51
|
Huber LR, Poser BA, Kaas AL, Fear EJ, Dresbach S, Berwick J, Goebel R, Turner R, Kennerley AJ. Validating layer-specific VASO across species. Neuroimage 2021; 237:118195. [PMID: 34038769 DOI: 10.1016/j.neuroimage.2021.118195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/27/2023] Open
Abstract
Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.
Collapse
Affiliation(s)
- Laurentius Renzo Huber
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
| | - Benedikt A Poser
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Amanda L Kaas
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Elizabeth J Fear
- Hull-York-Medical-School (HYMS), University of York, York, United Kingdom
| | - Sebastian Dresbach
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Rainer Goebel
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Robert Turner
- Neurophysics Department Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
52
|
Liu P, Chrysidou A, Doehler J, Hebart MN, Wolbers T, Kuehn E. The organizational principles of de-differentiated topographic maps in somatosensory cortex. eLife 2021; 10:e60090. [PMID: 34003108 PMCID: PMC8186903 DOI: 10.7554/elife.60090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Topographic maps are a fundamental feature of cortex architecture in the mammalian brain. One common theory is that the de-differentiation of topographic maps links to impairments in everyday behavior due to less precise functional map readouts. Here, we tested this theory by characterizing de-differentiated topographic maps in primary somatosensory cortex (SI) of younger and older adults by means of ultra-high resolution functional magnetic resonance imaging together with perceptual finger individuation and hand motor performance. Older adults' SI maps showed similar amplitude and size to younger adults' maps, but presented with less representational similarity between distant fingers. Larger population receptive field sizes in older adults' maps did not correlate with behavior, whereas reduced cortical distances between D2 and D3 related to worse finger individuation but better motor performance. Our data uncover the drawbacks of a simple de-differentiation model of topographic map function, and motivate the introduction of feature-based models of cortical reorganization.
Collapse
Affiliation(s)
- Peng Liu
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Anastasia Chrysidou
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Juliane Doehler
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martin N Hebart
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS) MagdeburgMagdeburgGermany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS) MagdeburgMagdeburgGermany
| |
Collapse
|
53
|
Cao J, Huppert TJ, Grover P, Kainerstorfer JM. Enhanced spatiotemporal resolution imaging of neuronal activity using joint electroencephalography and diffuse optical tomography. NEUROPHOTONICS 2021; 8:015002. [PMID: 33437847 PMCID: PMC7778454 DOI: 10.1117/1.nph.8.1.015002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Significance: Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are both commonly used methodologies for neuronal source reconstruction. While EEG has high temporal resolution (millisecond-scale), its spatial resolution is on the order of centimeters. On the other hand, in comparison to EEG, fNIRS, or diffuse optical tomography (DOT), when used for source reconstruction, can achieve relatively high spatial resolution (millimeter-scale), but its temporal resolution is poor because the hemodynamics that it measures evolve on the order of several seconds. This has important neuroscientific implications: e.g., if two spatially close neuronal sources are activated sequentially with only a small temporal separation, single-modal measurements using either EEG or DOT alone would fail to resolve them correctly. Aim: We attempt to address this issue by performing joint EEG and DOT neuronal source reconstruction. Approach: We propose an algorithm that utilizes DOT reconstruction as the spatial prior of EEG reconstruction, and demonstrate the improvements using simulations based on the ICBM152 brain atlas. Results: We show that neuronal sources can be reconstructed with higher spatiotemporal resolution using our algorithm than using either modality individually. Further, we study how the performance of the proposed algorithm can be affected by the locations of the neuronal sources, and how the performance can be enhanced by improving the placement of EEG electrodes and DOT optodes. Conclusions: We demonstrate using simulations that two sources separated by 2.3-3.3 cm and 50 ms can be recovered accurately using the proposed algorithm by suitably combining EEG and DOT, but not by either in isolation. We also show that the performance can be enhanced by optimizing the electrode and optode placement according to the locations of the neuronal sources.
Collapse
Affiliation(s)
- Jiaming Cao
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Theodore J. Huppert
- University of Pittsburgh, Department of Electrical and Computer Engineering Pittsburgh, Pennsylvania, United States
- University of Pittsburgh, Center for Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States
| | - Pulkit Grover
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
54
|
Muret D, Makin TR. The homeostatic homunculus: rethinking deprivation-triggered reorganisation. Curr Opin Neurobiol 2020; 67:115-122. [PMID: 33248404 DOI: 10.1016/j.conb.2020.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022]
Abstract
While amputation was considered a prominent model for cortical reorganisation, recent evidence highlights persistent representation of the missing hand. We offer a new perspective on the literature of amputation-triggered sensorimotor plasticity, by emphasising the need for homeostasis and emerging evidence of latent activity distributed across the homunculus. We argue that deprivation uncovers pre-existing latent activity, which can manifest as remapping, but that since this activity was already there, remapping could in some instances correspond to functional stability of the system rather than reorganisation. Adaptive behaviour and Hebbian-like plasticity may also play crucial roles in maintaining the functional organisation of the homunculus when deprivation occurs in adulthood or in early development. Collectively, we suggest that the brain's need for stability may underlie several key phenotypes for brain remapping, previously interpreted as consequential to reorganisation. Nevertheless, reorganisation may still be possible, especially when cortical changes contribute to the stability of the system.
Collapse
Affiliation(s)
- Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.
| |
Collapse
|
55
|
Bollmann S, Barth M. New acquisition techniques and their prospects for the achievable resolution of fMRI. Prog Neurobiol 2020; 207:101936. [PMID: 33130229 DOI: 10.1016/j.pneurobio.2020.101936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 01/17/2023]
Abstract
This work reviews recent advances in technologies for functional magnetic resonance imaging (fMRI) of the human brain and highlights the push for higher functional specificity based on increased spatial resolution and specific MR contrasts to reveal previously undetectable functional properties of small-scale cortical structures. We discuss how the combination of MR hardware, advanced acquisition techniques and various MR contrast mechanisms have enabled recent progress in functional neuroimaging. However, these advanced fMRI practices have only been applied to a handful of neuroscience questions to date, with the majority of the neuroscience community still using conventional imaging techniques. We thus discuss upcoming challenges and possibilities for fMRI technology development in human neuroscience. We hope that readers interested in functional brain imaging acquire an understanding of current and novel developments and potential future applications, even if they don't have a background in MR physics or engineering. We summarize the capabilities of standard fMRI acquisition schemes with pointers to relevant literature and comprehensive reviews and introduce more recent developments.
Collapse
Affiliation(s)
- Saskia Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
56
|
Structure of Population Activity in Primary Motor Cortex for Single Finger Flexion and Extension. J Neurosci 2020; 40:9210-9223. [PMID: 33087474 DOI: 10.1523/jneurosci.0999-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 11/21/2022] Open
Abstract
How is the primary motor cortex (M1) organized to control fine finger movements? We investigated the population activity in M1 for single finger flexion and extension, using 7T functional magnetic resonance imaging (fMRI) in female and male human participants and compared these results to the neural spiking patterns recorded in two male monkeys performing the identical task. fMRI activity patterns were distinct for movements of different fingers, but were quite similar for flexion and extension of the same finger. In contrast, spiking patterns in monkeys were quite distinct for both fingers and directions, which is similar to what was found for muscular activity patterns. The discrepancy between fMRI and electrophysiological measurements can be explained by two (non-mutually exclusive) characteristics of the organization of finger flexion and extension movements. Given that fMRI reflects predominantly input and recurrent activity, the results can be explained by an architecture in which neural populations that control flexion or extension of the same finger produce distinct outputs, but interact tightly with each other and receive similar inputs. Additionally, neurons tuned to different movement directions for the same finger (or combination of fingers) may cluster closely together, while neurons that control different finger combinations may be more spatially separated. When measuring this organization with fMRI at a coarse spatial scale, the activity patterns for flexion and extension of the same finger would appear very similar. Overall, we suggest that the discrepancy between fMRI and electrophysiological measurements provides new insights into the general organization of fine finger movements in M1.SIGNIFICANCE STATEMENT The primary motor cortex (M1) is important for producing individuated finger movements. Recent evidence shows that movements that commonly co-occur are associated with more similar activity patterns in M1. Flexion and extension of the same finger, which never co-occur, should therefore be associated with distinct representations. However, using carefully controlled experiments and multivariate analyses, we demonstrate that human fMRI activity patterns for flexion or extension of the same finger are highly similar. In contrast, spiking patterns measured in monkey M1 are clearly distinct. This suggests that populations controlling opposite movements of the same finger, while producing distinct outputs, may cluster together and share inputs and local processing. These results provide testable hypotheses about the organization of hand control in M1.
Collapse
|
57
|
Roux F, Niare M, Charni S, Giussani C, Durand J. Functional architecture of the motor homunculus detected by electrostimulation. J Physiol 2020; 598:5487-5504. [DOI: 10.1113/jp280156] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/21/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Franck‐Emmanuel Roux
- CNRS (CERCO) UMR Unité 5549 Université Paul Sabatier Toulouse France
- Pôle Neurosciences (Neurochirurgie) Centres Hospitalo‐Universitaires Toulouse France
| | - Mahamadou Niare
- CNRS (CERCO) UMR Unité 5549 Université Paul Sabatier Toulouse France
- Pôle Neurosciences (Neurochirurgie) Centres Hospitalo‐Universitaires Toulouse France
| | - Saloua Charni
- CNRS (CERCO) UMR Unité 5549 Université Paul Sabatier Toulouse France
- Pôle Neurosciences (Neurochirurgie) Centres Hospitalo‐Universitaires Toulouse France
| | - Carlo Giussani
- Neurosurgery School of Medicine Ospedale San Gerardo Università degli Studi di Milano Bicocca Monza Italy
| | | |
Collapse
|
58
|
Kuehn E, Pleger B. Encoding schemes in somatosensation: From micro- to meta-topography. Neuroimage 2020; 223:117255. [PMID: 32800990 DOI: 10.1016/j.neuroimage.2020.117255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022] Open
Abstract
Encoding schemes are systematic large-scale arrangements that convert incoming sensory information into a format required for further information processing. The increased spatial resolution of brain images obtained with ultra-high field magnetic resonance imaging at 7 T (7T-MRI) and above increases the granularity and precision of processing units that mediate the link between neuronal encoding and functional readouts. Here, these new developments are reviewed with a focus on human tactile encoding schemes derived from small-scale processing units (in the order of 0.5-5 mm) that are relevant for theoretical and practical concepts of somatosensory encoding and cortical plasticity. Precisely, we review recent approaches to characterize meso-scale maps, layer units, and cortical fields in the sensorimotor cortex of the living human brain and discuss their impact on theories of perception, motor control, topographic encoding, and cortical plasticity. Finally, we discuss concepts on the integration of small-scale processing units into functional networks that span multiple topographic maps and multiple cortical areas. Novel research areas are highlighted that may help to bridge the gap between cortical microstructure and meta-topographic models on brain anatomy and function.
Collapse
Affiliation(s)
- Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg 39120, Germany.
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum 44789, Germany
| |
Collapse
|
59
|
Optical imaging reveals functional domains in primate sensorimotor cortex. Neuroimage 2020; 221:117188. [PMID: 32711067 PMCID: PMC7841645 DOI: 10.1016/j.neuroimage.2020.117188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 12/03/2022] Open
Abstract
Motor cortex (M1) and somatosensory cortex (S1) are central to arm and hand control. Efforts to understand encoding in M1 and S1 have focused on temporal relationships between neural activity and movement features. However, it remains unclear how the neural activity is spatially organized within M1 and S1. Optical imaging methods are well-suited for revealing the spatio-temporal organization of cortical activity, but their application is sparse in monkey sensorimotor cortex. Here, we investigate the effectiveness of intrinsic signal optical imaging (ISOI) for measuring cortical activity that supports arm and hand control in a macaque monkey. ISOI revealed spatial domains that were active in M1 and S1 in response to instructed reaching and grasping. The lateral M1 domains overlapped the hand representation and contained a population of neurons with peak firing during grasping. In contrast, the medial M1 domain overlapped the arm representation and a population of neurons with peak firing during reaching. The S1 domain overlapped the hand representations of areas 1 and 2 and a population of neurons with peak firing upon hand contact with the target. Our single unit recordings indicate that ISOI domains report the locations of spatial clusters of functionally related neurons. ISOI is therefore an effective tool for surveilling the neocortex for “hot zones” of activity that supports movement. Combining the strengths of ISOI with other imaging modalities (e.g., fMRI, 2-photon) and with electrophysiological methods can open new frontiers in understanding the spatio-temporal organization of cortical signals involved in movement control.
Collapse
|
60
|
Layer-dependent functional connectivity methods. Prog Neurobiol 2020; 207:101835. [DOI: 10.1016/j.pneurobio.2020.101835] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022]
|