51
|
Fluid intelligence and the locus coeruleus-norepinephrine system. Proc Natl Acad Sci U S A 2021; 118:2110630118. [PMID: 34764223 DOI: 10.1073/pnas.2110630118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
The last decade has seen significant progress identifying genetic and brain differences related to intelligence. However, there remain considerable gaps in our understanding of how cognitive mechanisms that underpin intelligence map onto various brain functions. In this article, we argue that the locus coeruleus-norepinephrine system is essential for understanding the biological basis of intelligence. We review evidence suggesting that the locus coeruleus-norepinephrine system plays a central role at all levels of brain function, from metabolic processes to the organization of large-scale brain networks. We connect this evidence with our executive attention view of working-memory capacity and fluid intelligence and present analyses on baseline pupil size, an indicator of locus coeruleus activity. Using a latent variable approach, our analyses showed that a common executive attention factor predicted baseline pupil size. Additionally, the executive attention function of disengagement--not maintenance--uniquely predicted baseline pupil size. These findings suggest that the ability to control attention may be important for understanding how cognitive mechanisms of fluid intelligence map onto the locus coeruleus-norepinephrine system. We discuss how further research is needed to better understand the relationships between fluid intelligence, the locus coeruleus-norepinephrine system, and functionally organized brain networks.
Collapse
|
52
|
The central executive network and executive function in healthy and persons with schizophrenia groups: a meta-analysis of structural and functional MRI. Brain Imaging Behav 2021; 16:1451-1464. [PMID: 34775552 DOI: 10.1007/s11682-021-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
This meta-analysis evaluated the extent to which executive function can be understood with structural and functional magnetic resonance imaging. Studies included structural in schizophrenia (k = 8; n = 241) and healthy controls (k = 12; n = 1660), and functional in schizophrenia (k = 4; n = 104) and healthy controls (k = 12; n = 712). Results revealed a positive association in the brain behavior relationship when pooled across schizophrenia and control samples for structural (pr = 0.27) and functional (pr = 0.29) modalities. Subgroup analyses revealed no significant difference for functional neuroimaging (pr = .43, 95%CI = -.08-.77, p = .088) but with structural neuroimaging (pr = .37, 95%CI = -.08-.69, p = .015) the association to executive functions is lower in the control group. Subgroup analyses also revealed no significant differences in the strength of the brain-behavior relationship in the schizophrenia group (pr = .59, 95%CI = .58-.61, p = .881) or the control group (pr = 0.19, 95%CI = 0.18-0.19, p = 0.920), suggesting concordance.
Collapse
|
53
|
Lv H, Chen Q, Wei X, Liu C, Zhao P, Wang Z, Yang Z, Gong S, You H, Wang Z. Sound therapy can modulate the functional connectivity of the auditory network. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110323. [PMID: 33838149 DOI: 10.1016/j.pnpbp.2021.110323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023]
Abstract
The functional connectivity of the auditory network is considered to be important in the development of tinnitus. We hypothesized that sound therapy, as a commonly used effective treatment for tinnitus, can modulate the functional connectivity of the auditory network. In this prospective observational study, we recruited 27 tinnitus patients who had undergone 12 weeks of sound therapy and 27 matched healthy controls. For the two groups of subjects, resting-state functional magnetic resonance imaging was acquired both at baseline and at the 12th week. We utilized independent component analysis and seed-based functional connectivity analysis to characterize the connectivity features of the auditory network. Interaction effects between the two groups and the two scans within the auditory network were observed, which were driven by increased functional connectivity in the left primary auditory cortex (PAC) and decreased values in the secondary auditory cortex (SAC) in tinnitus patients after treatment. Increased connections between the auditory network and limbic network, as well as decreased values with the bilateral thalami, were identified. The effects were mainly driven by the functional connectivity alterations of the SAC rather than that of the PAC. Significant positive correlations between the percent improvement in the Tinnitus Handicap Inventory (THI) score and the percentage change rates of functional connectivity between the SAC and bilateral thalami were observed. Our study contributes to the understanding of the mechanism of tinnitus and effective sound therapy, providing evidence to support the theory of a gain adaptation mechanism that quantifies the recovered gating function of the thalamus in tinnitus patients.
Collapse
Affiliation(s)
- Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Chunli Liu
- Department of Otolaryngology, The Affiliated Hospital of Chengde Medical College, Hebei 067000, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhaodi Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Hong You
- Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
54
|
Feasibility of Reconstructing Source Functional Connectivity with Low-Density EEG. Brain Topogr 2021; 34:709-719. [PMID: 34415477 PMCID: PMC8556201 DOI: 10.1007/s10548-021-00866-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/02/2021] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Functional connectivity (FC) is increasingly used as target for neuromodulation and enhancement of performance. A reliable assessment of FC with electroencephalography (EEG) currently requires a laboratory environment with high-density montages and a long preparation time. This study investigated the feasibility of reconstructing source FC with a low-density EEG montage towards a usage in real life applications. METHODS Source FC was reconstructed with inverse solutions and quantified as node degree of absolute imaginary coherence in alpha frequencies. We used simulated coherent point sources as well as two real datasets to investigate the impact of electrode density (19 vs. 128 electrodes) and usage of template vs. individual MRI-based head models on localization accuracy. In addition, we checked whether low-density EEG is able to capture inter-individual variations in coherence strength. RESULTS In numerical simulations as well as real data, a reduction of the number of electrodes led to less reliable reconstructions of coherent sources and of coupling strength. Yet, when comparing different approaches to reconstructing FC from 19 electrodes, source FC obtained with beamformers outperformed sensor FC, FC computed after independent component analysis, and source FC obtained with sLORETA. In particular, only source FC based on beamformers was able to capture neural correlates of motor behavior. CONCLUSION Reconstructions of FC from low-density EEG is challenging, but may be feasible when using source reconstructions with beamformers.
Collapse
|
55
|
Rijpma MG, Shdo SM, Shany-Ur T, Toller G, Kramer JH, Miller BL, Rankin KP. Salience driven attention is pivotal to understanding others' intentions. Cogn Neuropsychol 2021; 38:88-106. [PMID: 33522407 DOI: 10.1080/02643294.2020.1868984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Interpreting others' beliefs, desires and intentions is known as "theory of mind" (ToM), and is often evaluated using simplified measurement tools, which may not correctly reflect the brain circuits that are required for real-life ToM functioning. We aimed to identify the brain structures necessary to correctly infer intentions from realistic scenarios by administering The Awareness of Social Inference Test, Enriched subtest to 47 patients with behavioural variant frontotemporal dementia, 24 patients with progressive supranuclear palsy syndrome, 31 patients with Alzheimer's syndrome, and 77 older healthy controls. Neuroimaging data was analyzed using voxel based morphometry, and participants' understanding of intentions was correlated with voxel-wise and region-of interest data. We found that structural integrity of the cinguloinsular cortex in the salience network (SN) was more pivotal for accurate ToM than previously described, emphasizing the importance of the SN for selectively recognizing and attending to social cues during ToM inferences.
Collapse
Affiliation(s)
- Myrthe G Rijpma
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Suzanne M Shdo
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Tal Shany-Ur
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gianina Toller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
56
|
Zheng A, Church JA. A Developmental Eye Tracking Investigation of Cued Task Switching Performance. Child Dev 2021; 92:1652-1672. [PMID: 33417266 PMCID: PMC8451801 DOI: 10.1111/cdev.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Children perform worse than adults on tests of cognitive flexibility, which is a component of executive function. To assess what aspects of a cognitive flexibility task (cued switching) children have difficulty with, investigators tested where eye gaze diverged over age. Eye-tracking was used as a proxy for attention during the preparatory period of each trial in 48 children ages 8-16 years and 51 adults ages 18-27 years. Children fixated more often and longer on the cued rule, and made more saccades between rule and response options. Behavioral performance correlated with gaze location and saccades. Mid-adolescents were similar to adults, supporting the slow maturation of cognitive flexibility. Lower preparatory control and associated lower cognitive flexibility task performance in development may particularly relate to rule processing.
Collapse
Affiliation(s)
- Annie Zheng
- Washington University in St. Louis School of Medicine
| | | |
Collapse
|
57
|
Rieck JR, Baracchini G, Nichol D, Abdi H, Grady CL. Reconfiguration and dedifferentiation of functional networks during cognitive control across the adult lifespan. Neurobiol Aging 2021; 106:80-94. [PMID: 34256190 DOI: 10.1016/j.neurobiolaging.2021.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/12/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Healthy aging is accompanied by reduced cognitive control and widespread alterations in the underlying brain networks; but the extent to which large-scale functional networks in older age show reduced specificity across different domains of cognitive control is unclear. Here we use cov-STATIS (a multi-table multivariate technique) to examine similarity of functional connectivity during different domains of cognitive control-inhibition, initiation, shifting, and working memory-across the adult lifespan. We report two major findings: (1) Functional connectivity patterns during initiation, inhibition, and shifting were more similar in older ages, particularly for control and default networks, a pattern consistent with dedifferentiation of the neural correlates associated with cognitive control; and (2) Networks exhibited age-related reconfiguration such that frontal, default, and dorsal attention networks were more integrated whereas sub-networks of somato-motor system were more segregated in older age. Together these findings offer new evidence for dedifferentiation and reconfiguration of functional connectivity underlying different aspects of cognitive control in normal aging.
Collapse
Affiliation(s)
- Jenny R Rieck
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
| | - Giulia Baracchini
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Daniel Nichol
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
| | - Hervé Abdi
- The University of Texas at Dallas, Richardson, Texas, USA
| | - Cheryl L Grady
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada; Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
58
|
Houldin E, Fang Z, Ray LB, Stojanoski B, Owen AM, Fogel SM. Reversed and increased functional connectivity in non-REM sleep suggests an altered rather than reduced state of consciousness relative to wake. Sci Rep 2021; 11:11943. [PMID: 34099771 PMCID: PMC8184935 DOI: 10.1038/s41598-021-91211-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
Sleep resting state network (RSN) functional connectivity (FC) is poorly understood, particularly for rapid eye movement (REM), and in non-sleep deprived subjects. REM and non-REM (NREM) sleep involve competing drives; towards hypersynchronous cortical oscillations in NREM; and towards wake-like desynchronized oscillations in REM. This study employed simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) to explore whether sleep RSN FC reflects these opposing drives. As hypothesized, this was confirmed for the majority of functional connections modulated by sleep. Further, changes were directional: e.g., positive wake correlations trended towards negative correlations in NREM and back towards positive correlations in REM. Moreover, the majority did not merely reduce magnitude, but actually either reversed and strengthened in the opposite direction, or increased in magnitude during NREM. This finding supports the notion that NREM is best expressed as having altered, rather than reduced FC. Further, as many of these functional connections comprised “higher-order” RSNs (which have been previously linked to cognition and consciousness), such as the default mode network, this finding is suggestive of possibly concomitant alterations to cognition and consciousness.
Collapse
Affiliation(s)
- Evan Houldin
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,Department of Neuroscience, Western University, 1151 Richmond St. N., London, N6A 3K7, Canada.,Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Zhuo Fang
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, K1H 8M5, Canada
| | - Laura B Ray
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,The Royal's Institute for Mental Health Research, University of Ottawa, 1145 Carling Ave, Ottawa, K1Z 7K4, Canada
| | - Bobby Stojanoski
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada
| | - Adrian M Owen
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,Department of Psychology, Western University, London, N6A 5C2, Canada
| | - Stuart M Fogel
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada. .,University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, K1H 8M5, Canada. .,The Royal's Institute for Mental Health Research, University of Ottawa, 1145 Carling Ave, Ottawa, K1Z 7K4, Canada. .,Department of Psychology, Western University, London, N6A 5C2, Canada. .,School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
59
|
Ghasemi M, Foroutannia A, Babajani‐Feremi A. Characterizing resting-state networks in Parkinson's disease: A multi-aspect functional connectivity study. Brain Behav 2021; 11:e02101. [PMID: 33784022 PMCID: PMC8119826 DOI: 10.1002/brb3.2101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 01/03/2021] [Accepted: 02/21/2021] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Resting-state functional magnetic resonance imaging (Rs-fMRI) can be used to investigate the alteration of resting-state brain networks (RSNs) in patients with Parkinson's disease (PD) when compared with healthy controls (HCs). The aim of this study was to identify the differences between individual RSNs and reveal the most important discriminatory characteristic of RSNs between the HCs and PDs. METHODS This study used Rs-fMRI data of 23 patients with PD and 18 HCs. Group independent component analysis (ICA) was performed, and 23 components were extracted by spatially overlapping the components with a template RSN. The extracted components were used in the following three methods to compare RSNs of PD patients and HCs: (1) a subject-specific score based on group RSNs and a dual-regression approach (namely RSN scores); (2) voxel-wise comparison of the RSNs in the PD patient and HC groups using a nonparametric permutation test; and (3) a hierarchical clustering analysis of RSNs in the PD patient and HC groups. RESULTS The results of RSN scores showed a significant decrease in connectivity in seven ICs in patients with PD compared with HCs, and this decrease was particularly striking on the lateral and medial posterior occipital cortices. The results of hierarchical clustering of the RSNs revealed that the cluster of the default mode network breaks down into the three other clusters in PD patients. CONCLUSION We found various characteristics of the alteration of the RSNs in PD patients compared with HCs. Our results suggest that different characteristics of RSNs provide insights into the biological mechanism of PD.
Collapse
Affiliation(s)
- Mahdieh Ghasemi
- Neural Engineering LaboratoryDepartment of Biomedical EngineeringUniversity of NeyshaburNeyshaburIran
| | - Ali Foroutannia
- Neural Engineering LaboratoryDepartment of Biomedical EngineeringUniversity of NeyshaburNeyshaburIran
| | - Abbas Babajani‐Feremi
- Department of NeurologyDell Medical SchoolThe University of Texas at AustinAustinTXUSA
- Magnetoencephalography LabDell Children's Medical CenterAustinTXUSA
| |
Collapse
|
60
|
Habas C. Functional Connectivity of the Cognitive Cerebellum. Front Syst Neurosci 2021; 15:642225. [PMID: 33897382 PMCID: PMC8060696 DOI: 10.3389/fnsys.2021.642225] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Anatomical tracing, human clinical data, and stimulation functional imaging have firmly established the major role of the (neo-)cerebellum in cognition and emotion. Telencephalization characterized by the great expansion of associative cortices, especially the prefrontal one, has been associated with parallel expansion of the neocerebellar cortex, especially the lobule VII, and by an increased number of interconnections between these two cortical structures. These anatomical modifications underlie the implication of the neocerebellum in cognitive control of complex motor and non-motor tasks. In humans, resting state functional connectivity has been used to determine a thorough anatomo-functional parcellation of the neocerebellum. This technique has identified central networks involving the neocerebellum and subserving its cognitive function. Neocerebellum participates in all intrinsic connected networks such as central executive, default mode, salience, dorsal and ventral attentional, and language-dedicated networks. The central executive network constitutes the main circuit represented within the neocerebellar cortex. Cerebellar zones devoted to these intrinsic networks appear multiple, interdigitated, and spatially ordered in three gradients. Such complex neocerebellar organization enables the neocerebellum to monitor and synchronize the main networks involved in cognition and emotion, likely by computing internal models.
Collapse
Affiliation(s)
- Christophe Habas
- Service de NeuroImagerie, Centre Hospitalier National d'Ophtalmologie des 15-20, Paris, France
| |
Collapse
|
61
|
Tsukahara JS, Engle RW. Is baseline pupil size related to cognitive ability? Yes (under proper lighting conditions). Cognition 2021; 211:104643. [PMID: 33713877 DOI: 10.1016/j.cognition.2021.104643] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022]
Abstract
There has been some controversy as to whether baseline pupil size is related to individual differences in cognitive ability. Previously, we had shown that a larger baseline pupil size was associated with higher cognitive ability and that the correlation to fluid intelligence was larger than that to working memory capacity (Tsukahara, Harrison, & Engle, 2016). However, other researchers have not been able to replicate our findings - though they only measured working memory capacity and not fluid intelligence. Many of the studies showing no relationship had major methodological issues, namely small baseline pupil size values - down to the physiological minimum - that resulted in reduced variability on baseline pupil size. We conducted two large-scale studies to investigate how different lighting conditions affect baseline pupil size values and the correlation with cognitive abilities. We found that fluid intelligence, working memory capacity, and attention control did correlate with baseline pupil size except in the brightest lighting conditions. We showed that a reduced variability in baseline pupil size values is due to the monitor settings being too bright. Overall, our findings demonstrated that the baseline pupil size - working memory capacity relationship was not as strong or robust as that with fluid intelligence or attention control. Our findings have strong methodological implications for researchers investigating individual differences in task-free or task-evoked pupil size. We conclude that fluid intelligence does correlate with baseline pupil size and that this is related to the functional organization of the resting-state brain through the locus coeruleus-norepinephrine system.
Collapse
|
62
|
Zeng N, Wang M, Zheng H, Zhang J, Dong H, Potenza MN, Dong GH. Gender-related differences in frontal-parietal modular segregation and altered effective connectivity in internet gaming disorder. J Behav Addict 2021; 10:123-134. [PMID: 33704084 PMCID: PMC8969857 DOI: 10.1556/2006.2021.00015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although previous studies have revealed gender-related differences in executive function in internet gaming disorder (IGD), neural mechanisms underlying these processes remain unclear, especially in terms of brain networks. METHODS Resting-state fMRI data were collected from 78 subjects with IGD (39 males, 20.8 ± 2.16 years old) and 72 with recreational game use (RGU) (39 males, 21.5 ± 2.56 years old). By utilizing graph theory, we calculated participation coefficients among brain network modules for all participants and analyzed the diagnostic-group-by-gender interactions. We further explored possible causal relationships between networks through spectral dynamic causal modeling (spDCM) to assess differences in between-network connections. RESULTS Compared to males with RGU, males with IGD demonstrated reduced modular segregation of the frontal-parietal network (FPN). Male IGD subjects also showed increased connections between the FPN and cingulo-opercular network (CON); however, these differences were not found in female subjects. Further spDCM analysis indicated that the causal influence from CON to FPN in male IGD subjects was enhanced relative to that of RGU males, while this influence was relatively reduced in females with IGD. CONCLUSIONS These results suggest poor modular segmentation of the FPN and abnormal FPN/CON connections in males with IGD, suggesting a mechanism for male vulnerability to IGD. An increased "bottom-up" effect from the CON to FPN in male IGD subjects could reflect dysfunction between the brain networks. Different mechanisms may underlie in IGD, suggesting that different interventions may be optimal in males and females with IGD.
Collapse
Affiliation(s)
- Ningning Zeng
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China,Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, PR China
| | - Min Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, PR China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jialin Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Haohao Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Marc N. Potenza
- Department of Neuroscience, Yale University, New Haven, CT, USA,Connecticut Council on Problem Gambling, Wethersfield, CT, USA,Connecticut Mental Health Center, New Haven, CT, USA
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, PR China,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China,Corresponding author. E-mail:
| |
Collapse
|
63
|
Clark SV, Semmel ES, Aleksonis HA, Steinberg SN, King TZ. Cerebellar-Subcortical-Cortical Systems as Modulators of Cognitive Functions. Neuropsychol Rev 2021; 31:422-446. [PMID: 33515170 DOI: 10.1007/s11065-020-09465-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Over the past few decades, research has established that the cerebellum is involved in executive functions; however, its specific role remains unclear. There are numerous theories of cerebellar function and numerous cognitive processes falling under the umbrella of executive function, making investigations of the cerebellum's role in executive functioning challenging. In this review, we explored the role of the cerebellum in executive functioning through clinical and cognitive neuroscience frameworks. We reviewed the neuroanatomical systems and theoretical models of cerebellar functions and the multifaceted nature of executive functions. Using attention deficit hyperactivity disorder and cerebellar tumor as clinical developmental models of cerebellar dysfunction, and the functional magnetic resonance imaging literature, we reviewed evidence for cerebellar involvement in specific components of executive function in childhood, adolescence, and adulthood. There is evidence for posterior cerebellar contributions to working memory, planning, inhibition, and flexibility, but the heterogeneous literature that largely was not designed to study the cerebellum makes it difficult to determine specific functions of the cerebellum or cerebellar regions. In addition, while it is clear that cerebellar insult in childhood affects executive function performance later in life, more work is needed to elucidate the mechanisms by which executive dysfunction occurs and its developmental course. The limitations of the current literature are discussed and potential directions for future research are provided.
Collapse
Affiliation(s)
- Sarah V Clark
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | - Eric S Semmel
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | - Holly A Aleksonis
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | | | - Tricia Z King
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA. .,Neuroscience Institute, Georgia State University, GA, 30303, Atlanta, USA.
| |
Collapse
|
64
|
Gray Matter Morphometry Correlates with Attentional Efficiency in Young-Adult Multiple Sclerosis. Brain Sci 2021; 11:brainsci11010080. [PMID: 33435314 PMCID: PMC7826940 DOI: 10.3390/brainsci11010080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 01/27/2023] Open
Abstract
Slowed processing on the alerting, orienting and executive control components of attention measured using the Attention Network Test-Interactions (ANT-I) have been widely reported in multiple sclerosis (MS). Despite the assumption that these components correspond to specific neuroanatomical networks in the brain, little is known about gray matter changes that occur in MS and their association with ANT-I performance. We investigated vertex-wise cortical thickness changes and deep gray matter volumetric changes in young MS participants (N = 21, age range: 18-35) with pediatric or young-adult onset and mild disease severity. ANT-I scores and cortical thickness were not significantly different between MS participants and healthy volunteers (N = 19, age range: 18-35), but thalamic volumes were significantly lower in MS. Slowed reaction times on the alerting component in MS correlated significantly with reduced volume of the right pallidum in MS. Slowed reaction times on executive control component correlated significantly with reduced thickness in the frontal, parietal and visual cortical areas and with reduced volume of the left putamen in MS. These findings demonstrate associations between gray matter changes and attentional performance even in the absence of widespread atrophy or slowed attentional processes.
Collapse
|
65
|
High-resolution connectomic fingerprints: Mapping neural identity and behavior. Neuroimage 2021; 229:117695. [PMID: 33422711 DOI: 10.1016/j.neuroimage.2020.117695] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023] Open
Abstract
Connectomes are typically mapped at low resolution based on a specific brain parcellation atlas. Here, we investigate high-resolution connectomes independent of any atlas, propose new methodologies to facilitate their mapping and demonstrate their utility in predicting behavior and identifying individuals. Using structural, functional and diffusion-weighted MRI acquired in 1000 healthy adults, we aimed to map the cortical correlates of identity and behavior at ultra-high spatial resolution. Using methods based on sparse matrix representations, we propose a computationally feasible high-resolution connectomic approach that improves neural fingerprinting and behavior prediction. Using this high-resolution approach, we find that the multimodal cortical gradients of individual uniqueness reside in the association cortices. Furthermore, our analyses identified a striking dichotomy between the facets of a person's neural identity that best predict their behavior and cognition, compared to those that best differentiate them from other individuals. Functional connectivity was one of the most accurate predictors of behavior, yet resided among the weakest differentiators of identity; whereas the converse was found for morphological properties, such as cortical curvature. This study provides new insights into the neural basis of personal identity and new tools to facilitate ultra-high-resolution connectomics.
Collapse
|
66
|
Dual n-back training improves functional connectivity of the right inferior frontal gyrus at rest. Sci Rep 2020; 10:20379. [PMID: 33230248 PMCID: PMC7683712 DOI: 10.1038/s41598-020-77310-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/26/2020] [Indexed: 11/23/2022] Open
Abstract
Several studies have shown that the benefits of working memory (WM) training can be attributed to functional and structural neural changes in the underlying neural substrate. In the current study, we investigated whether the functional connectivity of the brain at rest in the default mode network (DMN) changes with WM training. We varied the complexity of the training intervention so, that half of the participants attended dual n-back training whereas the other half attended single n-back training. This way we could assess the effects of different training task parameters on possible connectivity changes. After 16 training sessions, the dual n-back training group showed improved performance accompanied by increased functional connectivity of the ventral DMN in the right inferior frontal gyrus, which correlated with improvements in WM. We also observed decreased functional connectivity in the left superior parietal cortex in this group. The single n-back training group did not show significant training-related changes. These results show that a demanding short-term WM training intervention can alter the default state of the brain.
Collapse
|
67
|
Inagaki TK, Meyer ML. Individual differences in resting-state connectivity and giving social support: implications for health. Soc Cogn Affect Neurosci 2020; 15:1076-1085. [PMID: 31269205 PMCID: PMC7657449 DOI: 10.1093/scan/nsz052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
There is a growing appreciation for the health benefits of giving support, though variability in such behavior exists. Based on the possibility that the dorsomedial (DMPFC) default network subsystem is associated with social thinking and behavior, integrity of this subsystem may facilitate giving support to others. The current study tested associations between DMPFC subsystem connectivity at rest and tendencies related to giving support. During a functional magnetic resonance imaging session, 45 participants completed an emotional social cues task, a resting-state scan and self-report measures of social support. Supportive behavior during the month following the scan was also assessed. Greater DMPFC subsystem connectivity at rest was associated with greater support giving (though not receiving or perceiving support) at the time of the scan and one month later. Results held after adjusting for extraversion. In addition, greater resting-state DMPFC subsystem connectivity was associated with attenuated dorsal anterior cingulate cortex, anterior insula and amygdala activity to others’ negative emotional social cues, suggesting that DMPFC subsystem integrity at rest is also associated with the dampened withdrawal response proposed to facilitate care for others in need. Together, results begin to hint at an additional role for the ‘default’ social brain: giving support to others.
Collapse
Affiliation(s)
- Tristen K Inagaki
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Meghan L Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
68
|
Moradi M, Ekhtiari H, Kuplicki R, McKinney B, Stewart JL, Victor TA, Paulus MP. Evaluating the resource allocation index as a potential fMRI-based biomarker for substance use disorder. Drug Alcohol Depend 2020; 216:108211. [PMID: 32805548 PMCID: PMC7609625 DOI: 10.1016/j.drugalcdep.2020.108211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND There is a lack of neuroscience-based biomarkers for the diagnosis, treatment and monitoring of individuals with substance use disorders (SUD). The resource allocation index (RAI), a measure of the interrelationship between salience, executive control and default-mode brain networks (SN, ECN, and DMN), has been proposed as one such biomarker. However, the RAI has yet to be extensively tested in SUD samples. METHODS The present analysis compared RAI scores between individuals with stimulant and/or opioid use disorders (SUD; n = 139, abstinent 4-365 days) and healthy controls (HC; n = 56) who had completed resting-state functional magnetic resonance imaging (fMRI) scans within the context of the Tulsa 1000 cohort. First, we used independent component analysis (ICA) to identify the SN, ECN, and DMN and extract their time series data. Second, we used multiple permutations of automatically identified networks to compute RAI as reported in the fMRI literature. RESULTS First, the RAI as a metric depended substantially on the approach that was used to define the network components. Second, regardless of the selection of networks, after controlling for multiple testing there was no difference in RAI scores between SUD and HC. Third, the RAI was not associated with any substance use-related self-report measures. CONCLUSION Taken together, these findings do not provide evidence that RAI can be used as an fMRI-derived biomarker for the severity or diagnosis of individuals with SUD.
Collapse
Affiliation(s)
- Mahdi Moradi
- Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK, 74136, United States; Department of Computer Science, J. Newton Rayzor Hall, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, United States.
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK, 74136, United States.
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK, 74136, United States.
| | - Brett McKinney
- Department of Computer Science, J. Newton Rayzor Hall, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, United States; Department of Mathematics, Keplinger Hall 3085, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, United States.
| | - Jennifer L Stewart
- Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK, 74136, United States; Department of Community Medicine, Oxley Health Sciences, The University of Tulsa, 1215 S. Boulder Ave, Tulsa, OK, 74119, United States.
| | - Teresa A Victor
- Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK, 74136, United States.
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK, 74136, United States; Department of Community Medicine, Oxley Health Sciences, The University of Tulsa, 1215 S. Boulder Ave, Tulsa, OK, 74119, United States; Department of Psychiatry, University of California, San Diego, United States.
| |
Collapse
|
69
|
Jolles DD, Mennigen E, Gupta MW, Hegarty CE, Bearden CE, Karlsgodt KH. Relationships between intrinsic functional connectivity, cognitive control, and reading achievement across development. Neuroimage 2020; 221:117202. [PMID: 32730958 DOI: 10.1016/j.neuroimage.2020.117202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/26/2023] Open
Abstract
There are vast individual differences in reading achievement between students. Besides structural and functional variability in domain-specific brain regions, these differences may partially be explained by the organization of domain-general functional brain networks. In the current study we used resting-state functional MRI data from the Philadelphia Neurodevelopmental Cohort (PNC; N = 553; ages 8-22) to examine the relation between performance on a well-validated reading assessment task, the Wide Range Achievement Word Reading Test (WRAT-Reading) and patterns of functional connectivity. We focused specifically on functional connectivity within and between networks associated with cognitive control, and investigated whether the relationship with academic test performance was mediated by cognitive control abilities. We show that individuals with higher scores on the WRAT-Reading, have stronger lateralization in frontoparietal networks, increased functional connectivity between dorsal striatum and the dorsal attention network, and reduced functional connectivity between dorsal and ventral striatum. The relationship between functional connectivity and reading performance was mediated by cognitive control abilities (i.e., performance on a composite measure of executive function and complex cognition), but not by abilities in other domains, demonstrating the specificity of our findings. Finally, there were no significant interactions with age, suggesting that the observed brain-behavior relationships stay relatively stable over the course of development. Our findings provide important insights into the functional significance of inter-individual variability in the network architecture of the developing brain, showing that functional connectivity in domain-general control networks is relevant to academic achievement in the reading domain.
Collapse
Affiliation(s)
- Dietsje D Jolles
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States; Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands.
| | - Eva Mennigen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Mohan W Gupta
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Catherine E Hegarty
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carrie E Bearden
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Katherine H Karlsgodt
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| |
Collapse
|
70
|
Dual Function of Primary Somatosensory Cortex in Cognitive Control of Language: Evidence from Resting State fMRI. Neuroscience 2020; 446:59-68. [PMID: 32866600 DOI: 10.1016/j.neuroscience.2020.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
Resting state functional connectivity can be leveraged to investigate bilingual individual differences in cognitive control of language; however, thus far no report is provided on how the connectivity profiles of brain functional networks at rest point to different language control behavior in bilinguals. In order to address this gap in state-of-the-art research we did a functional connectivity analysis on the resting state data acquired via multiband EPI to investigate three resting state networks of interest namely, the frontoparietal network (FPN), the salience network (SN), and the default mode network (DMN), which are related to cognitive control, between two groups of Dutch-English bilinguals based on how they performed in a language switching task. Results demonstrated that there is the increased coupling of the left primary somatosensory cortex with the dorsolateral prefrontal cortex in the group with better performance in cognitive control of language and the increased coupling of the right primary somatosensory cortex with the inferior parietal cortex in the group with poorer performance in this executive function. As regards these results, we claim that the primary somatosensory cortex has a dual function in coupling with the dorsolateral prefrontal cortex and the inferior parietal cortex in the FPN, and in fact, in what characterizes bilingual individual differences in cognitive control of language in healthy participants. The results of this study provide a model for future research in cognitive control of language and may serve as a reference in clinical neuroscience when bilinguals are diagnosed with dysfunction in cognitive control.
Collapse
|
71
|
Wu S, Upadhyay N, Lu J, Jiang X, Li S, Qing Z, Wang J, Liang X, Zhang X, Zhang B. Interaction of Catechol-O-methyltransferase Val 158 Met polymorphism and sex influences association of parietal intrinsic functional connectivity and immediate verbal memory. Brain Behav 2020; 10:e01784. [PMID: 32772512 PMCID: PMC7559624 DOI: 10.1002/brb3.1784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Sex differences modulate catechol-O-methyltransferase (COMT) genotype effect at a synaptic dopamine level, which influences brain function as well as cognitive performance. In this study, we investigated how COMT Val158 Met polymorphism and sex affect intrinsic functional connectivity and memory. METHODS Intrinsic functional networks were extracted using independent component analysis of resting-state functional magnetic resonance imaging data from 186 healthy young COMT-genotyped participants. The association of these functional networks and memory function was tested to investigate whether the effect of COMT × sex interaction influences the association of intrinsic functional connectivity and memory performance. Quadratic curve fit estimation was used to examine the relationship between functional connectivity and speculative dopamine level among groups. RESULTS COMT MM/MV carriers, relative to VV carriers, showed increased functional connectivity in left superior parietal lobule and right inferior frontal gyrus. Further, male MM/MV carriers showed significant higher mean functional connectivity in left inferior parietal lobule relative to male VV carriers and female MM/MV carriers, which was associated with worse immediate verbal recall performance. Additionally, the relationship between inferior parietal lobule functional connectivity and speculative dopamine level among groups fits the quadratic curve. CONCLUSIONS These findings suggest that the interaction of COMT genotype and sex might regulate synaptic dopaminergic concentrations and influence the association of intrinsic functional connectivity and immediate verbal memory in left inferior parietal lobule.
Collapse
Affiliation(s)
- Sichu Wu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Neeraj Upadhyay
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jiaming Lu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xueyan Jiang
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Shumei Li
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Zhao Qing
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junxia Wang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xue Liang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
72
|
Breukelaar IA, Griffiths KR, Harris A, Foster SL, Williams LM, Korgaonkar MS. Intrinsic functional connectivity of the default mode and cognitive control networks relate to change in behavioral performance over two years. Cortex 2020; 132:180-190. [PMID: 32987241 DOI: 10.1016/j.cortex.2020.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/31/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
Understanding how brain circuitry mediates cognitive control of behavior is crucial for understanding both mental health and disease. Cognitive control describes the group of behaviors that guide goal-directed action such as sustaining attention, processing information and inhibiting impulsive responses. We rely on these behaviors for daily social, occupational and emotional functioning. Two brain networks, the cognitive control network (CCN) and default mode network (DMN), are thought to cooperate in an inverse relationship to support these functions. However, we do not yet know how connectivity within and between these networks directly relates to healthy cognitive control behaviors, and whether these interactions change over time. Here, we employed a longitudinal design to investigate if change in intrinsic connectivity in these networks will correlate with change in a range of cognitive control functions. Over two years, 109 healthy individuals, aged eight to thirty-eight, were tested twice using fMRI to assess intrinsic functional connectivity of the CCN and DMN and a validated cognitive battery. We found that increased within-network connectivity through central and left DMN was associated with increased memory performance. Additionally, decreased connectivity between posterior parietal CCN and DMN nodes and decreased connectivity between left and right dorsolateral prefrontal nodes was associated with increased cognitive performance. These findings were age and gender controlled, suggesting that age-independent plastic change in intrinsic connectivity through these networks directly relate to changing behavior. This has implications for targeting intrinsic connectivity as a possible mechanism to improve cognitive function.
Collapse
Affiliation(s)
- Isabella A Breukelaar
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.
| | - Kristi R Griffiths
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Anthony Harris
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia
| | - Sheryl L Foster
- Department of Radiology, Westmead Hospital, Westmead, NSW, Australia; The Discipline of Medical Radiation Sciences, Faculty of Health Science, The University of Sydney, NSW, Australia
| | - Leanne M Williams
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; MIRECC, Palo Alto VA, Palo Alto, CA, USA
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia.
| |
Collapse
|
73
|
Context-dependency in the Cognitive Bias Task and Resting-state Functional Connectivity of the Dorsolateral Prefrontal Cortex. J Int Neuropsychol Soc 2020; 26:749-762. [PMID: 32342829 DOI: 10.1017/s1355617720000302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Goldberg, the author of the "novelty-routinization" framework, suggested a new pair of cognitive styles for agent-centered decision-making (DM), context-dependency/independency (CD/CI), quantified by the Cognitive Bias Task (CBT) and supposedly reflecting functional brain hemispheric specialization. To date, there are only three lesion and activation neuroimaging studies on the CBT with the largest sample of 12 participants. The present study is the first to analyze whole-brain functional connectivity (FC) of the dorsolateral prefrontal cortex (DLPFC), involved in contextual agent-centered DM. METHOD We compared whole-brain resting-state FC of the DLPFC between CD (n = 24) and CI (n = 22) healthy participants. Additionally, we investigated associations between CD/CI and different aspects of executive functions. RESULTS CD participants had stronger positive FC of the DLPFC with motor and visual regions; FC of the left DLPFC was more extensive. CI participants had stronger positive FC of the left DLPFC with right prefrontal and parietal-occipital areas and of the left and right DLPFC with ipsilateral cerebellar hemispheres. No sex differences were found. CD/CI had nonlinear associations with working memory. CONCLUSIONS The findings suggest that CD and CI are associated with different patterns of DLPFC FC. While CD is associated with FC between DLPFC and areas presumably involved in storing representations of current situation, CI is more likely to be associated with FC between DLPFC and right-lateralized associative regions, probably involved in the inhibition of the CD response and switching from processing of incoming perceptual information to creation of original response strategies.
Collapse
|
74
|
Yu SH, Tseng CY, Lin WL. A Neurofeedback Protocol for Executive Function to Reduce Depression and Rumination: A Controlled Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:375-385. [PMID: 32702216 PMCID: PMC7383005 DOI: 10.9758/cpn.2020.18.3.375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 03/21/2020] [Indexed: 12/30/2022]
Abstract
Objective Rumination is a maladaptive emotional-regulation strategy that is strongly associated with depression. Impaired executive function can lead to difficulties in disengaging from rumination, thus exacerbating depression. In this study, we inspect an electroencephalograph neurofeedback protocol that enhance the target peak alpha frequency (PAF) activation in the prefrontal region. We examine the protocol’s effects on depression and rumination. Methods We randomly assigned 30 dysphoric participants into either the neurofeedback training group or the control group. We then evaluated their depression, rumination, and executive function at pre- and posttraining so as to examine the effects of the neurofeedback. Results The results show that this neurofeedback protocol can specifically enhance participants’ target PAF. The participants’ executive function performances significantly improved after undergoing 20 neurofeedback sessions. Compared with those in the control group, those in the neurofeedback group had significantly fewer depressive symptoms and significantly reduced rumination. Moreover, as target PAF and executive function improved, depression and rumination both declined. Conclusion Our data are in line with those of previous studies that indicated a relationship between upper-band alpha activity and executive function. This PAF neurofeedback can effectively enhance participants’ executive function, which can reduce rumination and ameliorate depression. This neurofeedback training is based on basic cognitive neuroscience, so it sheds light on depression’s pathological factors and etiology.
Collapse
Affiliation(s)
- Sheng-Hsiang Yu
- Department of Psychology, Fo Guang University, Jiaosi, Yilan County, Taiwan
| | - Chao-Yuan Tseng
- Department of Psychology, Fo Guang University, Jiaosi, Yilan County, Taiwan
| | - Wei-Lun Lin
- Department of Psychology, Fo Guang University, Jiaosi, Yilan County, Taiwan
| |
Collapse
|
75
|
Dell'Italia J, Johnson MA, Vespa PM, Monti MM. Accounting for Changing Structure in Functional Network Analysis of TBI Patients. Front Syst Neurosci 2020; 14:42. [PMID: 32848638 PMCID: PMC7427444 DOI: 10.3389/fnsys.2020.00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 06/05/2020] [Indexed: 12/05/2022] Open
Abstract
Over the last 15 years, network analysis approaches based on MR data have allowed a renewed understanding of the relationship between brain function architecture and consciousness. Application of this approach to Disorders of Consciousness (DOC) highlights the relationship between specific aspects of network topology and levels of consciousness. Nonetheless, such applications do not acknowledge that DOC patients present with a dramatic level of heterogeneity in structural connectivity (SC) across groups (e.g., etiology, diagnostic categories) and within individual patients (e.g., over time), which possibly affects the level and quality of functional connectivity (FC) patterns that can be expressed. In addition, it is rarely acknowledged that the most frequently employed outcome metrics in the study of brain connectivity (e.g., degree distribution, inter- or intra-resting state network connectivity, and clustering coefficient) are interrelated and cannot be assumed to be independent of each other. We present empirical data showing that, when the two points above are not taken into consideration with an appropriate analytic model, it can lead to a misinterpretation of the role of each outcome metric in the graph's structure and thus misinterpretation of FC results. We show that failing to account for either SC or the inter-relation between outcome measures can lead to inflated false positives (FP) and/or false negatives (FN) in inter- or intra-resting state network connectivity results (defined, respectively, as a positive or negative result in network connectivity that is present when not accounting for SC and/or outcome measure inter-relation, but becomes not significant when accounting for all variables). Overall, we find that unconscious patients have lower rates of FP and FN for within cortical connectivity, lower rates of FN for cortico-subcortical connectivity, and lower rates of FP for within subcortical connectivity. These lower rates in unconscious patients may reflect differences in their triadic closure and SC metrics, which bias the interpretations of the inter- or intra-resting state network connectivity if the SC metrics and triadic closure are not modeled. We suggest that future studies of functional connectivity in DOC patients (i) incorporate where possible SC metrics and (ii) properly account for the intercorrelated nature of outcome variables.
Collapse
Affiliation(s)
- John Dell'Italia
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Micah A. Johnson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul M. Vespa
- Brain Injury Research Center (BIRC), Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Martin M. Monti
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Injury Research Center (BIRC), Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
76
|
Herman AM, Critchley HD, Duka T. Trait Impulsivity Associated With Altered Resting-State Functional Connectivity Within the Somatomotor Network. Front Behav Neurosci 2020; 14:111. [PMID: 32670033 PMCID: PMC7326939 DOI: 10.3389/fnbeh.2020.00111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Knowledge of brain mechanisms underlying self-regulation can provide valuable insights into how people regulate their thoughts, behaviors, and emotional states, and what happens when such regulation fails. Self-regulation is supported by coordinated interactions of brain systems. Hence, behavioral dysregulation, and its expression as impulsivity, can be usefully characterized using functional connectivity methodologies applied to resting brain networks. The current study tested whether individual differences in trait impulsivity are reflected in the functional architecture within and between resting-state brain networks. Thirty healthy individuals completed a self-report measure of trait impulsivity and underwent resting-state functional magnetic resonance imaging. Using Probabilistic Independent Components Analysis in FSL MELODIC, we identified across participants 10 networks of regions (resting-state networks) with temporally correlated time courses. We then explored how individual expression of these spatial networks covaried with trait impulsivity. Across participants, we observed that greater self-reported impulsivity was associated with decreased connectivity of the right lateral occipital cortex (peak mm 46/-70/16, FWE 1-p = 0.981) with the somatomotor network. No supratheshold differences were observed in between-network connectivity. Our findings implicate the somatomotor network, and its interaction with sensory cortices, in the control of (self-reported) impulsivity. The observed “decoupling” may compromise effective integration of early perceptual information (from visual and somatosensory cortices) with behavioral control programs, potentially resulting in negative consequences.
Collapse
Affiliation(s)
- Aleksandra M Herman
- Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom.,Behavioural and Clinical Neuroscience, University of Sussex, Brighton, United Kingdom
| | - Hugo D Critchley
- Brighton and Sussex Medical School, Brighton, United Kingdom.,Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
| | - Theodora Duka
- Behavioural and Clinical Neuroscience, University of Sussex, Brighton, United Kingdom.,Sussex Addiction Research and Intervention Centre, Brighton, United Kingdom
| |
Collapse
|
77
|
Striatal-frontal network activation during voluntary task selection under conditions of monetary reward. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:568-585. [PMID: 30697672 DOI: 10.3758/s13415-019-00689-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During voluntary task selection, a number of internal and external biases may guide such a choice. However, it is not well understood how reward influences task selection when multiple options are possible. To address this issue, we examined brain activation in a voluntary task-switching paradigm while participants underwent fMRI (n = 19). To reinforce the overall goal to choose the tasks randomly, participants were told of a large bonus that they would receive at the end of the experiment for making random task choices. We also examined how occasional, random rewards influenced both task performance and brain activation. We hypothesized that these transient rewards would increase the value of the just-performed task, and therefore bias participants to choose to repeat the same task on the subsequent trial. Contrary to expectations, transient reward had no consistent behavioral effect on subsequent task choice. Nevertheless, the receipt of such rewards did influence activation in brain regions associated with reward processing as well as those associated with goal-directed control. In addition, reward on a prior trial was found to influence activation during task choice on a subsequent trial, with greater activation in a number of executive function regions compared with no-reward trials. We posit that both the random presentation of transient rewards and the overall task bonus for random task choices together reinforced the goal to choose the tasks randomly, which in turn influenced activation in both reward-related regions and those regions involved in abstract goal processing.
Collapse
|
78
|
Teghil A, Di Vita A, D'Antonio F, Boccia M. Inter-individual differences in resting-state functional connectivity are linked to interval timing in irregular contexts. Cortex 2020; 128:254-269. [DOI: 10.1016/j.cortex.2020.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
|
79
|
Rajasilta O, Tuulari JJ, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J, Häkkinen S, Merisaari H, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H. Resting-state networks of the neonate brain identified using independent component analysis. Dev Neurobiol 2020; 80:111-125. [PMID: 32267069 DOI: 10.1002/dneu.22742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) has been successfully used to probe the intrinsic functional organization of the brain and to study brain development. Here, we implemented a combination of individual and group independent component analysis (ICA) of FSL on a 6-min resting-state data set acquired from 21 naturally sleeping term-born (age 26 ± 6.7 d), healthy neonates to investigate the emerging functional resting-state networks (RSNs). In line with the previous literature, we found evidence of sensorimotor, auditory/language, visual, cerebellar, thalmic, parietal, prefrontal, anterior cingulate as well as dorsal and ventral aspects of the default-mode-network. Additionally, we identified RSNs in frontal, parietal, and temporal regions that have not been previously described in this age group and correspond to the canonical RSNs established in adults. Importantly, we found that careful ICA-based denoising of fMRI data increased the number of networks identified with group-ICA, whereas the degree of spatial smoothing did not change the number of identified networks. Our results show that the infant brain has an established set of RSNs soon after birth.
Collapse
Affiliation(s)
- Olli Rajasilta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Oxford, Oxford, UK.,Turku Collegium for Science and Medicine, University of Turku, Turku, Finland
| | - Malin Björnsdotter
- The Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Suvi Häkkinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Child Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
80
|
Cathodal transcranial direct current stimulation over the right dorsolateral prefrontal cortex cancels out the cost of selective retrieval on subsequent analogical reasoning. Neuropsychologia 2020; 141:107431. [DOI: 10.1016/j.neuropsychologia.2020.107431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/18/2020] [Accepted: 03/07/2020] [Indexed: 11/18/2022]
|
81
|
Sörös P, Schäfer S, Witt K. Model-Based and Model-Free Analyses of the Neural Correlates of Tongue Movements. Front Neurosci 2020; 14:226. [PMID: 32265635 PMCID: PMC7105808 DOI: 10.3389/fnins.2020.00226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
The tongue performs movements in all directions to subserve its diverse functions in chewing, swallowing, and speech production. Using task-based functional MRI in a group of 17 healthy young participants, we studied (1) potential differences in the cerebral control of frontal (protrusion), horizontal (side to side), and vertical (elevation) tongue movements and (2) inter-individual differences in tongue motor control. To investigate differences between different tongue movements, we performed voxel-wise multiple linear regressions. To investigate inter-individual differences, we applied a novel approach, spatio-temporal filtering of independent components. For this approach, individual functional data were decomposed into spatially independent components and corresponding time courses using independent component analysis. A temporal filter (correlation with the expected brain response) was used to identify independent components time-locked to the tongue motor tasks. A spatial filter (cross-correlation with established neurofunctional systems) was used to identify brain activity not time-locked to the tasks. Our results confirm the importance of an extended bilateral cortical and subcortical network for the control of tongue movements. Frontal (protrusion) tongue movements, highly overlearned movements related to speech production, showed less activity in the frontal and parietal lobes compared to horizontal (side to side) and vertical (elevation) movements and greater activity in the left frontal and temporal lobes compared to vertical movements (cluster-forming threshold of Z > 3.1, cluster significance threshold of p < 0.01, corrected for multiple comparisons). The investigation of inter-individual differences revealed a component representing the tongue primary sensorimotor cortex time-locked to the task in all participants. Using the spatial filter, we found the default mode network in 16 of 17 participants, the left fronto-parietal network in 16, the right fronto-parietal network in 8, and the executive control network in four participants (Pearson's r > 0.4 between neurofunctional systems and individual components). These results demonstrate that spatio-temporal filtering of independent components allows to identify individual brain activity related to a specific task and also structured spatiotemporal processes representing known neurofunctional systems on an individual basis. This novel approach may be useful for the assessment of individual patients and results may be related to individual clinical, behavioral, and genetic information.
Collapse
Affiliation(s)
- Peter Sörös
- Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Sarah Schäfer
- Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karsten Witt
- Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
82
|
Roye S, Castagna PJ, Calamia M, De Vito AN, Lee TH, Greening SG. Relationships between multiple dimensions of executive functioning and resting-state networks in adults. Neuropsychologia 2020; 141:107418. [PMID: 32169318 DOI: 10.1016/j.neuropsychologia.2020.107418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/22/2020] [Accepted: 03/01/2020] [Indexed: 11/18/2022]
Abstract
The current study sought to examine the functional connectivity of resting state networks (RSNs) as they relate to the individual domains of executive functioning (EF). Based on the Unity and Diversity model (Miyake et al., 2000), EF performance was captured using a three-factor model proposed by Karr et al. (2018), which includes inhibition, shifting, and fluency. Publicly available data was used from the Nathan Kline Institute -Rockland project was used. Of the 722 participants who completed the Delis-Kaplan Executive Function System (D-KEFS), which was used to measure EF performance, 269 of these individuals completed resting state fMRI scans. First, a confirmatory factory analysis replicated Karr et al. (2018) revealing three components: inhibition, shifting and fluency. Next, RSNs were identified across the sample using an Independent Components Analysis (ICA) and was compared to previously established intrinsic connectivity networks (Laird et al., 2011). Finally, dual regression was used to analyze the relationships between the functional connectivity of RSNs and EF performance, which indicated that RSNs were differentially associated with inhibition and shifting. Better inhibition was related to increased connectivity between the left striatum and the attentional control network. Better shifting performance was related to increased connectivity between the pre- and postcentral gyri and the speech and sensorimotor network. These results highlight individual differences within these RSNs that are unique to the literature, as non-EF confounds are mitigated within the current measurements of EF performance.
Collapse
Affiliation(s)
- Scott Roye
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States.
| | - Peter J Castagna
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | - Matthew Calamia
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | - Alyssa N De Vito
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | - Tae-Ho Lee
- Department of Psychology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Steven G Greening
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
83
|
Qian S, Yan S, Zhou C, Shi Z, Wang Z, Xiong Y, Zhou Y. Resting-state brain activity predicts selective attention deficits during hyperthermia exposure. Int J Hyperthermia 2020; 37:220-230. [PMID: 32126849 DOI: 10.1080/02656736.2020.1735536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Purpose: Environmental hyperthermia exerts detrimental effect on attention performance that might increase the probability of accidents for high risk occupation. Previously, we reported aberrant activations and selective attention deficits under task performing during hyperthermia. However, whether resting-state baseline during hyperthermia would contribute to the reported selective attention deficits remains unclear.Materials and methods: Here, we investigated the resting-state activity within two attention subsystems named dorsal attention network (DAN) and ventral attention network (VAN) using the conjoint analysis of functional connectivity (FC) and regional cerebral blood flow (CBF). Blood oxygenation level dependent (BOLD) and 3 D arterial spin labeling data were obtained from 25 healthy male participants under two simulated thermal conditions: normothermic (25 °C for 1 h) and hyperthermic condition (50 °C for 1 h).Results: Paired comparisons on the FC and CBF showed decreased activity in the bilateral frontal eye field (FEF) and intraparietal sulcus (IPS) in the DAN but increased activity in the ventral frontal cortex (VFC) in the VAN. The CBF-FC correlation analysis further confirmed decreased CBF-FC coupling in the bilateral FEF in the DAN and increased coupling in the VFC in the VAN. Additionally, the left IPS and FEF in the DAN showed altered CBF per unit functional connectivity in the CBF/FC ratio analysis. Multiple regression analysis revealed that the selectively altered performances were predicted by alterations of the multiple metrics within the DAN and VAN.Conclusions: These findings suggested that altered resting-state brain activity within the attention networks might provide potential neural basis of the selective deficits for different cognitive-demand attention tasks under hyperthermia.
Collapse
Affiliation(s)
- Shaowen Qian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China.,Department of Medical Imaging, Jinan Military General Hospital, Jinan, People's Republic of China
| | - Sumei Yan
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| | - Chang Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| | - Zhiyue Shi
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| | - Zhaoqun Wang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| | - Yi Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
84
|
Prat CS, Madhyastha TM, Mottarella MJ, Kuo CH. Relating Natural Language Aptitude to Individual Differences in Learning Programming Languages. Sci Rep 2020; 10:3817. [PMID: 32123206 PMCID: PMC7051953 DOI: 10.1038/s41598-020-60661-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
This experiment employed an individual differences approach to test the hypothesis that learning modern programming languages resembles second "natural" language learning in adulthood. Behavioral and neural (resting-state EEG) indices of language aptitude were used along with numeracy and fluid cognitive measures (e.g., fluid reasoning, working memory, inhibitory control) as predictors. Rate of learning, programming accuracy, and post-test declarative knowledge were used as outcome measures in 36 individuals who participated in ten 45-minute Python training sessions. The resulting models explained 50-72% of the variance in learning outcomes, with language aptitude measures explaining significant variance in each outcome even when the other factors competed for variance. Across outcome variables, fluid reasoning and working-memory capacity explained 34% of the variance, followed by language aptitude (17%), resting-state EEG power in beta and low-gamma bands (10%), and numeracy (2%). These results provide a novel framework for understanding programming aptitude, suggesting that the importance of numeracy may be overestimated in modern programming education environments.
Collapse
Affiliation(s)
- Chantel S Prat
- Department of Psychology, University of Washington, Seattle, Washington, USA.
- Institute for Learning and Brain Sciences, University of Washington, Seattle, Washington, USA.
- University of Washington Institute for Neuroengineering, Seattle, Washington, USA.
- Center for Neurotechnology, University of Washington, Seattle, Washington, USA.
| | - Tara M Madhyastha
- Department of Psychology, University of Washington, Seattle, Washington, USA
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | | | - Chu-Hsuan Kuo
- Department of Psychology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
85
|
Functional connectivity of the dorsolateral prefrontal cortex contributes to different components of executive functions. Int J Psychophysiol 2020; 151:70-79. [PMID: 32109499 DOI: 10.1016/j.ijpsycho.2020.02.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/28/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The dorsolateral prefrontal cortex (DLPFC) orchestrates other brain regions and plays a vital role for "the most uniquely human" executive functions (EFs), which are divided into distinct components. Components of EFs have been localized to different brain regions and at the same time the DLPFC was found to be involved in a majority of EF components. The possible mechanism of the DLPFC's contribution to EF components might be found in DLPFC functional connectivity (FC): this FC of the DLPFC with other brain regions contributes to different EF components. METHOD To explore the DLPFC FC contribution to different EFs, we used an integrative approach involving analysis of fMRI and neuropsychological assessment of EFs. Fifty healthy adults (27 females and 23 males, mean age 34.5 ± 16.6 years) underwent neuropsychological assessment of EFs as well as task-based and resting-state fMRI. Task-based fMRI was applied as a functional localizer for individually defined DLPFC ROIs that were further used for the FC seed-based correlation analysis of the resting-state data. Then we looked for associations between individual scores of different EF components and the whole-brain resting-state FC of the DLPFC. RESULTS Resting-state correlates of DLPFC FC were revealed for three out of the seven EF components derived from an extensive neuropsychological assessment: inhibition, switching, and the verbal EF component. CONCLUSIONS Our study is the first to reveal the contribution of the DLPFC FC to several distinct EF components. The obtained results give insight into the brain mechanisms of EFs.
Collapse
|
86
|
Effects of Bergen 4-Day Treatment on Resting-State Graph Features in Obsessive-Compulsive Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:973-982. [PMID: 32299791 DOI: 10.1016/j.bpsc.2020.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Exposure and response prevention is an effective treatment for obsessive-compulsive disorder (OCD), but it is unclear how symptom reduction is related to changes in the brain. We aimed to determine the effects of a 4-day concentrated exposure and response prevention program (Bergen 4-day treatment) on the static and dynamic functional connectome in patients with OCD. METHODS Thirty-four patients with OCD (25 unmedicated) underwent resting-state functional magnetic resonance imaging the day before the Bergen 4-day treatment, and 28 (21 unmedicated) were rescanned after 1 week. Twenty-eight healthy control subjects were also scanned for baseline comparisons and 19 of them were rescanned after 1 week. Static and dynamic graph measures were quantified to determine network topology at the global, subnetwork, and regional levels (including efficiency, clustering, between-subnetwork connectivity, and node flexibility in module allegiance). The Yale-Brown Obsessive Compulsive Scale was used to measure symptom severity. RESULTS Twenty-four patients (86%) responded to treatment. We found significant group × time effects in frontoparietal-limbic connectivity (ηp2 = 0.19, p = .03) and flexibility of the right subgenual anterior cingulate cortex (ηp2 = 0.18, p = .03), where, in both cases, unmedicated patients showed significant decreases while healthy control subjects showed no significant changes. Healthy control subjects showed increases in global and subnetwork efficiency and clustering coefficient, particularly in the somatomotor subnetwork. CONCLUSIONS Concentrated exposure and response prevention in unmedicated patients with OCD leads to decreased connectivity between the frontoparietal and limbic subnetworks and less flexibility of the connectivity of the subgenual anterior cingulate cortex, suggesting a more independent and stable network topology. This may represent less limbic interference on cognitive control subnetworks after treatment.
Collapse
|
87
|
Mennigen E, Jolles DD, Hegarty CE, Gupta M, Jalbrzikowski M, Olde Loohuis LM, Ophoff RA, Karlsgodt KH, Bearden CE. State-Dependent Functional Dysconnectivity in Youth With Psychosis Spectrum Symptoms. Schizophr Bull 2020; 46:408-421. [PMID: 31219595 PMCID: PMC7442416 DOI: 10.1093/schbul/sbz052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychosis spectrum disorders are conceptualized as neurodevelopmental disorders accompanied by disruption of large-scale functional brain networks. Dynamic functional dysconnectivity has been described in patients with schizophrenia and in help-seeking individuals at clinical high risk for psychosis. Less is known, about developmental aspects of dynamic functional network connectivity (dFNC) associated with psychotic symptoms (PS) in the general population. Here, we investigate resting state functional magnetic resonance imaging data using established dFNC methods in the Philadelphia Neurodevelopmental Cohort (ages 8-22 years), including 129 participants experiencing PS and 452 participants without PS (non-PS). Functional networks were identified using group spatial independent component analysis. A sliding window approach and k-means clustering were applied to covariance matrices of all functional networks to identify recurring whole-brain connectivity states. PS-associated dysconnectivity of default mode, salience, and executive networks occurred only in a few states, whereas dysconnectivity in the sensorimotor and visual systems in PS youth was more pervasive, observed across multiple states. This study provides new evidence that disruptions of dFNC are present even at the less severe end of the psychosis continuum in youth, complementing previous work on help-seeking and clinically diagnosed cohorts that represent the more severe end of this spectrum.
Collapse
Affiliation(s)
- Eva Mennigen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
| | - Dietsje D Jolles
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Catherine E Hegarty
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Mohan Gupta
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | | | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Roel A Ophoff
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA,Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Katherine H Karlsgodt
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA,Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA,Department of Psychology, University of California, Los Angeles, Los Angeles, CA,To whom correspondence should be addressed; tel: +1 310 825 3458, fax: +1 310 825 6766, e-mail:
| |
Collapse
|
88
|
Hughes C, Faskowitz J, Cassidy BS, Sporns O, Krendl AC. Aging relates to a disproportionately weaker functional architecture of brain networks during rest and task states. Neuroimage 2020; 209:116521. [PMID: 31926282 DOI: 10.1016/j.neuroimage.2020.116521] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity - the co-activation of brain regions - forms the basis of the brain's functional architecture. Often measured during resting-state (i.e., in a task-free setting), patterns of functional connectivity within and between brain networks change with age. These patterns are of interest to aging researchers because age differences in resting-state connectivity relate to older adults' relative cognitive declines. Less is known about age differences in large-scale brain networks during directed tasks. Recent work in younger adults has shown that patterns of functional connectivity are highly correlated between rest and task states. Whether this finding extends to older adults remains largely unexplored. To this end, we assessed younger and older adults' functional connectivity across the whole brain using fMRI while participants underwent resting-state or completed directed tasks (e.g., a reasoning judgement task). Resting-state and task functional connectivity were less strongly correlated in older as compared to younger adults. This age-dependent difference could be attributed to significantly lower consistency in network organization between rest and task states among older adults. Older adults had less distinct or segregated networks during resting-state. This more diffuse pattern of organization was exacerbated during directed tasks. Finally, the default mode network, often implicated in neurocognitive aging, contributed strongly to this pattern. These findings establish that age differences in functional connectivity are state-dependent, providing greater insight into the mechanisms by which aging may lead to cognitive declines.
Collapse
Affiliation(s)
- Colleen Hughes
- Psychological and Brain Sciences Department, Indiana University, 1101 East 10th Street, Bloomington, IN, 47405, USA.
| | - Joshua Faskowitz
- Psychological and Brain Sciences Department, Indiana University, 1101 East 10th Street, Bloomington, IN, 47405, USA
| | - Brittany S Cassidy
- Department of Psychology, The University of North Carolina at Greensboro, 296 Eberhart Building, Greensboro, NC, 27412, USA
| | - Olaf Sporns
- Psychological and Brain Sciences Department, Indiana University, 1101 East 10th Street, Bloomington, IN, 47405, USA
| | - Anne C Krendl
- Psychological and Brain Sciences Department, Indiana University, 1101 East 10th Street, Bloomington, IN, 47405, USA
| |
Collapse
|
89
|
Tabassi Mofrad F, Schiller NO. Cognitive demand modulates connectivity patterns of rostral inferior parietal cortex in cognitive control of language. Cogn Neurosci 2019; 11:181-193. [DOI: 10.1080/17588928.2019.1696764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fatemeh Tabassi Mofrad
- Leiden University Centre for Linguistics, Leiden 2300, The Netherlands
- Leiden Institute for Brain and Cognition, RC Leiden 2300, The Netherlands
- Cognitive Psychology Unit, Leiden University, AK Leiden 2333, The Netherlands
- Department of Applied Linguistics, Tarbiat Modares University, Tehran, Iran
| | - Niels O. Schiller
- Leiden University Centre for Linguistics, Leiden 2300, The Netherlands
- Leiden Institute for Brain and Cognition, RC Leiden 2300, The Netherlands
| |
Collapse
|
90
|
Wang C, Hu Y, Weng J, Chen F, Liu H. Modular segregation of task-dependent brain networks contributes to the development of executive function in children. Neuroimage 2019; 206:116334. [PMID: 31704295 DOI: 10.1016/j.neuroimage.2019.116334] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 11/19/2022] Open
Abstract
Executive function (EF) refers as to a set of high-level cognitive abilities that are critical to many aspects of daily life. Despite its importance in human daily life, the neural networks responsible for the development of EF in childhood are not well understood. The present study thus aimed to examine the development of task-dependent brain network organization and its relationship to age-related improvements in EF. To address this issue, we recruited eighty-eight Chinese children ranging in age from 7 to 12 years old, and collected their functional magnetic resonance imaging (fMRI) data when they performed an EF task. By utilizing graph theory, we found that the task-dependent brain network modules became increasingly segregated with age. Specifically, the intra-module connections within the default-mode network (DMN), frontal-parietal network (FPN) and sensorimotor network (SMN) increased significantly with age. In contrast, the inter-module connections of the visual network to both the FPN/SMN decreased significantly with age. Most importantly, modular segregation of the FPN significantly mediated the relationship between age and EF performance. These findings add to our growing understanding of how development changes in task-dependent brain network organization support vast behavioral improvements in EF observed during childhood.
Collapse
Affiliation(s)
- Chunjie Wang
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jian Weng
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, China; Center of Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, 310027, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, China.
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
91
|
Wolff A, de la Salle S, Sorgini A, Lynn E, Blier P, Knott V, Northoff G. Atypical Temporal Dynamics of Resting State Shapes Stimulus-Evoked Activity in Depression-An EEG Study on Rest-Stimulus Interaction. Front Psychiatry 2019; 10:719. [PMID: 31681034 PMCID: PMC6803442 DOI: 10.3389/fpsyt.2019.00719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a complex psychiatric disorder characterized by changes in both resting state and stimulus-evoked activity. Whether resting state changes are carried over to stimulus-evoked activity, however, is unclear. We conducted a combined rest (3 min) and task (three-stimulus auditory oddball paradigm) EEG study in n=28 acute depressed MDD patients, comparing them with n=25 healthy participants. Our focus was on the temporal dynamics of both resting state and stimulus-evoked activity for which reason we measured peak frequency (PF), coefficient of variation (CV), Lempel-Ziv complexity (LZC), and trial-to-trial variability (TTV). Our main findings are: i) atypical temporal dynamics in resting state, specifically in the alpha and theta bands as measured by peak frequency (PF), coefficient of variation (CV) and power; ii) decreased reactivity to external deviant stimuli as measured by decreased changes in stimulus-evoked variance and complexity-TTV, LZC, and power and frequency sliding (FS and PS); iii) correlation of stimulus related measures (TTV, LZC, PS, and FS) with resting state measures. Together, our findings show that resting state dynamics alone are atypical in MDD and, even more important, strongly shapes the dynamics of subsequent stimulus-evoked activity. We thus conclude that MDD can be characterized by an atypical temporal dynamic of its rest-stimulus interaction; that, in turn, makes it difficult for depressed patients to react to relevant stimuli such as the deviant tone in our paradigm.
Collapse
Affiliation(s)
- Annemnarie Wolff
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sara de la Salle
- Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Alana Sorgini
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Emma Lynn
- Department of Cellular and Molecular Medicine and Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Verner Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
92
|
Maldonado T, Goen JRM, Imburgio MJ, Eakin SM, Bernard JA. Single session high definition transcranial direct current stimulation to the cerebellum does not impact higher cognitive function. PLoS One 2019; 14:e0222995. [PMID: 31600223 PMCID: PMC6786549 DOI: 10.1371/journal.pone.0222995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
The prefrontal cortex is central to higher order cognitive function. However, the cerebellum, generally thought to be involved in motor control and learning, has also been implicated in higher order cognition. Recent work using transcranial direct current stimulation (tDCS) provides some support for right cerebellar involvement in higher order cognition, though the results are mixed, and often contradictory. Here, we used cathodal high definition tDCS (HD-tDCS) over the right cerebellum to assess the impact of HD-tDCS on modulating cognitive performance. We predicted that stimulation would result in performance decreases, which would suggest that optimal cerebellar function is necessary for cognitive performance, much like the prefrontal cortex. That is, it is not simply a structure that lends support to complete difficult tasks. While the expected cognitive behavioral effects were present, we did not find effects of stimulation. This has broad implications for cerebellar tDCS research, particularly for those who are interested in using HD-tDCS as a way of examining cerebellar function. Further implications, limitations, and future directions are discussed with particular emphasis on why null findings might be critical in developing a clear picture of the effects of tDCS on the cerebellum.
Collapse
Affiliation(s)
- Ted Maldonado
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - James R. M. Goen
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Michael J. Imburgio
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sydney M. Eakin
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
93
|
Darki F, Sauce B, Klingberg T, for the Pediatric Imaging, Neurocognition, and Genetics Study. Inter-Individual Differences in Striatal Connectivity Is Related to Executive Function Through Fronto-Parietal Connectivity. Cereb Cortex 2019; 30:672-681. [DOI: 10.1093/cercor/bhz117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
The striatum has long been associated with cognitive functions, but the mechanisms behind this are still unclear. Here we tested a new hypothesis that the striatum contributes to executive function (EF) by strengthening cortico-cortical connections. Striatal connectivity was evaluated by measuring the resting-state functional connectivity between ventral and dorsal striatum in 570 individuals, aged 3–20 years. Using structural equation modeling, we found that inter-individual differences in striatal connectivity had an indirect effect (via fronto-parietal functional connectivity) and a direct effect on a compound EF measure of working memory, inhibition, and set-shifting/flexibility. The effect of fronto-parietal connectivity on cognition did not depend on age: the influence was as strong in older as younger children. In contrast, striatal connectivity was closely related to changes in cognitive ability during childhood development, suggesting a specific role of the striatum in cognitive plasticity. These results support a new principle for striatal functioning, according to which striatum promotes cognitive development by strengthening of cortico-cortical connectivity.
Collapse
Affiliation(s)
- Fahimeh Darki
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bruno Sauce
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
94
|
Banich MT. Emerging themes in cognitive control: Commentary on the special issue of Psychophysiology entitled "Dynamics of Cognitive Control: A View Across Methodologies". Psychophysiology 2019; 55. [PMID: 29436040 DOI: 10.1111/psyp.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Marie T Banich
- Institute of Cognitive Science and Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
95
|
Zhou Q, Zhang L, Feng J, Lo CYZ. Tracking the Main States of Dynamic Functional Connectivity in Resting State. Front Neurosci 2019; 13:685. [PMID: 31338016 PMCID: PMC6629909 DOI: 10.3389/fnins.2019.00685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 01/22/2023] Open
Abstract
Dynamical changes have recently been tracked in functional connectivity (FC) calculated from resting-state functional magnetic resonance imaging (R-fMRI), when a person is conscious but not carrying out a directed task during scanning. Diverse dynamical FC states (dFC) are believed to represent different internal states of the brain, in terms of brain-regional interactions. In this paper, we propose a novel protocol, the signed community clustering with the optimized modularity by two-step procedures, to track dynamical whole brain functional connectivity (dWFC) states. This protocol is assumption free without a priori threshold for the number of clusters. By applying our method on sliding window based dWFC’s with automated anatomical labeling 2 (AAL2), three main dWFC states were extracted from R-fMRI datasets in Human Connectome Project, that are independent on window size. Through extracting the FC features of these states, we found the functional links in state 1 (WFC-C1) mainly involved visual, somatomotor, attention and cerebellar (posterior lobe) modules. State 2 (WFC-C2) was similar to WFC-C1, but more FC’s linking limbic, default mode, and frontoparietal modules and less linking the cerebellum, sensory and attention modules. State 3 had more FC’s linking default mode, limbic, and cerebellum, compared to WFC-C1 and WFC-C2. With tests of robustness and stability, our work provides a solid, hypothesis-free tool to detect dWFC states for the possibility of tracking rapid dynamical change in FCs among large data sets.
Collapse
Affiliation(s)
- Qunjie Zhou
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| | - Lu Zhang
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.,Oxford Centre for Computational Neuroscience, Oxford, United Kingdom.,Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
96
|
Lee YB, Yoo K, Roh JH, Moon WJ, Jeong Y. Brain-State Extraction Algorithm Based on the State Transition (BEST): A Dynamic Functional Brain Network Analysis in fMRI Study. Brain Topogr 2019; 32:897-913. [DOI: 10.1007/s10548-019-00719-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/28/2019] [Indexed: 12/23/2022]
|
97
|
Neural variability quenching during decision-making: Neural individuality and its prestimulus complexity. Neuroimage 2019; 192:1-14. [DOI: 10.1016/j.neuroimage.2019.02.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/31/2019] [Accepted: 02/27/2019] [Indexed: 11/20/2022] Open
|
98
|
Zhang DW, Li H, Wu Z, Zhao Q, Song Y, Liu L, Qian Q, Wang Y, Roodenrys S, Johnstone SJ, De Blasio FM, Sun L. Electroencephalogram Theta/Beta Ratio and Spectral Power Correlates of Executive Functions in Children and Adolescents With AD/HD. J Atten Disord 2019; 23:721-732. [PMID: 28689463 DOI: 10.1177/1087054717718263] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The electroencephalogram (EEG) has been widely used in AD/HD research. The current study firstly aimed to replicate a recent trend related to EEG theta/beta ratio (TBR) in children and adolescents. Also, the study aimed to examine the value of resting EEG activity as biomarkers for executive function (EF) in participants with AD/HD. METHOD Fifty-three participants with AD/HD and 37 healthy controls were recruited. Resting EEG was recorded with eyes closed. Participants with AD/HD additionally completed EF tasks via the Cambridge Neuropsychological Test Automated Battery. RESULTS TBR did not differ between groups; however, TBR was positively correlated with inattentive symptoms in AD/HD. Other correlations were found between EEG activity and neuropsychological functions including spatial planning and decision making in the AD/HD group. CONCLUSION The results do not support the diagnostic value of TBR. Instead, given the heterogeneous features, the results support the prognostic value of EEG in AD/HD.
Collapse
Affiliation(s)
- Da-Wei Zhang
- 1 Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Australia
| | - Hui Li
- 2 Peking University Sixth Hospital/Institue of Mental Health, Beijing, China.,3 National Clinical Research Center for Mental Disorders, Beijing, China
| | - Zhanliang Wu
- 2 Peking University Sixth Hospital/Institue of Mental Health, Beijing, China.,3 National Clinical Research Center for Mental Disorders, Beijing, China
| | - Qihua Zhao
- 2 Peking University Sixth Hospital/Institue of Mental Health, Beijing, China.,3 National Clinical Research Center for Mental Disorders, Beijing, China
| | - Yan Song
- 4 Beijing Normal University, Beijing, China
| | - Lu Liu
- 2 Peking University Sixth Hospital/Institue of Mental Health, Beijing, China.,3 National Clinical Research Center for Mental Disorders, Beijing, China
| | - Qiujin Qian
- 2 Peking University Sixth Hospital/Institue of Mental Health, Beijing, China.,3 National Clinical Research Center for Mental Disorders, Beijing, China
| | - Yufeng Wang
- 2 Peking University Sixth Hospital/Institue of Mental Health, Beijing, China.,3 National Clinical Research Center for Mental Disorders, Beijing, China
| | - Steven Roodenrys
- 1 Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Australia
| | - Stuart J Johnstone
- 1 Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Australia
| | - Frances M De Blasio
- 1 Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Australia
| | - Li Sun
- 2 Peking University Sixth Hospital/Institue of Mental Health, Beijing, China.,3 National Clinical Research Center for Mental Disorders, Beijing, China
| |
Collapse
|
99
|
Thomas SA, Christensen RE, Schettini E, Saletin JM, Ruggieri AL, MacPherson HA, Kim KL, Dickstein DP. Preliminary analysis of resting state functional connectivity in young adults with subtypes of bipolar disorder. J Affect Disord 2019; 246:716-726. [PMID: 30616161 PMCID: PMC8805680 DOI: 10.1016/j.jad.2018.12.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/25/2018] [Accepted: 12/23/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND A precision medicine approach to bipolar disorder (BD) requires greater knowledge of neural mechanisms, especially within the BD phenotype. The present study evaluated differences in resting state functional connectivity (RSFC) between young adults followed longitudinally since childhood with full-threshold type I BD (BD-I)-characterized by distinct manic episodes-or a more sub-syndromal presentation of BD (BD Not Otherwise Specified [BD-NOS]), compared to one another and to healthy controls (HC). Independent Components Analysis (ICA), a multivariate data-driven method, and dual regression were used to explore whether connectivity within resting state networks (RSNs) differentiated the groups, especially for characteristic fronto-limbic alterations in BD. METHODS Young adults (ages 18-30) with BD-I (n = 28), BD-NOS (n = 14), and HCs (n = 52) underwent structural and RSFC neuroimaging. ICA derived 30 components from RSFC data; a subset of these components, representing well-characterized RSNs, was used for between-group analyses. RESULTS Participants with BD-I had significantly greater connectivity strength between the executive control network and right caudate vs. HCs. Participants with BD-NOS had significantly greater connectivity strength between the sensorimotor network and left precentral gyrus vs. HCs, which was significantly related to psychiatric symptoms. LIMITATIONS Limitations included small BD-NOS sample size and variation in BD mood state and medication status. CONCLUSIONS Results for BD-I participants support prior findings of fronto-limbic alterations characterizing BD. Alterations in the sensorimotor network for adults with BD-NOS aligns with the small but growing body of evidence that sensorimotor network alterations may represent a marker for vulnerability to BD. Further study is required to evaluate specificity.
Collapse
Affiliation(s)
- Sarah A. Thomas
- Pediatric Mood, Imaging, and NeuroDevelopment (PediMIND)
Program, Emma Pendleton Bradley Hospital, East Providence, RI, USA,Division of Child Psychiatry, Department of Psychiatry and
Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI,
USA,Corresponding Author: Sarah A. Thomas, Bradley
Hospital PediMIND Program, 1011 Veterans Memorial Parkway, East Providence, RI
02915, Phone: (401) 432-1618, Fax: (401) 432-1607,
| | - Rachel E. Christensen
- Pediatric Mood, Imaging, and NeuroDevelopment (PediMIND)
Program, Emma Pendleton Bradley Hospital, East Providence, RI, USA
| | - Elana Schettini
- Pediatric Mood, Imaging, and NeuroDevelopment (PediMIND)
Program, Emma Pendleton Bradley Hospital, East Providence, RI, USA
| | - Jared M. Saletin
- Division of Child Psychiatry, Department of Psychiatry and
Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI,
USA,Emma Pendleton Bradley Hospital Sleep Research Laboratory,
Providence, RI, USA
| | - Amanda L. Ruggieri
- Pediatric Mood, Imaging, and NeuroDevelopment (PediMIND)
Program, Emma Pendleton Bradley Hospital, East Providence, RI, USA
| | - Heather A. MacPherson
- Pediatric Mood, Imaging, and NeuroDevelopment (PediMIND)
Program, Emma Pendleton Bradley Hospital, East Providence, RI, USA,Division of Child Psychiatry, Department of Psychiatry and
Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI,
USA
| | - Kerri L. Kim
- Pediatric Mood, Imaging, and NeuroDevelopment (PediMIND)
Program, Emma Pendleton Bradley Hospital, East Providence, RI, USA,Division of Child Psychiatry, Department of Psychiatry and
Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI,
USA
| | - Daniel P. Dickstein
- Pediatric Mood, Imaging, and NeuroDevelopment (PediMIND)
Program, Emma Pendleton Bradley Hospital, East Providence, RI, USA,Division of Child Psychiatry, Department of Psychiatry and
Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI,
USA
| |
Collapse
|
100
|
Yang MH, Yao ZF, Hsieh S. Multimodal neuroimaging analysis reveals age-associated common and discrete cognitive control constructs. Hum Brain Mapp 2019; 40:2639-2661. [PMID: 30779255 DOI: 10.1002/hbm.24550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/06/2019] [Accepted: 02/04/2019] [Indexed: 12/29/2022] Open
Abstract
The aims of this study were to determine which cognitive control functions are most sensitive to cross-sectional age differences and to identify neural features in different neuroimaging modalities that associated cognitive control function across the adult lifespan. We employed a joint independent component analysis (jICA) approach to obtain common networks among three different brain-imaging modalities (i.e., structural MRI, resting-state functional MRI, and diffusion tensor imaging) in relation to the cognitive control function. We differentiated three distinct cognitive constructs: one common (across inhibition, shifting, and updating) and two specific (shifting, updating) factors. These common/specific constructs were transformed from three original performance indexes: (a) stop-signal reaction time, (b) switch-cost, and (c) performance sensitivity collected from 156 individuals aged 20 to 78 years old. The current results show that the cross-sectional age difference is associated with a wide spread of brain degeneration that is not limited to the frontal region. Crucially, these findings suggest there are some common and distinct joined multimodal components that correlate with the psychological constructs of common and discrete cognitive control functions, respectively. To support current findings, other fusion ICA models were also analyzed including, parallel ICA (para-ICA) and multiset canonical correlation analysis with jICA (mCCA + jICA). Dynamic interactions among these brain features across different brain modalities could serve as possible developmental mechanisms associated with these age effects.
Collapse
Affiliation(s)
- Meng-Heng Yang
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Zai-Fu Yao
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Shulan Hsieh
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Institue of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department and Institute of Public Health, National Cheng Kung University, Tainan, Taiwan, Republic of China
| |
Collapse
|