51
|
Nenadic I, Yotter RA, Sauer H, Gaser C. Cortical surface complexity in frontal and temporal areas varies across subgroups of schizophrenia. Hum Brain Mapp 2013; 35:1691-9. [PMID: 23813686 DOI: 10.1002/hbm.22283] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/09/2013] [Accepted: 02/14/2013] [Indexed: 01/03/2023] Open
Abstract
Schizophrenia is assumed to be a neurodevelopmental disorder, which might involve disturbed development of the cerebral cortex, especially in frontal and medial temporal areas. Based on a novel spherical harmonics approach to measuring complexity of cortical folding, we applied a measure based on fractal dimension (FD) to investigate the heterogeneity of regional cortical surface abnormalities across subgroups of schizophrenia defined by symptom profiles. A sample of 87 patients with DSM-IV schizophrenia was divided into three subgroups (based on symptom profiles) with predominantly negative (n = 31), disorganized (n = 23), and paranoid (n = 33) symptoms and each compared to 108 matched healthy controls. While global FD measures were reduced in the right hemisphere of the negative and paranoid subgroups, regional analysis revealed marked heterogeneity of regional FD alterations. The negative subgroup showed most prominent reductions in left anterior cingulate, superior frontal, frontopolar, as well as right superior frontal and superior parietal cortices. The disorganized subgroup showed reductions in bilateral ventrolateral/orbitofrontal cortices, and several increases in the left hemisphere, including inferior parietal, middle temporal, and midcingulate areas. The paranoid subgroup showed only few changes, including decreases in the right superior parietal and left fusiform region, and increase in the left posterior cingulate cortex. Our findings suggest regional heterogeneity of cortical folding complexity, which might be related to biological subgroups of schizophrenia with differing degrees of altered cortical developmental pathology.
Collapse
Affiliation(s)
- Igor Nenadic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | |
Collapse
|
52
|
Thompson DK, Adamson C, Roberts G, Faggian N, Wood SJ, Warfield SK, Doyle LW, Anderson PJ, Egan GF, Inder TE. Hippocampal shape variations at term equivalent age in very preterm infants compared with term controls: perinatal predictors and functional significance at age 7. Neuroimage 2013; 70:278-87. [PMID: 23296179 PMCID: PMC3584256 DOI: 10.1016/j.neuroimage.2012.12.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/14/2012] [Accepted: 12/16/2012] [Indexed: 11/30/2022] Open
Abstract
The hippocampus undergoes rapid growth and development in the perinatal months. Infants born very preterm (VPT) are vulnerable to hippocampal alterations, and can provide a model of disturbed early hippocampal development. Hippocampal shape alterations have previously been associated with memory impairment, but have never been investigated in infants. The aims of this study were to determine hippocampal shape differences between 184 VPT infants (<30 weeks' gestation or <1250 g at birth) and 32 full-term infants, effects of perinatal factors, and associations between infant hippocampal shape and volume, and 7 year verbal and visual memory (California Verbal Learning Test - Children's Version and Dot Locations). Infants underwent 1.5 T magnetic resonance imaging at term equivalent age. Hippocampi were segmented, and spherical harmonics-point distribution model shape analysis was undertaken. VPT infants' hippocampi were less infolded than full-term infants, being less curved toward the midline and less arched superior-inferiorly. Straighter hippocampi were associated with white matter injury and postnatal corticosteroid exposure. There were no significant associations between infant hippocampal shape and 7 year memory measures. However, larger infant hippocampal volumes were associated with better verbal memory scores. Altered hippocampal shape in VPT infants at term equivalent age may reflect delayed or disrupted development. This study provides further insight into early hippocampal development and the nature of hippocampal abnormalities in prematurity.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Golembo-Smith S, Walder DJ, Daly MP, Mittal VA, Kline E, Reeves G, Schiffman J. The presentation of dermatoglyphic abnormalities in schizophrenia: a meta-analytic review. Schizophr Res 2012; 142:1-11. [PMID: 23116885 PMCID: PMC3502669 DOI: 10.1016/j.schres.2012.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 11/21/2022]
Abstract
Within a neurodevelopmental model of schizophrenia, prenatal developmental deviations are implicated as early signs of increased risk for future illness. External markers of central nervous system maldevelopment may provide information regarding the nature and timing of prenatal disruptions among individuals with schizophrenia. One such marker is dermatoglyphic abnormalities (DAs) or unusual epidermal ridge patterns. Studies targeting DAs as a potential sign of early developmental disruption have yielded mixed results with regard to the strength of the association between DAs and schizophrenia. The current study aimed to resolve these inconsistencies by conducting a meta-analysis examining the six most commonly cited dermatoglyphic features among individuals with diagnoses of schizophrenia. Twenty-two studies published between 1968 and 2012 were included. Results indicated significant but small effects for total finger ridge count and total A-B ridge count, with lower counts among individuals with schizophrenia relative to controls. Other DAs examined in the current meta-analysis did not yield significant effects. Total finger ridge count and total A-B ridge count appear to yield the most reliable dermatoglyphic differences between individuals with and without schizophrenia.
Collapse
|
54
|
Narayanaswamy JC, Venkatasubramanian G, Gangadhar BN. Neuroimaging studies in schizophrenia: an overview of research from Asia. Int Rev Psychiatry 2012; 24:405-16. [PMID: 23057977 DOI: 10.3109/09540261.2012.704872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuroimaging studies in schizophrenia help clarify the neural substrates underlying the pathogenesis of this neuropsychiatric disorder. Contemporary brain imaging in schizophrenia is predominated by magnetic resonance imaging (MRI)-based research approaches. This review focuses on the various imaging studies from India and their relevance to the understanding of brain abnormalities in schizophrenia. The existing studies are predominantly comprised of structural MRI reports involving region-of-interest and voxel-based morphometry approaches, magnetic resonance spectroscopy and single-photon emission computed tomography/positron emission tomography (SPECT/PET) studies. Most of these studies are significant in that they have evaluated antipsychotic-naïve schizophrenia patients--a relatively difficult population to obtain in contemporary research. Findings of these studies offer robust support to the existence of significant brain abnormalities at very early stages of the disorder. In addition, theoretically relevant relationships between these brain abnormalities and developmental aberrations suggest possible neurodevelopmental basis for these brain deficits.
Collapse
Affiliation(s)
- Janardhanan C Narayanaswamy
- Schizophrenia Clinic, Department of Psychiatry, Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | |
Collapse
|
55
|
Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage 2012; 73:239-54. [PMID: 22846632 DOI: 10.1016/j.neuroimage.2012.06.081] [Citation(s) in RCA: 1740] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 06/08/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022] Open
Abstract
Diffusion-weighted MRI (DW-MRI) has been increasingly used in imaging neuroscience over the last decade. An early form of this technique, diffusion tensor imaging (DTI) was rapidly implemented by major MRI scanner companies as a scanner selling point. Due to the ease of use of such implementations, and the plausibility of some of their results, DTI was leapt on by imaging neuroscientists who saw it as a powerful and unique new tool for exploring the structural connectivity of human brain. However, DTI is a rather approximate technique, and its results have frequently been given implausible interpretations that have escaped proper critique and have appeared misleadingly in journals of high reputation. In order to encourage the use of improved DW-MRI methods, which have a better chance of characterizing the actual fiber structure of white matter, and to warn against the misuse and misinterpretation of DTI, we review the physics of DW-MRI, indicate currently preferred methodology, and explain the limits of interpretation of its results. We conclude with a list of 'Do's and Don'ts' which define good practice in this expanding area of imaging neuroscience.
Collapse
Affiliation(s)
- Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | | | | |
Collapse
|
56
|
Michel TM, Sheldrick AJ, Camara S, Grünblatt E, Schneider F, Riederer P. Alteration of the pro-oxidant xanthine oxidase (XO) in the thalamus and occipital cortex of patients with schizophrenia. World J Biol Psychiatry 2011; 12:588-97. [PMID: 21073395 DOI: 10.3109/15622975.2010.526146] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Mounting evidence shows that oxidative stress (OS) and the purine/adenosine system play a key role in the pathophysiology of schizophrenia. Lately, our group pointed out that not only antioxidants, but also the prooxidant system plays an important role in neuro-psychiatric disorders. Xanthine oxidase (XO) is an enzyme of special interest in this context, since it acts as a prooxidant, but its main product is a vastly important antioxidant, uric acid (UA). Furthermore, XO plays major part in the purine/adenosine metabolism, which has been hypothesised to play a role in schizophrenia as well. METHODS We examined the activity of XO in the striato-cortico-limbic system of schizophrenic patients (SP) and controls using a commercially available activity assay. RESULTS We found decreased activity of XO in the occipital cortex and thalamus of patients with psychosis. Furthermore, XO shows a significant positive correlation with chlorpromazine equivalents in the putamen and the temporal cortex. CONCLUSIONS Nevertheless, our results might suggest a downregulation of cellular defence mechanisms in schizophrenia in several brain regions, which could account for neuronal alterations which have been described before. This demonstrates that more research is needed to fully understand the role of the complex enzyme XO in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Tanja Maria Michel
- Department of Psychiatry and Psychotherapy, RWTH University Aachen, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
57
|
Haley GE, Kroenke C, Schwartz D, Kohama SG, Urbanski HF, Raber J. Hippocampal M1 receptor function associated with spatial learning and memory in aged female rhesus macaques. AGE (DORDRECHT, NETHERLANDS) 2011; 33:309-320. [PMID: 20890730 PMCID: PMC3168603 DOI: 10.1007/s11357-010-9184-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/03/2010] [Indexed: 05/29/2023]
Abstract
Of the acetylcholine muscarinic receptors, the type 1 (M1) and type 2 (M2) receptors are expressed at the highest levels in the prefrontal cortex (PFC) and hippocampus, brain regions important for cognition. As equivocal findings of age-related changes of M1 and M2 in the nonhuman primate brain have been reported, we first assessed age-related changes in M1 and M2 in the PFC and hippocampus using saturation binding assays. Maximum M1 receptor binding, but not affinity of M1 receptor binding, decreased with age. In contrast, the affinity of M2 receptor binding, but not maximum M2 receptor binding, increased with age. To determine if in the elderly cognitive performance is associated with M1 or M2 function, we assessed muscarinic function in elderly female rhesus macaques in vivo using a scopolamine challenge pharmacological magnetic resonance imaging and in vitro using saturation binding assays. Based on their performance in a spatial maze, the animals were classified as good spatial performers (GSP) or poor spatial performers (PSP). In the hippocampus, but not PFC, the GSP group showed a greater change in T(2)*-weighted signal intensity after scopolamine challenge than the PSP group. The maximum M1 receptor binding and receptor binding affinity was greater in the GSP than the PSP group, but no group difference was found in M2 receptor binding. Parameters of circadian activity positively correlated with the difference in T(2)*-weighted signal intensity before and after the challenge, the maximum M1 receptor binding, and the M1 receptor binding affinity. Thus, while in rhesus macaques, there are age-related decreases in M1 and M2 receptor binding, in aged females, hippocampal M1, but not M2, receptor function is associated with spatial learning and memory and circadian activity.
Collapse
Affiliation(s)
- Gwendolen E. Haley
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| | - Chris Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| | - Daniel Schwartz
- Portland Veterans Administration Medical Center, Division of Psychiatry, Oregon Health and Science University, Portland, OR 97239 USA
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| | - Jacob Raber
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| |
Collapse
|
58
|
Adriano F, Caltagirone C, Spalletta G. Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. Neuroscientist 2011; 18:180-200. [PMID: 21531988 DOI: 10.1177/1073858410395147] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several magnetic resonance imaging studies have reported hippocampal volume reduction in patients with schizophrenia, but other studies have reported contrasting results. In this review and meta-analysis, the authors aim to clarify whether a reduction in hippocampal volume characterizes patients with schizophrenia by considering illness phase (chronic and first episode) and hippocampus side separately. They made a detailed literature search for studies reporting physical volumetric hippocampal measures of patients with schizophrenia and healthy control (HC) participants and found 44 studies that were eligible for meta-analysis. Individual meta-analyses were also performed on 13 studies of first-episode patients and on 22 studies of chronic patients. The authors also detected any different findings when only males or both males and females were considered. Finally, additional meta-analyses and analyses of variance investigated the role of the factors "illness phase" and "side" on hippocampal volume reduction. Overall, the patient group showed significant bilateral hippocampal volume reduction compared with HC. Interestingly, first-episode and chronic patients showed same-size hippocampal volume reduction. Moreover, the left hippocampus was smaller than the right hippocampus in patients and HC. This review and meta-analysis raises the question about whether hippocampal volume reduction in schizophrenia is of neurodevelopmental origin. Future studies should specifically investigate this issue.
Collapse
Affiliation(s)
- Fulvia Adriano
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | |
Collapse
|
59
|
Abdul-Rahman MF, Qiu A, Sim K. Regionally specific white matter disruptions of fornix and cingulum in schizophrenia. PLoS One 2011; 6:e18652. [PMID: 21533181 PMCID: PMC3077390 DOI: 10.1371/journal.pone.0018652] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/12/2011] [Indexed: 11/25/2022] Open
Abstract
Limbic circuitry disruptions have been implicated in the psychopathology and cognitive deficits of schizophrenia, which may involve white matter disruptions of the major tracts of the limbic system, including the fornix and the cingulum. Our study aimed to investigate regionally specific abnormalities of the fornix and cingulum in schizophrenia using diffusion tensor imaging (DTI). We determined the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) profiles along the fornix and cingulum tracts using a fibertracking technique and a brain mapping algorithm, the large deformation diffeomorphic metric mapping (LDDMM), in the DTI scans of 33 patients with schizophrenia and 31 age-, gender-, and handedness-matched healthy controls. We found that patients with schizophrenia showed reduction in FA and increase in RD in bilateral fornix, and increase in RD in left anterior cingulum when compared to healthy controls. In addition, tract-based analysis revealed specific loci of these white matter differences in schizophrenia, that is, FA reductions and AD and RD increases occur in the region of the left fornix further from the hippocampus, FA reductions and RD increases occur in the rostral portion of the left anterior cingulum, and RD and AD increases occur in the anterior segment of the left middle cingulum. In patients with schizophrenia, decreased FA in the specific loci of the left fornix and increased AD in the right cingulum adjoining the hippocampus correlated with greater severity of psychotic symptoms. These findings support precise disruptions of limbic-cortical integrity in schizophrenia and disruption of these structural networks may contribute towards the neural basis underlying the syndrome of schizophrenia and clinical symptomatology.
Collapse
Affiliation(s)
| | - Anqi Qiu
- Division of Bioengineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Center, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail:
| | - Kang Sim
- Research Department, Institute of Mental Health, Singapore, Singapore
- Department of General Psychiatry, Institute of Mental Health, Singapore, Singapore
| |
Collapse
|
60
|
Yang X, Goh A, Qiu A. Locally Linear Diffeomorphic Metric Embedding (LLDME) for surface-based anatomical shape modeling. Neuroimage 2011; 56:149-61. [PMID: 21281721 DOI: 10.1016/j.neuroimage.2011.01.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 11/19/2022] Open
Abstract
This paper presents the algorithm, Locally Linear Diffeomorphic Metric Embedding (LLDME), for constructing efficient and compact representations of surface-based brain shapes whose variations are characterized using Large Deformation Diffeomorphic Metric Mapping (LDDMM). Our hypothesis is that the shape variations in the infinite-dimensional diffeomorphic metric space can be captured by a low-dimensional space. To do so, traditional Locally Linear Embedding (LLE) that reconstructs a data point from its neighbors in Euclidean space is extended to LLDME that requires interpolating a shape from its neighbors in the infinite-dimensional diffeomorphic metric space. This is made possible through the conservation law of momentum derived from LDDMM. It indicates that initial momentum, a linear transformation of the initial velocity of diffeomorphic flows, at a fixed template shape determines the geodesic connecting the template to a subject's shape in the diffeomorphic metric space and becomes the shape signature of an individual subject. This leads to the compact linear representation of the nonlinear diffeomorphisms in terms of the initial momentum. Since the initial momentum is in a linear space, a shape can be approximated by a linear combination of its neighbors in the diffeomorphic metric space. In addition, we provide efficient computations for the metric distance between two shapes through the first order approximation of the geodesic using the initial momentum as well as for the reconstruction of a shape given its low-dimensional Euclidean coordinates using the geodesic shooting with the initial momentum as the initial condition. Experiments are performed on the hippocampal shapes of 302 normal subjects across the whole life span (18-94years). Compared with Principal Component Analysis and ISOMAP, LLDME provides the most compact and efficient representation of the age-related hippocampal shapes. Even though the hippocampal volumes among young adults are as variable as those in older adults, LLDME disentangles the hippocampal local shape variation from the hippocampal size and thus reveals the nonlinear relationship of the hippocampal morphometry with age.
Collapse
Affiliation(s)
- Xianfeng Yang
- Division of Bioengineering, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|