51
|
Preisig BC, Sjerps MJ, Hervais-Adelman A, Kösem A, Hagoort P, Riecke L. Bilateral Gamma/Delta Transcranial Alternating Current Stimulation Affects Interhemispheric Speech Sound Integration. J Cogn Neurosci 2019; 32:1242-1250. [PMID: 31682569 DOI: 10.1162/jocn_a_01498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Perceiving speech requires the integration of different speech cues, that is, formants. When the speech signal is split so that different cues are presented to the right and left ear (dichotic listening), comprehension requires the integration of binaural information. Based on prior electrophysiological evidence, we hypothesized that the integration of dichotically presented speech cues is enabled by interhemispheric phase synchronization between primary and secondary auditory cortex in the gamma frequency band. We tested this hypothesis by applying transcranial alternating current stimulation (TACS) bilaterally above the superior temporal lobe to induce or disrupt interhemispheric gamma-phase coupling. In contrast to initial predictions, we found that gamma TACS applied in-phase above the two hemispheres (interhemispheric lag 0°) perturbs interhemispheric integration of speech cues, possibly because the applied stimulation perturbs an inherent phase lag between the left and right auditory cortex. We also observed this disruptive effect when applying antiphasic delta TACS (interhemispheric lag 180°). We conclude that interhemispheric phase coupling plays a functional role in interhemispheric speech integration. The direction of this effect may depend on the stimulation frequency.
Collapse
Affiliation(s)
- Basil C Preisig
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,University of Zurich
| | - Matthias J Sjerps
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), Lyon, France
| | - Peter Hagoort
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | |
Collapse
|
52
|
Zoefel B, Allard I, Anil M, Davis MH. Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation. J Cogn Neurosci 2019; 32:226-240. [PMID: 31659922 DOI: 10.1162/jocn_a_01490] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several recent studies have used transcranial alternating current stimulation (tACS) to demonstrate a causal role of neural oscillatory activity in speech processing. In particular, it has been shown that the ability to understand speech in a multi-speaker scenario or background noise depends on the timing of speech presentation relative to simultaneously applied tACS. However, it is possible that tACS did not change actual speech perception but rather auditory stream segregation. In this study, we tested whether the phase relation between tACS and the rhythm of degraded words, presented in silence, modulates word report accuracy. We found strong evidence for a tACS-induced modulation of speech perception, but only if the stimulation was applied bilaterally using ring electrodes (not for unilateral left hemisphere stimulation with square electrodes). These results were only obtained when data were analyzed using a statistical approach that was identified as optimal in a previous simulation study. The effect was driven by a phasic disruption of word report scores. Our results suggest a causal role of neural entrainment for speech perception and emphasize the importance of optimizing stimulation protocols and statistical approaches for brain stimulation research.
Collapse
|
53
|
Takeuchi N, Sudo T, Oouchida Y, Mori T, Izumi SI. Synchronous Neural Oscillation Between the Right Inferior Fronto-Parietal Cortices Contributes to Body Awareness. Front Hum Neurosci 2019; 13:330. [PMID: 31616270 PMCID: PMC6769041 DOI: 10.3389/fnhum.2019.00330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/09/2019] [Indexed: 11/23/2022] Open
Abstract
The right inferior fronto-parietal network monitors the current status of the musculoskeletal system and builds-up and updates our postural model. The kinesthetic illusion induced by tendon vibration has been utilized in experiments on the modulation of body awareness. The right inferior fronto-parietal cortices activate during the kinesthetic illusion. We aimed to determine the relationship between the right inferior fronto-parietal cortices and body awareness by applying transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory neural activity in the right fronto-parietal cortices during the kinesthetic illusion. Sixteen young adults participated in this study. We counterbalanced the order in which participants received the three types of tACS (55 Hz enveloped by 6 Hz; synchronous, desynchronous, and sham) across the subjects. The illusory movement perception induced by tendon vibration of the left extensor carpi ulnaris muscle was assessed before and during tACS. Application of synchronous tACS over the right inferior fronto-parietal cortices significantly increased kinesthetic illusion compared with sham tACS. The kinesthetic illusion during desynchronous tACS decreased from baseline. There was no change in vibration sensation during any tACS condition. The modulation of oscillatory brain activity between the right fronto-parietal cortices alters the illusory movement perception without altering actual vibration sensation. tACS over the right inferior fronto-parietal cortices is considered to modulate the neural processing involved in updating the postural model when the stimulated muscle spindle sends kinesthetic signals. This is the first study that reveals that rhythmic communication between the right inferior fronto-parietal cortices has a causal role in body awareness.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, Akita, Japan
| | - Tamami Sudo
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Yutaka Oouchida
- Department of Education, Osaka Kyoiku University, Kashiwara, Japan
| | - Takayuki Mori
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
54
|
Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res 2019; 237:3071-3088. [DOI: 10.1007/s00221-019-05666-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
|
55
|
Synchronization of Sensory Gamma Oscillations Promotes Multisensory Communication. eNeuro 2019; 6:ENEURO.0101-19.2019. [PMID: 31601635 PMCID: PMC6873160 DOI: 10.1523/eneuro.0101-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023] Open
Abstract
Rhythmic neuronal activity in the gamma range is a signature of cortical processing and its synchronization across distant sites has been proposed as a fundamental mechanism of network interactions. While this has been shown within sensory streams, we tested whether cross talk between the senses relies on similar mechanisms. Direct sensory interactions in humans (male and female) were studied with a visual-tactile amplitude matching paradigm. In this task, congruent stimuli are associated with behavioral benefits, which are proposed to be mediated by increased binding between sensory cortices through coherent gamma oscillations. We tested this hypothesis by applying 4-in-1 multi-electrode transcranial alternating current stimulation (tACS) with 40 Hz over visual and somatosensory cortices. In phase stimulation (0°) was expected to strengthen binding and thereby enhance the congruence effect, while anti-phase (180°) stimulation was expected to have opposite effects. Gamma tACS was controlled by alpha (10 Hz) and sham stimulation, as well as by applying tACS unilaterally while visual-tactile stimuli were presented lateralized. Contrary to our expectations, gamma tACS over the relevant hemisphere delayed responses to congruent trials. Additionally, reanalysis of EEG data revealed decoupling of sensory gamma oscillations during congruent trials. We propose that gamma tACS prevented sensory decoupling and thereby limited the congruence effect. Together, our results favor the perspective that processing multisensory congruence involves corticocortical communication rather than feature binding. Furthermore, we found control stimulation over the irrelevant hemisphere to speed responses under alpha stimulation and to delay responses under gamma stimulation, consistent with the idea that contralateral alpha/gamma dynamics regulate cortical excitability.
Collapse
|
56
|
Accessibility of cortical regions to focal TES: Dependence on spatial position, safety, and practical constraints. Neuroimage 2019; 203:116183. [PMID: 31525498 DOI: 10.1016/j.neuroimage.2019.116183] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/14/2019] [Accepted: 09/10/2019] [Indexed: 11/22/2022] Open
Abstract
Transcranial electric stimulation (TES) can modulate intrinsic neural activity in the brain by injecting weak currents through electrodes attached to the scalp. TES has been widely used as a neuroscience tool to investigate how behavioural and physiological variables of brain function are modulated by electric stimulation of specific brain regions. For an unambiguous interpretation of TES experiments, it is important that the electric fields can be steered towards one or several brain regions-of-interest. However, the conductive proprieties of the human head impose inherent physical limitations on how focal the electric fields in the brain produced by multi-electrode TES can be. As a rule of thumb, it is not feasible to selectively target deep brain areas with TES, although focusing the field in some specific deeper locations might be possible due to favourable conductive properties in the surrounding tissue. In the present study, we first propose a computationally efficient method for the automatic determination of electrode placements and stimulation intensities to optimally affect a given target position. We provide a robust implementation of the optimization procedure that is able to adhere to safety constraints, while explicitly controlling both the number of active electrodes and the angular deviation of the field in the target area relative to the desired field direction. Leveraging the high computational efficiency of our method, we systematically assess the achievable focality of multi-electrode TES for all cortex positions, thereby investigating the dependence on the chosen constraints. Our results provide comprehensive insight into the limitations regarding the achievable TES dose and focality that are imposed by the biophysical constraints and the safety considerations of TES.
Collapse
|
57
|
Schwab BC, Misselhorn J, Engel AK. Modulation of large-scale cortical coupling by transcranial alternating current stimulation. Brain Stimul 2019; 12:1187-1196. [DOI: 10.1016/j.brs.2019.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023] Open
|
58
|
Rampersad S, Roig-Solvas B, Yarossi M, Kulkarni PP, Santarnecchi E, Dorval AD, Brooks DH. Prospects for transcranial temporal interference stimulation in humans: A computational study. Neuroimage 2019; 202:116124. [PMID: 31473351 DOI: 10.1016/j.neuroimage.2019.116124] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 11/27/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a noninvasive method used to modulate activity of superficial brain regions. Deeper and more steerable stimulation could potentially be achieved using transcranial temporal interference stimulation (tTIS): two high-frequency alternating fields interact to produce a wave with an envelope frequency in the range thought to modulate neural activity. Promising initial results have been reported for experiments with mice. In this study we aim to better understand the electric fields produced with tTIS and examine its prospects in humans through simulations with murine and human head models. A murine head finite element model was used to simulate previously published experiments of tTIS in mice. With a total current of 0.776 mA, tTIS electric field strengths up to 383 V/m were reached in the modeled mouse brain, affirming experimental results indicating that suprathreshold stimulation is possible in mice. Using a detailed anisotropic human head model, tTIS was simulated with systematically varied electrode configurations and input currents to investigate how these parameters influence the electric fields. An exhaustive search with 88 electrode locations covering the entire head (146M current patterns) was employed to optimize tTIS for target field strength and focality. In all analyses, we investigated maximal effects and effects along the predominant orientation of local neurons. Our results showed that it was possible to steer the peak tTIS field by manipulating the relative strength of the two input fields. Deep brain areas received field strengths similar to conventional tACS, but with less stimulation in superficial areas. Maximum field strengths in the human model were much lower than in the murine model, too low to expect direct stimulation effects. While field strengths from tACS were slightly higher, our results suggest that tTIS is capable of producing more focal fields and allows for better steerability. Finally, we present optimal four-electrode current patterns to maximize tTIS in regions of the pallidum (0.37 V/m), hippocampus (0.24 V/m) and motor cortex (0.57 V/m).
Collapse
Affiliation(s)
- Sumientra Rampersad
- Department of Electrical and Computer Engineering, Northeastern University, Boston, USA.
| | - Biel Roig-Solvas
- Department of Electrical and Computer Engineering, Northeastern University, Boston, USA
| | - Mathew Yarossi
- Department of Electrical and Computer Engineering, Northeastern University, Boston, USA; Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, USA
| | - Praveen P Kulkarni
- Center for Translational Neuro-imaging, Northeastern University, Boston, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Harvard Medical School, Boston, USA
| | - Alan D Dorval
- Department of Biomedical Engineering, University of Utah, Salt Lake City, USA
| | - Dana H Brooks
- Department of Electrical and Computer Engineering, Northeastern University, Boston, USA
| |
Collapse
|
59
|
Alekseichuk I, Falchier AY, Linn G, Xu T, Milham MP, Schroeder CE, Opitz A. Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nat Commun 2019; 10:2573. [PMID: 31189931 PMCID: PMC6561925 DOI: 10.1038/s41467-019-10581-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/20/2019] [Indexed: 11/29/2022] Open
Abstract
Neural oscillations play a crucial role in communication between remote brain areas. Transcranial electric stimulation with alternating currents (TACS) can manipulate these brain oscillations in a non-invasive manner. Recently, TACS using multiple electrodes with phase shifted stimulation currents were developed to alter long-range connectivity. Typically, an increase in coordination between two areas is assumed when they experience an in-phase stimulation and a disorganization through an anti-phase stimulation. However, the underlying biophysics of multi-electrode TACS has not been studied in detail. Here, we leverage direct invasive recordings from two non-human primates during multi-electrode TACS to characterize electric field magnitude and phase as a function of the phase of stimulation currents. Further, we report a novel "traveling wave" stimulation where the location of the electric field maximum changes over the stimulation cycle. Our results provide a mechanistic understanding of the biophysics of multi-electrode TACS and enable future developments of novel stimulation protocols.
Collapse
Affiliation(s)
- Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Arnaud Y Falchier
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
| | - Gary Linn
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, 10022, NY, USA
| | - Michael P Milham
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
- Center for the Developing Brain, Child Mind Institute, New York, 10022, NY, USA
| | - Charles E Schroeder
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
- Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, 10032, NY, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, MN, USA.
| |
Collapse
|
60
|
Hanslmayr S, Axmacher N, Inman CS. Modulating Human Memory via Entrainment of Brain Oscillations. Trends Neurosci 2019; 42:485-499. [PMID: 31178076 DOI: 10.1016/j.tins.2019.04.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
Abstract
In the human brain, oscillations occur during neural processes that are relevant for memory. This has been demonstrated by a plethora of studies relating memory processes to specific oscillatory signatures. Several recent studies have gone beyond such correlative approaches and provided evidence supporting the idea that modulating oscillations via frequency-specific entrainment can alter memory functions. Such causal evidence is important because it allows distinguishing mechanisms directly related to memory from mere epiphenomenal oscillatory signatures of memory. This review provides an overview of stimulation studies using different approaches to entrain brain oscillations for modulating human memory. We argue that these studies demonstrate a causal link between brain oscillations and memory, speaking against an epiphenomenal perspective of brain oscillations.
Collapse
Affiliation(s)
- Simon Hanslmayr
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Cory S Inman
- Department of Neurosurgery, Emory University, 1365 Clifton Road North East, Atlanta, GA 30322, USA
| |
Collapse
|
61
|
Heise KF, Monteiro TS, Leunissen I, Mantini D, Swinnen SP. Distinct online and offline effects of alpha and beta transcranial alternating current stimulation (tACS) on continuous bimanual performance and task-set switching. Sci Rep 2019; 9:3144. [PMID: 30816305 PMCID: PMC6395614 DOI: 10.1038/s41598-019-39900-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/31/2019] [Indexed: 11/09/2022] Open
Abstract
In the present study we examined the effect of bihemispheric in-phase synchronization of motor cortical rhythms on complex bimanual coordination. Twenty young healthy volunteers received 10 Hz or 20 Hz tACS in a double-blind crossover design while performing a bimanual task-set switching paradigm. We used a bilateral high-density montage centred over the hand knob representation within the primary motor cortices to apply tACS time-locked to the switching events. Online tACS in either frequency led to faster but more erroneous switching transitions compared to trials without active stimulation. When comparing stimulation frequencies, 10 Hz stimulation resulted in higher error rates and slower switching transitions than 20 Hz stimulation. Furthermore, the stimulation frequencies showed distinct carry-over effects in trials following stimulation trains. Non-stimulated switching transitions were generally faster but continuous performance became more erroneous over time in the 20 Hz condition. We suggest that the behavioural effects of bifocal in-phase tACS are explained by online synchronization of long-range interhemispheric sensorimotor oscillations, which impacts on interhemispheric information flow and the top-down control required for flexible control of complex bimanual actions. Different stimulation frequencies may lead to distinct offline effects, which potentially accumulate over time and therefore need to be taken into account when evaluating subsequent performance.
Collapse
Affiliation(s)
- Kirstin-Friederike Heise
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium. .,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Thiago Santos Monteiro
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Inge Leunissen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Functional Neuroimaging Laboratory, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
62
|
Karabanov AN, Saturnino GB, Thielscher A, Siebner HR. Can Transcranial Electrical Stimulation Localize Brain Function? Front Psychol 2019; 10:213. [PMID: 30837911 PMCID: PMC6389710 DOI: 10.3389/fpsyg.2019.00213] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Transcranial electrical stimulation (TES) uses constant (TDCS) or alternating currents (TACS) to modulate brain activity. Most TES studies apply low-intensity currents through scalp electrodes (≤2 mA) using bipolar electrode arrangements, producing weak electrical fields in the brain (<1 V/m). Low-intensity TES has been employed in humans to induce changes in task performance during or after stimulation. In analogy to focal transcranial magnetic stimulation, TES-induced behavioral effects have often been taken as evidence for a causal involvement of the brain region underlying one of the two stimulation electrodes, often referred to as the active electrode. Here, we critically review the utility of bipolar low-intensity TES to localize human brain function. We summarize physiological substrates that constitute peripheral targets for TES and may mediate subliminal or overtly perceived peripheral stimulation during TES. We argue that peripheral co-stimulation may contribute to the behavioral effects of TES and should be controlled for by "sham" TES. We discuss biophysical properties of TES, which need to be considered, if one wishes to make realistic assumptions about which brain regions were preferentially targeted by TES. Using results from electric field calculations, we evaluate the validity of different strategies that have been used for selective spatial targeting. Finally, we comment on the challenge of adjusting the dose of TES considering dose-response relationships between the weak tissue currents and the physiological effects in targeted cortical areas. These considerations call for caution when attributing behavioral effects during or after low-intensity TES studies to a specific brain region and may facilitate the selection of best practices for future TES studies.
Collapse
Affiliation(s)
- Anke Ninija Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Guilherme Bicalho Saturnino
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Health Sciences and Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
63
|
Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner. Neurosci Lett 2019; 694:64-68. [DOI: 10.1016/j.neulet.2018.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/18/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022]
|
64
|
Huang Y, Parra LC. Can transcranial electric stimulation with multiple electrodes reach deep targets? Brain Stimul 2019; 12:30-40. [PMID: 30297323 PMCID: PMC6301116 DOI: 10.1016/j.brs.2018.09.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/03/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022] Open
Abstract
To reach a deep target in the brain with transcranial electric stimulation (TES), currents have to pass also through the cortical surface. Thus, it is generally thought that TES cannot achieve focal deep brain stimulation. Recent efforts with interfering waveforms and pulsed stimulation have argued that one can achieve deeper or more intense stimulation in the brain. Here we argue that conventional transcranial stimulation with multiple current sources is just as effective as these new approaches. The conventional multi-electrode approach can be numerically optimized to maximize intensity or focality at a desired target location. Using such optimal electrode configurations we find in a detailed and realistic head model that deep targets may in fact be strongly stimulated, with cerebro-spinal fluid guiding currents deep into the brain.
Collapse
Affiliation(s)
- Yu Huang
- Department of Biomedical Engineering, City College of the City University of New York, United States
| | - Lucas C Parra
- Department of Biomedical Engineering, City College of the City University of New York, United States.
| |
Collapse
|
65
|
Tan J, Iyer KK, Tang AD, Jamil A, Martins RN, Sohrabi HR, Nitsche MA, Hinder MR, Fujiyama H. Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: A narrative review. Neuroimage 2018; 185:490-512. [PMID: 30342977 DOI: 10.1016/j.neuroimage.2018.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Response inhibition, the ability to withhold a dominant and prepotent response following a change in circumstance or sensory stimuli, declines with advancing age. While non-invasive brain stimulation (NiBS) has shown promise in alleviating some cognitive and motor functions in healthy older individuals, NiBS research focusing on response inhibition has mostly been conducted on younger adults. These extant studies have primarily focused on modulating the activity of distinct neural regions known to be critical for response inhibition, including the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (pre-SMA). However, given that changes in structural and functional connectivity have been associated with healthy aging, this review proposes that NiBS protocols aimed at modulating the functional connectivity between the rIFG and pre-SMA may be the most efficacious approach to investigate-and perhaps even alleviate-age-related deficits in inhibitory control.
Collapse
Affiliation(s)
- Jane Tan
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia
| | - Kartik K Iyer
- Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Australia
| | - Asif Jamil
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Medicine (Division of Psychology), University of Tasmania, Hobart, Australia
| | - Hakuei Fujiyama
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia.
| |
Collapse
|
66
|
van Schouwenburg MR, Sörensen LKA, de Klerk R, Reteig LC, Slagter HA. No Differential Effects of Two Different Alpha-Band Electrical Stimulation Protocols Over Fronto-Parietal Regions on Spatial Attention. Front Neurosci 2018; 12:433. [PMID: 30018530 PMCID: PMC6037819 DOI: 10.3389/fnins.2018.00433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
In a previous study using transcranial alternating current stimulation (tACS), we found preliminary evidence that phase coherence in the alpha band (8–12 Hz) within the fronto-parietal network may critically support top-down control of spatial attention (van Schouwenburg et al., 2017). Specifically, synchronous alpha-band stimulation over the right frontal and parietal cortex (0° relative phase) was associated with changes in performance and fronto-parietal coherence during a spatial attention task as compared to sham stimulation. In the current study, we firstly aimed to replicate these findings with synchronous tACS. Second, we extended our previous protocol by adding a second tACS condition in which the right frontal and parietal cortex were stimulated in a desynchronous fashion (180° relative phase), to test the specificity of the changes observed in our previous study. Participants (n = 23) were tested in three different sessions in which they received either synchronous, desynchronous, or sham stimulation over the right frontal and parietal cortex. In contrast to our previous study, we found no spatially selective effects of stimulation on behavior or coherence in either stimulation protocol compared to sham. We highlight some of the differences in study design that may have contributed to this discrepancy in findings and more generally may determine the effectiveness of tACS.
Collapse
Affiliation(s)
- Martine R van Schouwenburg
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Lynn K A Sörensen
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Raza de Klerk
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Leon C Reteig
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Heleen A Slagter
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
67
|
Vosskuhl J, Strüber D, Herrmann CS. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations. Front Hum Neurosci 2018; 12:211. [PMID: 29887799 PMCID: PMC5980979 DOI: 10.3389/fnhum.2018.00211] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS) techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS), an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo. These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.
Collapse
Affiliation(s)
- Johannes Vosskuhl
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Daniel Strüber
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
68
|
Albouy P, Baillet S, Zatorre RJ. Driving working memory with frequency-tuned noninvasive brain stimulation. Ann N Y Acad Sci 2018; 1423:126-137. [PMID: 29707781 DOI: 10.1111/nyas.13664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Frequency-tuned noninvasive brain stimulation is a recent approach in cognitive neuroscience that involves matching the frequency of transcranially applied electromagnetic fields to that of specific oscillatory components of the underlying neurophysiology. The objective of this method is to modulate ongoing/intrinsic brain oscillations, which correspond to rhythmic fluctuations of neural excitability, to causally change behavior. We review the impact of frequency-tuned noninvasive brain stimulation on the research field of human working memory. We argue that this is a powerful method to probe and understand the mechanisms of memory functions, targeting specifically task-related oscillatory dynamics, neuronal representations, and brain networks. We report the main behavioral and neurophysiological outcomes published to date, in particular, how functionally relevant oscillatory signatures in signal power and interregional connectivity yield causal changes of working memory abilities. We also present recent developments of the technique that aim to modulate cross-frequency coupling in polyrhythmic neural activity. Overall, the method has led to significant advances in our understanding of the mechanisms of systems neuroscience, and the role of brain oscillations in cognition and behavior. We also emphasize the translational impact of noninvasive brain stimulation techniques in the development of therapeutic approaches.
Collapse
Affiliation(s)
- Philippe Albouy
- Montreal Neurological Institute, McGill University, Montreal, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada
| |
Collapse
|
69
|
Abstract
PURPOSE OF REVIEW This review aims to survey recent trends in electrical forms of neuromodulation, with a specific application to Parkinson's disease (PD). Emerging trends are identified, highlighting synergies in state-of-the-art neuromodulation strategies, with directions for future improvements in stimulation efficacy suggested. RECENT FINDINGS Deep brain stimulation remains the most common and effective form of electrical stimulation for the treatment of PD. Evidence suggests that transcranial direct current stimulation (tDCS) most likely impacts the motor symptoms of the disease, with the most prominent results relating to rehabilitation. However, utility is limited due to its weak effects and high variability, with medication state a key confound for efficacy level. Recent innovations in transcranial alternating current stimulation (tACS) offer new areas for investigation. SUMMARY Our understanding of the mechanistic foundations of electrical current stimulation is advancing and as it does so, trends emerge which steer future clinical trials towards greater efficacy.
Collapse
Affiliation(s)
- John-Stuart Brittain
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Hayriye Cagnan
- Institute of Neurology, University College London, London, UK
| |
Collapse
|
70
|
Tseng P, Iu KC, Juan CH. The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Sci Rep 2018; 8:349. [PMID: 29321584 PMCID: PMC5762658 DOI: 10.1038/s41598-017-18449-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 11/09/2022] Open
Abstract
Visual working memory (VWM) refers to people's ability to maintain and manipulate visual information on line. Its capacity varies between individuals, and neuroimaging studies have suggested a link between one's VWM capacity and theta power in the parietal cortex. However, it is unclear how the parietal cortices communicate with each other in order to support VWM processing. In two experiments we employed transcranial alternate current stimulation (tACS) to use frequency-specific (6 Hz) alternating current to modulate theta oscillation between the left and right parietal cortex with either in-phase (0° difference, Exp 1), anti-phase (180° difference, Exp 2), or sham sinusoidal current stimulation. In Experiment 1, in-phase theta tACS induced an improved VWM performance, but only in low-performers, whereas high-performers suffered a marginally-significant VWM impairment. In Experiment 2, anti-phase theta tACS did not help the low-performers, but significantly impaired high-performers' VWM capacity. These results not only provide causal evidence for theta oscillation in VWM processing, they also highlight the intricate interaction between tACS and individual differences-where the same protocol that enhances low-performers' VWM can backfire for the high-performers. We propose that signal complexity via coherent timing and phase synchronization within the bilateral parietal network is crucial for successful VWM functioning.
Collapse
Affiliation(s)
- Philip Tseng
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei City, Taiwan.
- TMU - Research Center of Brain and Consciousness, Taipei Medical University, Taipei City, Taiwan.
- Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Kai-Chi Iu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
| |
Collapse
|
71
|
Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci 2018; 21:174-187. [PMID: 29311747 DOI: 10.1038/s41593-017-0054-4] [Citation(s) in RCA: 536] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
In the past three decades, our understanding of brain-behavior relationships has been significantly shaped by research using non-invasive brain stimulation (NIBS) techniques. These methods allow non-invasive and safe modulation of neural processes in the healthy brain, enabling researchers to directly study how experimentally altered neural activity causally affects behavior. This unique property of NIBS methods has, on the one hand, led to groundbreaking findings on the brain basis of various aspects of behavior and has raised interest in possible clinical and practical applications of these methods. On the other hand, it has also triggered increasingly critical debates about the properties and possible limitations of these methods. In this review, we discuss these issues, clarify the challenges associated with the use of currently available NIBS techniques for basic research and practical applications, and provide recommendations for studies using NIBS techniques to establish brain-behavior relationships.
Collapse
Affiliation(s)
- Rafael Polanía
- Laboratory for Social and Neural Systems Research (SNS-Lab), Department of Economics, University of Zurich, Zurich, Switzerland.
| | - Michael A Nitsche
- Leibniz Research Center for Working Environment and Human Factors, Department of Psychology and Neurosciences, TU Dortmund, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Christian C Ruff
- Laboratory for Social and Neural Systems Research (SNS-Lab), Department of Economics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
72
|
D'Atri A, Romano C, Gorgoni M, Scarpelli S, Alfonsi V, Ferrara M, Ferlazzo F, Rossini PM, De Gennaro L. Bilateral 5 Hz transcranial alternating current stimulation on fronto-temporal areas modulates resting-state EEG. Sci Rep 2017; 7:15672. [PMID: 29142322 PMCID: PMC5688177 DOI: 10.1038/s41598-017-16003-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 11/03/2017] [Indexed: 02/08/2023] Open
Abstract
Rhythmic non-invasive brain stimulations are promising tools to modulate brain activity by entraining neural oscillations in specific cortical networks. The aim of the study was to assess the possibility to influence the neural circuits of the wake-sleep transition in awake subjects via a bilateral transcranial alternating current stimulation at 5 Hz (θ-tACS) on fronto-temporal areas. 25 healthy volunteers participated in two within-subject sessions (θ-tACS and sham), one week apart and in counterbalanced order. We assessed the stimulation effects on cortical EEG activity (28 derivations) and self-reported sleepiness (Karolinska Sleepiness Scale). θ-tACS induced significant increases of the theta activity in temporo-parieto-occipital areas and centro-frontal increases in the alpha activity compared to sham but failed to induce any online effect on sleepiness. Since the total energy delivered in the sham condition was much less than in the active θ-tACS, the current data are unable to isolate the specific effect of entrained theta oscillatory activity per se on sleepiness scores. On this basis, we concluded that θ-tACS modulated theta and alpha EEG activity with a topography consistent with high sleep pressure conditions. However, no causal relation can be traced on the basis of the current results between these rhythms and changes on sleepiness.
Collapse
Affiliation(s)
- Aurora D'Atri
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
- IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy
| | - Claudia Romano
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
| | - Valentina Alfonsi
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio (Coppito 2), 67100 Coppito, L'Aquila, Italy
| | - Fabio Ferlazzo
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
| | - Paolo Maria Rossini
- IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy
- Institute of Neurology, Catholic University of The Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy.
- IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy.
| |
Collapse
|