTS Adjusting for confounders, a 1% increase in postnatal docosahexaenoic acid (DHA) levels at early MRI was associated with 4.3-fold decreased odds of intraventricular hemorrhage, but was not associated with white matter injury or cerebellar haemorrhage. Higher DHA and lower linoleic acid (LA) levels at early MRI were associated with lower diffusivity in white matter tracts and corresponding improved developmental scores in follow-up. CONCLUSION Higher DHA and lower LA levels in the first few weeks of life are associated with decreased intraventricular haemorrhage, improved microstructural brain development, and improved outcomes in preterm born children. Early and possibly antenatal interventions in high-risk pregnancies need to be studied for potential benefits in preterm developmental outcomes.
Collapse
Affiliation(s)
- Emily W.Y. Tam
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, ON, Canada
| | - Vann Chau
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, ON, Canada
| | - A. James Barkovich
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA,Department of Pediatrics, University of California San Francisco,Department of Radiology & Diagnostic Imaging, University of California San Francisco
| | - Donna M. Ferriero
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA,Department of Pediatrics, University of California San Francisco
| | - Steven P. Miller
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, ON, Canada,Department of Pediatrics, University of British Columbia
| | | | - Ruth E. Grunau
- Department of Pediatrics, University of British Columbia
| | - Anne R. Synnes
- Department of Pediatrics, University of British Columbia
| | - Duan Xu
- Department of Radiology & Diagnostic Imaging, University of California San Francisco
| | - Justin Foong
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, ON, Canada,Centre for Computational Medicine, Hospital for Sick Children
| | - Rollin Brant
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
69
|
Shi J, Chang L, Wang J, Zhang S, Yao Y, Zhang S, Jiang R, Guo L, Guan H, Zhu W. Initial Application of Diffusional Kurtosis Imaging in Evaluating Brain Development of Healthy Preterm Infants. PLoS One 2016; 11:e0154146. [PMID: 27101246 PMCID: PMC4839617 DOI: 10.1371/journal.pone.0154146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 04/08/2016] [Indexed: 11/19/2022] Open
Abstract
Objective To explore the parametric characteristics of diffusional kurtosis imaging (DKI) in the brain development of healthy preterm infants. Materials and Methods Conventional magnetic resonance imaging (MRI) and DKI were performed in 35 preterm (29 to 36 weeks gestational age [GA]; scanned at 33 to 44 weeks postmenstrual age [PMA]) and 10 term infants (37.4 to 40.7 weeks GA; scanned at 38.3 to 42.9 weeks PMA). Fractional anisotropy (FA), mean diffusivity (MD) and mean kurtosis (MK) values from 8 regions of interest, including both white matter (WM) and gray matter (GM), were obtained. Results MK and FA values were positively correlated with PMA in most selected WM regions, such as the posterior limbs of the internal capsule (PLIC) and the splenium of the corpus callosum (SCC). The positive correlation between MK value and PMA in the deep GM region was higher than that between FA and PMA. The MK value gradually decreased from the PLIC to the cerebral lobe. In addition, DKI parameters exhibited subtle differences in the parietal WM between the preterm and term control groups. Conclusions MK may serve as a more reliable imaging marker of the normal myelination process and provide a more robust characterization of deep GM maturation.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liwen Chang
- Department ofneonatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihao Yao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuixia Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rifeng Jiang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linying Guo
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanxiong Guan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (HXG); (WZZ)
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (HXG); (WZZ)
| |
Collapse
|
70
|
Melbourne A, Eaton‐Rosen Z, Orasanu E, Price D, Bainbridge A, Cardoso MJ, Kendall GS, Robertson NJ, Marlow N, Ourselin S. Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry. Hum Brain Mapp 2016; 37:2479-92. [PMID: 26996400 PMCID: PMC4949539 DOI: 10.1002/hbm.23188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 01/21/2023] Open
Abstract
Infants born prematurely are at increased risk of adverse neurodevelopmental outcome. The measurement of white matter tissue composition and structure can help predict functional performance. Specifically, measurements of myelination and indicators of myelination status in the preterm brain could be predictive of later neurological outcome. Quantitative imaging of myelin could thus serve to develop biomarkers for prognosis or therapeutic intervention; however, accurate estimation of myelin content is difficult. This work combines diffusion MRI and multi-component T2 relaxation measurements in a group of 37 infants born very preterm and scanned between 27 and 58 weeks equivalent gestational age. Seven infants have longitudinal data at two time points that we analyze in detail. Our aim is to show that measurement of the myelin water fraction is achievable using widely available pulse sequences and state-of-the-art algorithmic modeling of the MR imaging procedure and that a multi-component fitting routine to multi-shell diffusion weighted data can show differences in neurite density and local spatial arrangement in grey and white matter. Inference on the myelin water fraction allows us to demonstrate that the change in diffusion properties of the preterm thalamus is not solely due to myelination (that increase in myelin content accounts for about a third of the observed changes) whilst the decrease in the posterior white matter T2 has no significant component that is due to myelin water content. This work applies multi-modal advanced quantitative neuroimaging to investigate changing tissue properties in the longitudinal setting. Hum Brain Mapp 37:2479-2492, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew Melbourne
- Centre for Medical Image Computing (CMIC)University College LondonUnited Kingdom
| | - Zach Eaton‐Rosen
- Centre for Medical Image Computing (CMIC)University College LondonUnited Kingdom
| | - Eliza Orasanu
- Centre for Medical Image Computing (CMIC)University College LondonUnited Kingdom
| | - David Price
- Medical PhysicsUniversity College HospitalLondonUnited Kingdom
| | - Alan Bainbridge
- Medical PhysicsUniversity College HospitalLondonUnited Kingdom
| | - M. Jorge Cardoso
- Centre for Medical Image Computing (CMIC)University College LondonUnited Kingdom
| | | | - Nicola J. Robertson
- Academic NeonatologyEGA UCL Institute for Women's HealthLondonUnited Kingdom
| | - Neil Marlow
- Academic NeonatologyEGA UCL Institute for Women's HealthLondonUnited Kingdom
| | - Sebastien Ourselin
- Centre for Medical Image Computing (CMIC)University College LondonUnited Kingdom
| |
Collapse
|
71
|
Lockwood Estrin G, Kyriakopoulou V, Makropoulos A, Ball G, Kuhendran L, Chew A, Hagberg B, Martinez-Biarge M, Allsop J, Fox M, Counsell SJ, Rutherford MA. Altered white matter and cortical structure in neonates with antenatally diagnosed isolated ventriculomegaly. NEUROIMAGE-CLINICAL 2016; 11:139-148. [PMID: 26937382 PMCID: PMC4753810 DOI: 10.1016/j.nicl.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 12/31/2022]
Abstract
Ventriculomegaly (VM) is the most common central nervous system abnormality diagnosed antenatally, and is associated with developmental delay in childhood. We tested the hypothesis that antenatally diagnosed isolated VM represents a biological marker for altered white matter (WM) and cortical grey matter (GM) development in neonates. 25 controls and 21 neonates with antenatally diagnosed isolated VM had magnetic resonance imaging at 41.97(± 2.94) and 45.34(± 2.14) weeks respectively. T2-weighted scans were segmented for volumetric analyses of the lateral ventricles, WM and cortical GM. Diffusion tensor imaging (DTI) measures were assessed using voxel-wise methods in WM and cortical GM; comparisons were made between cohorts. Ventricular and cortical GM volumes were increased, and WM relative volume was reduced in the VM group. Regional decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were demonstrated in WM of the VM group compared to controls. No differences in cortical DTI metrics were observed. At 2 years, neurodevelopmental delays, especially in language, were observed in 6/12 cases in the VM cohort. WM alterations in isolated VM cases may be consistent with abnormal development of WM tracts involved in language and cognition. Alterations in WM FA and MD may represent neural correlates for later neurodevelopmental deficits. This study compared brain development in neonates with isolated VM to controls. Neonates with isolated VM have enlarged cortical volumes compared to controls. FA was reduced and MD was increased in the WM of the VM cohort. Children with antenatal isolated VM are at increased risk for language delay.
Collapse
Affiliation(s)
- G Lockwood Estrin
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom; Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - V Kyriakopoulou
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - A Makropoulos
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - G Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - L Kuhendran
- Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - A Chew
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom; Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - B Hagberg
- Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom; Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Kungsgatan 12, 411 18 Gothenburg, Sweden
| | - M Martinez-Biarge
- Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - J Allsop
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - M Fox
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - S J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - M A Rutherford
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
72
|
Rogers CE, Smyser T, Smyser CD, Shimony J, Inder TE, Neil JJ. Regional white matter development in very preterm infants: perinatal predictors and early developmental outcomes. Pediatr Res 2016; 79:87-95. [PMID: 26372513 PMCID: PMC4724306 DOI: 10.1038/pr.2015.172] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/29/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Preterm infants are at risk for white matter (WM) injury and adverse neurodevelopmental outcomes. METHODS Serial diffusion tensor magnetic resonance imaging data were obtained from very preterm infants (N = 78) born <30 wk gestation imaged up to four times from 26-42 wk postmenstrual age. Slopes were calculated for fractional anisotropy (FA) and mean diffusivity (MD) within regions of interest for infants with ≥2 scans (N = 50). Sixty-five children underwent neurodevelopmental testing at 2 y of age. RESULTS FA slope for the posterior limb of the internal capsule was greater than other regions. The anterior limb of the internal capsule (ALIC), corpus callosum, and optic radiations demonstrated greater FA slope with increasing gestational age. Infants with patent ductus arteriosus had lower FA slope in the ALIC. MD slope was lower with prolonged ventilation or lack of antenatal steroids. At 2 y of age, lower motor scores were associated with lower FA in the left but higher FA in the right inferior temporal lobe at term-equivalent age. Better social-emotional competence was related to lower FA in the left cingulum bundle. CONCLUSION This study demonstrates regional variability in the susceptibility/sensitivity of WM maturation to perinatal factors and relationships between altered diffusion measures and developmental outcomes in preterm neonates.
Collapse
Affiliation(s)
- Cynthia E. Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA,Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Tara Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher D. Smyser
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Jeffrey J. Neil
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
73
|
STEAM — Statistical Template Estimation for Abnormality Mapping: A personalized DTI analysis technique with applications to the screening of preterm infants. Neuroimage 2016; 125:705-723. [DOI: 10.1016/j.neuroimage.2015.08.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 01/15/2023] Open
|
74
|
Dingwall N, Chalk A, Martin TI, Scott CJ, Semedo C, Le Q, Orasanu E, Cardoso JM, Melbourne A, Marlow N, Ourselin S. T2 relaxometry in the extremely-preterm brain at adolescence. Magn Reson Imaging 2015; 34:508-14. [PMID: 26723846 PMCID: PMC4819563 DOI: 10.1016/j.mri.2015.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022]
Abstract
Survival following very preterm birth is associated with cognitive and behavioral sequelae, which may have identifiable neural correlates. Many survivors of modern neonatal care in the 1990s are now young adults and the evolution of MRI findings into adult life has rarely been evaluated. We have investigated a cohort of 19-year-old adolescents without severe impairments born between 22 and 26 weeks of gestation in 1995 (extremely preterm: EP). Using T2 data derived from magnetic resonance imaging we investigate differences between the brains of 46 EP participants (n = 46) and the brains of a group of term-born controls (n = 20). Despite EP adolescents having significantly reduced gray and white matter volumes, the composition of these tissues, assessed by both single and multi-component relaxometry, appears to be unrelated to either preterm status or gender. This may represent either insensitivity of the imaging technique or reflect that there are only subtle differences between EP subjects and their term-born peers.
Collapse
Affiliation(s)
| | - Alan Chalk
- Department of Computer Science, University College London, UK
| | - Teresa I Martin
- Department of Computer Science, University College London, UK
| | - Catherine J Scott
- Centre for Medical Image Computing (CMIC), University College London, UK
| | - Carla Semedo
- Centre for Medical Image Computing (CMIC), University College London, UK
| | - Quan Le
- Department of Computer Science, University College London, UK
| | - Eliza Orasanu
- Centre for Medical Image Computing (CMIC), University College London, UK
| | - Jorge M Cardoso
- Centre for Medical Image Computing (CMIC), University College London, UK
| | - Andrew Melbourne
- Centre for Medical Image Computing (CMIC), University College London, UK.
| | - Neil Marlow
- Academic Neonatology, EGA UCL Institute for Women's Health, London, UK
| | - Sebastien Ourselin
- Centre for Medical Image Computing (CMIC), University College London, UK
| |
Collapse
|
75
|
Schneider J, Kober T, Bickle Graz M, Meuli R, Hüppi PS, Hagmann P, Truttmann AC. Evolution of T1 Relaxation, ADC, and Fractional Anisotropy during Early Brain Maturation: A Serial Imaging Study on Preterm Infants. AJNR Am J Neuroradiol 2015; 37:155-62. [PMID: 26494693 DOI: 10.3174/ajnr.a4510] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/11/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE The alteration of brain maturation in preterm infants contributes to neurodevelopmental disabilities during childhood. Serial imaging allows understanding of the mechanisms leading to dysmaturation in the preterm brain. The purpose of the present study was to provide reference quantitative MR imaging measures across time in preterm infants, by using ADC, fractional anisotropy, and T1 maps obtained by using the magnetization-prepared dual rapid acquisition of gradient echo technique. MATERIALS AND METHODS We included preterm neonates born at <30 weeks of gestational age without major brain lesions on early cranial sonography and performed 3 MRIs (3T) from birth to term-equivalent age. Multiple measurements (ADC, fractional anisotropy, and T1 relaxation) were performed on each examination in 12 defined white and gray matter ROIs. RESULTS We acquired 107 MRIs (35 early, 33 intermediary, and 39 at term-equivalent age) in 39 cerebral low-risk preterm infants. Measures of T1 relaxation time showed a gradual and significant decrease with time in a region- and hemispheric-specific manner. ADC values showed a similar decline with time, but with more variability than T1 relaxation. An increase of fractional anisotropy values was observed in WM regions and inversely a decrease in the cortex. CONCLUSIONS The gradual change with time reflects the progressive maturation of the cerebral microstructure in white and gray matter. Our study provides reference trajectories from 25 to 40 weeks of gestation of T1 relaxation, ADC, and fractional anisotropy values in low-risk preterm infants. We speculate that deviation thereof might reflect disturbed cerebral maturation; the correlation of this disturbed maturation with neurodevelopmental outcome remains to be addressed.
Collapse
Affiliation(s)
- J Schneider
- From the Clinic of Neonatology and Follow-up (J.S., M.B.G., A.C.T.), Department of Pediatrics
| | - T Kober
- Department of Radiology (T.K., R.M., P.H.), University Hospital Center and University of Lausanne, Lausanne, Switzerland Advanced Clinical Imaging Technology (T.K.), Siemens Healthcare IM BM PI, Lausanne, Switzerland LTS5 (T.K.), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - M Bickle Graz
- From the Clinic of Neonatology and Follow-up (J.S., M.B.G., A.C.T.), Department of Pediatrics
| | - R Meuli
- Department of Radiology (T.K., R.M., P.H.), University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - P S Hüppi
- Division of Development and Growth (P.S.H.), Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - P Hagmann
- Department of Radiology (T.K., R.M., P.H.), University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - A C Truttmann
- From the Clinic of Neonatology and Follow-up (J.S., M.B.G., A.C.T.), Department of Pediatrics
| |
Collapse
|
76
|
Abstract
The human brain rapidly develops during the final weeks of gestation and in the first two years following birth. Diffusion tensor imaging (DTI) is a unique in vivo imaging technique that allows three-dimensional visualization of the white matter anatomy in the brain. It has been considered to be a valuable tool for studying brain development in early life. In this review, we first introduce the DTI technique. We then review DTI findings on white matter development at the fetal stage and in infancy as well as DTI applications for understanding neurocognitive development and brain abnormalities in preterm infants. Finally, we discuss limitations of DTI and potential valuable imaging techniques for studying white matter myelination.
Collapse
Affiliation(s)
- Anqi Qiu
- Department of Biomedical Engineering and Clinical Imaging Research Center, National University of Singapore, 117576 Singapore;
| | | | | |
Collapse
|
77
|
Review of diffusion tensor imaging and its application in children. Pediatr Radiol 2015; 45 Suppl 3:S375-81. [PMID: 26346143 DOI: 10.1007/s00247-015-3277-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/04/2014] [Accepted: 01/06/2015] [Indexed: 12/26/2022]
Abstract
Diffusion MRI is an imaging technique that uses the random motion of water to probe tissue microstructure. Diffusion tensor imaging (DTI) can quantitatively depict the organization and connectivity of white matter. Given the non-invasiveness of the technique, DTI has become a widely used tool for researchers and clinicians to examine the white matter of children. This review covers the basics of diffusion-weighted imaging and diffusion tensor imaging and discusses examples of their clinical application in children.
Collapse
|
78
|
Douet V, Chang L, Cloak C, Ernst T. Genetic influences on brain developmental trajectories on neuroimaging studies: from infancy to young adulthood. Brain Imaging Behav 2015; 8:234-50. [PMID: 24077983 DOI: 10.1007/s11682-013-9260-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human brain development has been studied intensively with neuroimaging. However, little is known about how genes influence developmental brain trajectories, even though a significant number of genes (about 10,000, or approximately one-third) in the human genome are expressed primarily in the brain and during brain development. Interestingly, in addition to showing differential expression among tissues, many genes are differentially expressed across the ages (e.g., antagonistic pleiotropy). Age-specific gene expression plays an important role in several critical events in brain development, including neuronal cell migration, synaptogenesis and neurotransmitter receptor specificity, as well as in aging and neurodegenerative disorders (e.g., Alzheimer disease or amyotrophic lateral sclerosis). In addition, the majority of psychiatric and mental disorders are polygenic, and many have onsets during childhood and adolescence. In this review, we summarize the major findings from neuroimaging studies that link genetics with brain development, from infancy to young adulthood. Specifically, we focus on the heritability of brain structures across the ages, age-related genetic influences on brain development and sex-specific developmental trajectories.
Collapse
Affiliation(s)
- Vanessa Douet
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA,
| | | | | | | |
Collapse
|
79
|
Braga RM, Roze E, Ball G, Merchant N, Tusor N, Arichi T, Edwards D, Rueckert D, Counsell SJ. Development of the Corticospinal and Callosal Tracts from Extremely Premature Birth up to 2 Years of Age. PLoS One 2015; 10:e0125681. [PMID: 25955638 PMCID: PMC4425672 DOI: 10.1371/journal.pone.0125681] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/21/2015] [Indexed: 11/18/2022] Open
Abstract
White matter tracts mature asymmetrically during development, and this development can be studied using diffusion magnetic resonance imaging. The aims of this study were i. to generate dynamic population-averaged white matter registration templates covering in detail the period from 25 weeks gestational age to term, and extending to 2 years of age based on DTI and fractional anisotropy, ii. to produce tract-specific probability maps of the corticospinal tracts, forceps major and forceps minor using probabilistic tractography, and iii. to assess the development of these tracts throughout this critical period of neurodevelopment. We found evidence for asymmetric development across the fiber bundles studied, with the corticospinal tracts showing earlier maturation (as measured by fractional anisotropy) but slower volumetric growth compared to the callosal fibers. We also found evidence for an anterior to posterior gradient in white matter microstructure development (as measured by mean diffusivity) in the callosal fibers, with the posterior forceps major developing at a faster rate than the anterior forceps minor in this age range. Finally, we report a protocol for delineating callosal and corticospinal fibers in extremely premature cohorts, and make available population-averaged registration templates and a probabilistic tract atlas which we hope will be useful for future neonatal and infant white-matter imaging studies.
Collapse
Affiliation(s)
- Rodrigo M. Braga
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Elise Roze
- Wilhelmina Children’s Hospital, University Medical Center Utrecht, University of Utrecht, the Netherlands
| | - Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
| | - Nazakat Merchant
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
| | - Nora Tusor
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
| | - David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
| | - Daniel Rueckert
- Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Serena J. Counsell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
- * E-mail:
| |
Collapse
|
80
|
Duerden EG, Foong J, Chau V, Branson H, Poskitt KJ, Grunau RE, Synnes A, Zwicker JG, Miller SP. Tract-Based Spatial Statistics in Preterm-Born Neonates Predicts Cognitive and Motor Outcomes at 18 Months. AJNR Am J Neuroradiol 2015; 36:1565-71. [PMID: 25929880 DOI: 10.3174/ajnr.a4312] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/23/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Adverse neurodevelopmental outcome is common in children born preterm. Early sensitive predictors of neurodevelopmental outcome such as MR imaging are needed. Tract-based spatial statistics, a diffusion MR imaging analysis method, performed at term-equivalent age (40 weeks) is a promising predictor of neurodevelopmental outcomes in children born very preterm. We sought to determine the association of tract-based spatial statistics findings before term-equivalent age with neurodevelopmental outcome at 18-months corrected age. MATERIALS AND METHODS Of 180 neonates (born at 24-32-weeks' gestation) enrolled, 153 had DTI acquired early at 32 weeks' postmenstrual age and 105 had DTI acquired later at 39.6 weeks' postmenstrual age. Voxelwise statistics were calculated by performing tract-based spatial statistics on DTI that was aligned to age-appropriate templates. At 18-month corrected age, 166 neonates underwent neurodevelopmental assessment by using the Bayley Scales of Infant Development, 3rd ed, and the Peabody Developmental Motor Scales, 2nd ed. RESULTS Tract-based spatial statistics analysis applied to early-acquired scans (postmenstrual age of 30-33 weeks) indicated a limited significant positive association between motor skills and axial diffusivity and radial diffusivity values in the corpus callosum, internal and external/extreme capsules, and midbrain (P < .05, corrected). In contrast, for term scans (postmenstrual age of 37-41 weeks), tract-based spatial statistics analysis showed a significant relationship between both motor and cognitive scores with fractional anisotropy in the corpus callosum and corticospinal tracts (P < .05, corrected). Tract-based spatial statistics in a limited subset of neonates (n = 22) scanned at <30 weeks did not significantly predict neurodevelopmental outcomes. CONCLUSIONS The strength of the association between fractional anisotropy values and neurodevelopmental outcome scores increased from early-to-late-acquired scans in preterm-born neonates, consistent with brain dysmaturation in this population.
Collapse
Affiliation(s)
- E G Duerden
- From the Department of Paediatrics (E.G.D., J.F., V.C., H.B., S.P.M.), Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - J Foong
- From the Department of Paediatrics (E.G.D., J.F., V.C., H.B., S.P.M.), Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - V Chau
- Department of Pediatrics (V.C., K.J.P., R.E.G., A.S., J.G.Z., S.P.M.), University of British Columbia, BC Children's and Women's Hospitals, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - H Branson
- From the Department of Paediatrics (E.G.D., J.F., V.C., H.B., S.P.M.), Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - K J Poskitt
- Department of Pediatrics (V.C., K.J.P., R.E.G., A.S., J.G.Z., S.P.M.), University of British Columbia, BC Children's and Women's Hospitals, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - R E Grunau
- Department of Pediatrics (V.C., K.J.P., R.E.G., A.S., J.G.Z., S.P.M.), University of British Columbia, BC Children's and Women's Hospitals, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - A Synnes
- Department of Pediatrics (V.C., K.J.P., R.E.G., A.S., J.G.Z., S.P.M.), University of British Columbia, BC Children's and Women's Hospitals, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - J G Zwicker
- Department of Pediatrics (V.C., K.J.P., R.E.G., A.S., J.G.Z., S.P.M.), University of British Columbia, BC Children's and Women's Hospitals, Child and Family Research Institute, Vancouver, British Columbia, Canada Department of Occupational Science and Occupational Therapy (J.G.Z.), University of British Columbia, Vancouver, British Columbia, Canada
| | - S P Miller
- From the Department of Paediatrics (E.G.D., J.F., V.C., H.B., S.P.M.), Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada Department of Pediatrics (V.C., K.J.P., R.E.G., A.S., J.G.Z., S.P.M.), University of British Columbia, BC Children's and Women's Hospitals, Child and Family Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
81
|
Li K, Sun Z, Han Y, Gao L, Yuan L, Zeng D. Fractional anisotropy alterations in individuals born preterm: a diffusion tensor imaging meta-analysis. Dev Med Child Neurol 2015; 57:328-38. [PMID: 25358534 DOI: 10.1111/dmcn.12618] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2014] [Indexed: 12/17/2022]
Abstract
AIM This meta-analysis explored cerebral microstructural changes in individuals born preterm using fractional anisotropy from diffusion tensor imaging. METHOD We used the activation likelihood estimate (ALE) method for the meta-analysis to locate anatomical regions with white matter abnormalities in a group of individuals born preterm and in term-born comparison participants. A statistical analysis of fractional anisotropy was conducted to quantitatively explore the extent of fractional anisotropy changes in the three subregions of the corpus callosum in the preterm group. RESULTS ALE analysis identified 11 regions of decreased fractional anisotropy and four regions of increased fractional anisotropy. Analysis of the corpus callosum revealed the largest decrease in fractional anisotropy in the splenium (standardized mean difference [SMD]=-0.75, 95% confidence interval [CI] -0.93 to -0.57), followed by the body (SMD=-0.73, 95% CI -1.13 to -0.32) and the genu (SMD=-0.65, 95% CI -0.97 to -0.33). INTERPRETATION Significant changes in fractional anisotropy in individuals born preterm reflect white matter abnormalities from childhood to young adulthood, and the mechanism of fractional anisotropy alterations in preterm infants may vary during different stages of white matter development. Furthermore, the variability of fractional anisotropy between studies can primarily be attributed to the age of the individuals at scanning and to the field strength of magnetic resonance scanners.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | | | | | | | | | | |
Collapse
|
82
|
Emerging Brain Morphologies from Axonal Elongation. Ann Biomed Eng 2015; 43:1640-53. [PMID: 25824370 DOI: 10.1007/s10439-015-1312-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/23/2015] [Indexed: 12/13/2022]
Abstract
Understanding the characteristic morphology of our brain remains a challenging, yet important task in human evolution, developmental biology, and neurosciences. Mathematical modeling shapes our understanding of cortical folding and provides functional relations between cortical wavelength, thickness, and stiffness. Yet, current mathematical models are phenomenologically isotropic and typically predict non-physiological, periodic folding patterns. Here we establish a mechanistic model for cortical folding, in which macroscopic changes in white matter volume are a natural consequence of microscopic axonal growth. To calibrate our model, we consult axon elongation experiments in chick sensory neurons. We demonstrate that a single parameter, the axonal growth rate, explains a wide variety of in vitro conditions including immediate axonal thinning and gradual thickness restoration. We embed our axonal growth model into a continuum model for brain development using axonal orientation distributions motivated by diffusion spectrum imaging. Our simulations suggest that white matter anisotropy-as an emergent property from directional axonal growth-intrinsically induces symmetry breaking, and predicts more physiological, less regular morphologies with regionally varying gyral wavelengths and sulcal depths. Mechanistic modeling of brain development could establish valuable relationships between brain connectivity, brain anatomy, and brain function.
Collapse
|
83
|
Nossin-Manor R, Card D, Raybaud C, Taylor MJ, Sled JG. Cerebral maturation in the early preterm period-A magnetization transfer and diffusion tensor imaging study using voxel-based analysis. Neuroimage 2015; 112:30-42. [PMID: 25731990 DOI: 10.1016/j.neuroimage.2015.02.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/17/2015] [Accepted: 02/22/2015] [Indexed: 12/19/2022] Open
Abstract
The magnetization transfer ratio (MTR) and diffusion tensor imaging (DTI) correlates of early brain development were examined in cohort of 18 very preterm neonates (27-31 gestational weeks) presenting with normal radiological findings scanned within 2weeks after birth (28-32 gestational weeks). A combination of non-linear image registration, tissue segmentation, and voxel-wise regression was used to map the age dependent changes in MTR and DTI-derived parameters in 3D across the brain based on the cross-sectional in vivo preterm data. The regression coefficient maps obtained differed between brain regions and between the different quantitative MRI indices. Significant linear increases as well as decreases in MTR and DTI-derived parameters were observed throughout the preterm brain. In particular, the lamination pattern in the cerebral wall was evident on parametric and regression coefficient maps. The frontal white matter area (subplate and intermediate zone) demonstrated a linear decrease in MTR. While the intermediate zone showed an unexpected decrease in fractional anisotropy (FA) with age, with this decrease (and the increase in mean diffusivity (MD)) driven primarily by an increase in radial diffusivity (RD) values, the subplate showed no change in FA (and an increase in MD). The latter was the result of a concomitant similar increase in axial diffusivity (AD) and RD values. Interpreting the in vivo results in terms of available histological data, we present a biophysical model that describes the relation between various microstructural changes measured by complementary quantitative methods available on clinical scanners and a range of maturational processes in brain tissue.
Collapse
Affiliation(s)
- Revital Nossin-Manor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| | - Dallas Card
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Charles Raybaud
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Medical Imaging, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Margot J Taylor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Medical Imaging, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - John G Sled
- Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
84
|
Eaton-Rosen Z, Melbourne A, Orasanu E, Cardoso MJ, Modat M, Bainbridge A, Kendall GS, Robertson NJ, Marlow N, Ourselin S. Longitudinal measurement of the developing grey matter in preterm subjects using multi-modal MRI. Neuroimage 2015; 111:580-9. [PMID: 25681570 DOI: 10.1016/j.neuroimage.2015.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Preterm birth is a major public health concern, with the severity and occurrence of adverse outcome increasing with earlier delivery. Being born preterm disrupts a time of rapid brain development: in addition to volumetric growth, the cortex folds, myelination is occurring and there are changes on the cellular level. These neurological events have been imaged non-invasively using diffusion-weighted (DW) MRI. In this population, there has been a focus on examining diffusion in the white matter, but the grey matter is also critically important for neurological health. We acquired multi-shell high-resolution diffusion data on 12 infants born at ≤ 28 weeks of gestational age at two time-points: once when stable after birth, and again at term-equivalent age. We used the Neurite Orientation Dispersion and Density Imaging model (NODDI) (Zhang et al., 2012) to analyse the changes in the cerebral cortex and the thalamus, both grey matter regions. We showed region-dependent changes in NODDI parameters over the preterm period, highlighting underlying changes specific to the microstructure. This work is the first time that NODDI parameters have been evaluated in both the cortical and the thalamic grey matter as a function of age in preterm infants, offering a unique insight into neuro-development in this at-risk population.
Collapse
Affiliation(s)
| | | | | | | | - Marc Modat
- Translational Imaging Group, CMIC, UCL, UK
| | | | - Giles S Kendall
- Academic Neonatology, EGA UCL Institute for Women's Health, London, UK
| | | | - Neil Marlow
- Academic Neonatology, EGA UCL Institute for Women's Health, London, UK
| | | |
Collapse
|
85
|
Pieterman K, Plaisier A, Govaert P, Leemans A, Lequin MH, Dudink J. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review. Pediatr Radiol 2015; 45:1372-81. [PMID: 25820411 PMCID: PMC4526590 DOI: 10.1007/s00247-015-3307-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. OBJECTIVE To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. MATERIALS AND METHODS We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. RESULTS We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. CONCLUSION Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards.
Collapse
Affiliation(s)
- Kay Pieterman
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center - Sophia, dr. Molewaterplein 60, 3015, GJ, Rotterdam, The Netherlands,
| | - Annemarie Plaisier
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul Govaert
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Pediatrics, Koningin Paola Children’s Hospital, Antwerp, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten H. Lequin
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen Dudink
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
86
|
Broekman BFP, Wang C, Li Y, Rifkin-Graboi A, Saw SM, Chong YS, Kwek K, Gluckman PD, Fortier MV, Meaney MJ, Qiu A. Gestational age and neonatal brain microstructure in term born infants: a birth cohort study. PLoS One 2014; 9:e115229. [PMID: 25535959 PMCID: PMC4275243 DOI: 10.1371/journal.pone.0115229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 11/20/2014] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Understanding healthy brain development in utero is crucial in order to detect abnormal developmental trajectories due to developmental disorders. However, in most studies neuroimaging was done after a significant postnatal period, and in those studies that performed neuroimaging on fetuses, the quality of data has been affected due to complications of scanning during pregnancy. To understand healthy brain development between 37-41 weeks of gestational age, our study assessed the in utero growth of the brain in healthy term born babies with DTI scanning soon after birth. METHODS A cohort of 93 infants recruited from maternity hospitals in Singapore underwent diffusion tensor imaging between 5 to 17 days after birth. We did a cross-sectional examination of white matter microstructure of the brain among healthy term infants as a function of gestational age via voxel-based analysis on fractional anisotropy. RESULTS Greater gestational age at birth in term infants was associated with larger fractional anisotropy values in early developing brain regions, when corrected for age at scan. Specifically, it was associated with a cluster located at the corpus callosum (corrected p<0.001), as well as another cluster spanning areas of the anterior corona radiata, anterior limb of internal capsule, and external capsule (corrected p<0.001). CONCLUSIONS Our findings show variation in brain maturation associated with gestational age amongst 'term' infants, with increased brain maturation when born with a relatively higher gestational age in comparison to those infants born with a relatively younger gestational age. Future studies should explore if these differences in brain maturation between 37 and 41 weeks of gestational age will persist over time due to development outside the womb.
Collapse
Affiliation(s)
- Birit F. P. Broekman
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
| | - Changqing Wang
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yue Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Anne Rifkin-Graboi
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
| | - Seang Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yap-Seng Chong
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Kenneth Kwek
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Peter D. Gluckman
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marielle V. Fortier
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Michael J. Meaney
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
- Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Canada
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
- Clinical Imaging Research Centre, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
87
|
O'Gorman RL, Bucher HU, Held U, Koller BM, Hüppi PS, Hagmann CF. Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants. ACTA ACUST UNITED AC 2014; 138:388-97. [PMID: 25534356 DOI: 10.1093/brain/awu363] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite improved survival, many preterm infants undergo subsequent neurodevelopmental impairment. To date, no neuroprotective therapies have been implemented into clinical practice. Erythropoietin, a haematopoietic cytokine used for treatment of anaemia of prematurity, has been shown to have neuroprotective and neuroregenerative effects on the brain in many experimental studies. The aim of the study was to assess the effect of recombinant human erythropoietin on the microstructural development of the cerebral white matter using tract-based spatial statistics performed at term equivalent age. A randomized, double-blind placebo-controlled, prospective multicentre study applying recombinant human erythropoietin in the first 42 h after preterm birth entitled 'Does erythropoietin improve outcome in preterm infant' was conducted in Switzerland (NCT00413946). Preterm infants were given recombinant human erythropoietin (3000 IU) or an equivalent volume of placebo (NaCl 0.9%) intravenously before 3 h of age after birth, at 12-18 h and at 36-42 h after birth. High resolution diffusion tensor imaging was obtained at 3 T in 58 preterm infants with mean (standard deviation) gestational age at birth 29.75 (1.44) weeks, and at scanning at 41.1 (2.09) weeks. Imaging was performed at a single centre. Voxel-wise statistical analysis of the fractional anisotropy data was carried out using tract-based spatial statistics to test for differences in fractional anisotropy between infants treated with recombinant human erythropoietin and placebo using a general linear model, covarying for the gestational age at birth and the corrected gestational age at the time of the scan. Preterm infants treated with recombinant human erythropoietin demonstrated increased fractional anisotropy in the genu and splenium of the corpus callosum, the anterior and posterior limbs of the internal capsule, and the corticospinal tract bilaterally. Mean fractional anisotropy was significantly higher in preterm infants treated with recombinant human erythropoietin than in those treated with placebo (P < 0.001). We conclude that early recombinant human erythropoietin administration improves white matter development in preterm infants assessed by diffusion tensor imaging and tract-based spatial statistics.
Collapse
Affiliation(s)
- Ruth L O'Gorman
- 1 MR Research Centre, Children's University Hospital of Zurich, Switzerland
| | - Hans U Bucher
- 2 Department of Neonatology, University Hospital of Zurich, Switzerland
| | - Ulrike Held
- 3 Horten Centre, University Hospital of Zurich, Switzerland
| | - Brigitte M Koller
- 2 Department of Neonatology, University Hospital of Zurich, Switzerland
| | - Petra S Hüppi
- 3 Horten Centre, University Hospital of Zurich, Switzerland 4 Division of Development and Growth, Department of Paediatrics, University of Geneva, Switzerland
| | | | | |
Collapse
|
88
|
Kersbergen KJ, Leemans A, Groenendaal F, van der Aa NE, Viergever MA, de Vries LS, Benders MJ. Microstructural brain development between 30 and 40 weeks corrected age in a longitudinal cohort of extremely preterm infants. Neuroimage 2014; 103:214-224. [DOI: 10.1016/j.neuroimage.2014.09.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
|
89
|
Yotsumoto Y, Chang LH, Ni R, Pierce R, Andersen GJ, Watanabe T, Sasaki Y. White matter in the older brain is more plastic than in the younger brain. Nat Commun 2014; 5:5504. [PMID: 25407566 PMCID: PMC4238045 DOI: 10.1038/ncomms6504] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 10/08/2014] [Indexed: 11/09/2022] Open
Abstract
Visual perceptual learning (VPL) with younger subjects is associated with changes in functional activation of the early visual cortex. Although overall brain properties decline with age, it is unclear whether these declines are associated with visual perceptual learning. Here we use diffusion tensor imaging to test whether changes in white matter are involved in VPL for older adults. After training on a texture discrimination task for three daily sessions, both older and younger subjects show performance improvements. While the older subjects show significant changes in fractional anisotropy (FA) in the white matter beneath the early visual cortex after training, no significant change in FA is observed for younger subjects. These results suggest that the mechanism for VPL in older individuals is considerably different from that in younger individuals and that VPL of older individuals involves reorganization of white matter.
Collapse
Affiliation(s)
- Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Komaba 3-8-1, Meguroku, Tokyo 153-8902, Japan
| | - Li-Hung Chang
- 1] Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, Rhode Island 02912, USA [2] Education Center for Humanities and Social Sciences, School of Humanities and Social Sciences, National Yang Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City 112, Taiwan
| | - Rui Ni
- Department of Psychology, University of California Riverside, 900 University Avenue, Riverside, California 92521, USA
| | - Russell Pierce
- Department of Psychology, University of California Riverside, 900 University Avenue, Riverside, California 92521, USA
| | - George J Andersen
- Department of Psychology, University of California Riverside, 900 University Avenue, Riverside, California 92521, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, Rhode Island 02912, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
90
|
Baldoli C, Scola E, Della Rosa PA, Pontesilli S, Longaretti R, Poloniato A, Scotti R, Blasi V, Cirillo S, Iadanza A, Rovelli R, Barera G, Scifo P. Maturation of preterm newborn brains: a fMRI–DTI study of auditory processing of linguistic stimuli and white matter development. Brain Struct Funct 2014; 220:3733-51. [DOI: 10.1007/s00429-014-0887-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/08/2014] [Indexed: 11/30/2022]
|
91
|
Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L. The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 2014; 276:48-71. [PMID: 24378955 DOI: 10.1016/j.neuroscience.2013.12.044] [Citation(s) in RCA: 494] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- J Dubois
- INSERM, U992, Cognitive Neuroimaging Unit, Gif-sur-Yvette, France; CEA, NeuroSpin Center, UNICOG, Gif-sur-Yvette, France; University Paris Sud, Orsay, France.
| | - G Dehaene-Lambertz
- INSERM, U992, Cognitive Neuroimaging Unit, Gif-sur-Yvette, France; CEA, NeuroSpin Center, UNICOG, Gif-sur-Yvette, France; University Paris Sud, Orsay, France
| | - S Kulikova
- CEA, NeuroSpin Center, UNIACT, Gif-sur-Yvette, France; INSERM, U663, Child epilepsies and brain plasticity, Paris, France; University Paris Descartes, Paris, France
| | - C Poupon
- CEA, NeuroSpin Center, UNIRS, Gif-sur-Yvette, France
| | - P S Hüppi
- Geneva University Hospitals, Department of Pediatrics, Division of Development and Growth, Geneva, Switzerland; Harvard Medical School, Children's Hospital, Department of Neurology, Boston, MA, USA
| | - L Hertz-Pannier
- CEA, NeuroSpin Center, UNIACT, Gif-sur-Yvette, France; INSERM, U663, Child epilepsies and brain plasticity, Paris, France; University Paris Descartes, Paris, France
| |
Collapse
|
92
|
Ou X, Glasier CM, Ramakrishnaiah RH, Angtuaco TL, Mulkey SB, Ding Z, Kaiser JR. Diffusion tensor imaging in extremely low birth weight infants managed with hypercapnic vs. normocapnic ventilation. Pediatr Radiol 2014; 44:980-6. [PMID: 24671721 PMCID: PMC4204475 DOI: 10.1007/s00247-014-2946-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/27/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Permissive hypercapnia is a ventilatory strategy used to prevent lung injury in ventilated extremely low birth weight (ELBW, birth weight ≤1,000 g) infants. However, there is retrospective evidence showing that high CO2 is associated with brain injury. OBJECTIVE The objective of this study was to compare brain white matter development at term-equivalent age in ELBW infants randomized to hypercapnic vs. normocapnic ventilation during the first week of life and in healthy non-ventilated term newborns. MATERIALS AND METHODS Twenty-two ELBW infants from a randomized controlled trial were included in this study; 11 received hypercapnic (transcutaneous PCO2 [tcPCO2] 50-60 mmHg) ventilation and 11 normocapnic (tcPCO2 35-45 mmHg) ventilation during the first week of life while still intubated. In addition, ten term healthy newborns served as controls. Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed at term-equivalent age for the ELBW infants and at approximately 2 weeks of age for the control infants. White matter injury on conventional MRI was graded in the ELBW and control infants using a scoring system adopted from literature. Tract-based spatial statistics (TBSS) was used to evaluate for differences in DTI measured fractional anisotropy (FA, spatially normalized to a customized template) among the ELBW and term control infants. RESULTS Conventional MRI white matter scores were not different (7.3 ± 1.7 vs. 6.9 ± 1.4, P = 0.65) between the hypercapnic and normocapnic ELBW infants. TBSS analysis did not show significant differences (P < 0.05, corrected) between the two ELBW infant groups, although before multiple comparisons correction, hypercapnic infants had many regions with lower FA and no regions with higher FA (P < 0.05, uncorrected) compared to normocapnic infants. When compared to the control infants, normocapnic ELBW infants had a few small regions with significantly lower FA, while hypercapnic ELBW infants had more widespread regions with significantly lower FA (P < 0.05, fully corrected for multiple comparisons). CONCLUSIONS Normocapnic ventilation vs. permissive hypercapnia may be associated with improved white matter development at term-equivalent age in ELBW infants. This effect, however, was small and was not apparent on conventional MRI. Further research is needed using larger sample sizes to assess if permissive hypercapnic ventilation in ELBW infants is associated with worse white matter development.
Collapse
Affiliation(s)
- Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA,
| | | | | | | | | | | | | |
Collapse
|
93
|
Drobyshevsky A, Jiang R, Derrick M, Luo K, Tan S. Functional correlates of central white matter maturation in perinatal period in rabbits. Exp Neurol 2014; 261:76-86. [PMID: 24997240 DOI: 10.1016/j.expneurol.2014.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022]
Abstract
Anisotropy indices derived from diffusion tensor imaging (DTI) are being increasingly used as biomarkers of central WM structural maturation, myelination and even functional development. Our hypothesis was that the rate of functional changes in central WM tracts directly reflects rate of changes in structural development as determined by DTI indices. We examined structural and functional development of four major central WM tracts with different maturational trajectories, including internal capsule (IC), corpus callosum (CC), fimbria hippocampi (FH) and anterior commissure (AC). Rabbits were chosen due to perinatal brain development being similar to humans, and four time points were studied: P1, P11, P18 and adults. Imaging parameters of structural maturation included fractional anisotropy (FA), mean and directional diffusivities derived from DTI, and T2 relaxation time. Axonal composition and degree of myelination were confirmed on electron microscopy. To assess functional maturation, conduction velocity was measured in myelinated and non-myelinated fibers by electrophysiological recordings of compound action potential in perfused brain slices. Diffusion indices and T2 relaxation time in rabbits followed a sigmoid curve during development similar to that for humans, with active changes even at premyelination stage. The shape of the developmental curve was different between the fiber tracts, with later onset but steeper rapid phase of development in IC and FH than in CC. The structural development was not directly related to myelination or to functional development. Functional properties in projection (IC) and limbic tracts (FH) matured earlier than in associative and commissural tracts (CC and AC). The rapid phase of changes in diffusion anisotropy and T2 relaxation time coincided with the development of functional responses and myelination in IC and FH between the second and third weeks of postnatal development in rabbits. In these two tracts, MRI indices could serve as surrogate markers of the early stage of myelination. However, the discordance between developmental change of diffusion indices, myelination and functional properties in CC and AC cautions against equating DTI index changes as biomarkers for myelination in all tracts.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA.
| | - Rugang Jiang
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Matthew Derrick
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Kehuan Luo
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Sidhartha Tan
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| |
Collapse
|
94
|
Development of the optic radiations and visual function after premature birth. Cortex 2014; 56:30-7. [DOI: 10.1016/j.cortex.2012.02.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/11/2012] [Accepted: 02/20/2012] [Indexed: 11/20/2022]
|
95
|
Tymofiyeva O, Hess CP, Xu D, Barkovich AJ. Structural MRI connectome in development: challenges of the changing brain. Br J Radiol 2014; 87:20140086. [PMID: 24827379 DOI: 10.1259/bjr.20140086] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
MRI connectomics is an emerging approach to study the brain as a network of interconnected brain regions. Understanding and mapping the development of the MRI connectome may offer new insights into the development of brain connectivity and plasticity, ultimately leading to improved understanding of normal development and to more effective diagnosis and treatment of developmental disorders. In this review, we describe the attempts made to date to map the whole-brain structural MRI connectome in the developing brain and pay a special attention to the challenges associated with the rapid changes that the brain is undergoing during maturation. The two main steps in constructing a structural brain network are (i) choosing connectivity measures that will serve as the network "edges" and (ii) finding an appropriate way to divide the brain into regions that will serve as the network "nodes". We will discuss how these two steps are usually performed in developmental studies and the rationale behind different strategies. Changes in local and global network properties that have been described during maturation in neonates and children will be reviewed, along with differences in network topology between typically and atypically developing subjects, for example, owing to pre-mature birth or hypoxic ischaemic encephalopathy. Finally, future directions of connectomics will be discussed, addressing important steps necessary to advance the study of the structural MRI connectome in development.
Collapse
Affiliation(s)
- O Tymofiyeva
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
96
|
Fischi-Gómez E, Vasung L, Meskaldji DE, Lazeyras F, Borradori-Tolsa C, Hagmann P, Barisnikov K, Thiran JP, Hüppi PS. Structural Brain Connectivity in School-Age Preterm Infants Provides Evidence for Impaired Networks Relevant for Higher Order Cognitive Skills and Social Cognition. Cereb Cortex 2014; 25:2793-805. [DOI: 10.1093/cercor/bhu073] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
97
|
Foley JM, Salat DH, Stricker NH, Zink TA, Grande LJ, McGlinchey RE, Milberg WP, Leritz EC. Interactive effects of apolipoprotein E4 and diabetes risk on later myelinating white matter regions in neurologically healthy older aged adults. Am J Alzheimers Dis Other Demen 2014; 29:222-35. [PMID: 24381137 PMCID: PMC4356251 DOI: 10.1177/1533317513517045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Possession of the apolipoprotein E4 (APOE4) allele and diabetes risk are independently related to reduced white matter (WM) integrity that may contribute to the development of Alzheimer's disease (AD). The purpose of this study is to examine the interactive effects of APOE4 and diabetes risk on later myelinating WM regions among healthy elderly individuals at risk of AD. A sample of 107 healthy elderly (80 APOE4-/27 APOE4+) individuals underwent structural magnetic resonance imaging/diffusion tensor imaging (DTI). Data were prepared using Tract-Based Spatial Statistics, and a priori regions of interest (ROIs) were extracted from T1-based WM parcellations. Regions of interest included later myelinating frontal/temporal/parietal WM regions and control regions measured by fractional anisotropy (FA). There were no APOE group differences in DTI for any ROI. Within the APOE4 group, we found negative relationships between hemoglobin A1c/fasting glucose and APOE4 on FA for all later myelinating WM regions but not for early/middle myelinating control regions. Results also showed APOE4/diabetes risk interactions for WM underlying supramarginal, superior temporal, precuneus, superior parietal, and superior frontal regions. Results suggest interactive effects of APOE4 and diabetes risk on later myelinating WM regions, which supports preclinical detection of AD among this particularly susceptible subgroup.
Collapse
Affiliation(s)
- Jessica M. Foley
- Psychology Service, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David H. Salat
- Psychology Service, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Nikki H. Stricker
- Psychology Service, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Tyler A. Zink
- Psychology Service, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Laura J. Grande
- Psychology Service, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Regina E. McGlinchey
- Psychology Service, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - William P. Milberg
- Psychology Service, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Elizabeth C. Leritz
- Psychology Service, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Division of Aging, Brigham & Women’s Hospital, Boston, MA, USA
| |
Collapse
|
98
|
Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. Neuroimage 2014; 96:288-99. [PMID: 24680870 DOI: 10.1016/j.neuroimage.2014.03.057] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/19/2014] [Accepted: 03/21/2014] [Indexed: 01/28/2023] Open
Abstract
Brain white matter connections have become a focus of major interest with important maturational processes occurring in newborns. To study the complex microstructural developmental changes in-vivo, it is imperative that non-invasive neuroimaging approaches are developed for this age-group. Multi-b-value diffusion weighted imaging data were acquired in 13 newborns, and the biophysical compartment diffusion models CHARMED-light and NODDI, providing new microstructural parameters such as intra-neurite volume fraction (νin) and neurite orientation dispersion index (ODI), were developed for newborn data. Comparative analysis was performed and twenty ROIs in the white matter were investigated. Diffusion tensor imaging and both biophysical compartment models highlighted the compact and oriented structure of the corpus-callosum with the highest FA and νin values and the smallest ODI values. We could clearly differentiate, using the FA, νin and ODI, the posterior and anterior internal capsule representing similar cellular structure but with different maturation (i.e. partially myelinated and absence of myelin, respectively). Late maturing regions (external capsule and periventricular crossroads of pathways) had lower νin values, but displayed significant differences in ODI. The compartmented models CHARMED-light and NODDI bring new indices corroborating the cellular architectures, with the lowest νin, reflecting the late maturation of areas with thin non-myelinated fibers, and with highest ODI indicating the presence of fiber crossings and fanning. The application of biophysical compartment diffusion models adds new insights to the brain white matter development in vivo.
Collapse
|
99
|
Tusor N, Arichi T, Counsell SJ, Edwards AD. Brain development in preterm infants assessed using advanced MRI techniques. Clin Perinatol 2014; 41:25-45. [PMID: 24524445 DOI: 10.1016/j.clp.2013.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Infants who are born preterm have a high incidence of neurocognitive and neurobehavioral abnormalities, which may be associated with impaired brain development. Advanced magnetic resonance imaging (MRI) approaches, such as diffusion MRI (d-MRI) and functional MRI (fMRI), provide objective and reproducible measures of brain development. Indices derived from d-MRI can be used to provide quantitative measures of preterm brain injury. Although fMRI of the neonatal brain is currently a research tool, future studies combining d-MRI and fMRI have the potential to assess the structural and functional properties of the developing brain and its response to injury.
Collapse
Affiliation(s)
- Nora Tusor
- Centre for the Developing Brain, Department of Perinatal Imaging, St Thomas' Hospital, King's College London, Westminster Bridge Road, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, Department of Perinatal Imaging, St Thomas' Hospital, King's College London, Westminster Bridge Road, London SE1 7EH, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging, St Thomas' Hospital, King's College London, Westminster Bridge Road, London SE1 7EH, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging, St Thomas' Hospital, King's College London, Westminster Bridge Road, London SE1 7EH, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
100
|
Miao X, Qi M, Cui S, Guan Y, Jia Z, Hong X, Jiang Y. Assessing sequence and relationship of regional maturation in corpus callosum and internal capsule in preterm and term newborns by diffusion-tensor imaging. Int J Dev Neurosci 2014; 34:42-7. [PMID: 24480665 DOI: 10.1016/j.ijdevneu.2014.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/23/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Diffusion-tensor imaging (DTI) can be used to investigate water diffusion in living tissue. OBJECTIVE To investigate sequence and relationship of regional maturation in corpus callosum (CC) and internal capsule (IC) in preterm and term. METHODS DTI was performed on 11 preterm infants at less than 37 weeks of corrected gestational age (group I), 21 preterm infants at equivalent-term (group II), 11 term infants during neonatal period (group III). Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in: anterior limb of IC (ALIC), posterior limb of IC (PLIC), genu and splenium of CC. RESULTS FA in splenium was more than that in other regions except genu of group I. Differences of FA between genu and PLIC were significant only in group III. ADC in genu was more than that in other regions but in splenium of groups I and II. Differences of ADC between splenium and ALIC were insignificant except group II. Higher FA and lower ADC in PLIC were gotten compared with those in ALIC. Correlations of FA and of ADC existed in CC and IC. CONCLUSION Maturation sequence was splenium followed by genu, then by PLIC and last by ALIC in term at neonatal period. Genu's maturation in preterm at equivalent-term was hindered. Regional maturation's correlations existed in CC and IC.
Collapse
Affiliation(s)
- XiaoLin Miao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - Min Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - ShuDong Cui
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China.
| | - YaFei Guan
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - ZhenYu Jia
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - XunNing Hong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - YanNi Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| |
Collapse
|