51
|
Ibrahim LA, Schuman B, Bandler R, Rudy B, Fishell G. Mining the jewels of the cortex's crowning mystery. Curr Opin Neurobiol 2020; 63:154-161. [PMID: 32480351 PMCID: PMC8075042 DOI: 10.1016/j.conb.2020.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 01/31/2023]
Abstract
Neocortical Layer 1 consists of a dense mesh of excitatory and inhibitory axons, dendrites of pyramidal neurons, as well as neuromodulatory inputs from diverse brain regions. Layer 1 also consists of a sparse population of inhibitory interneurons, which are appropriately positioned to receive and integrate the information from these regions of the brain and modulate cortical processing. Despite being among the sparsest neuronal population in the cortex, Layer 1 interneurons perform powerful computations and have elaborate morphologies. Here we review recent studies characterizing their origin, morphology, physiology, and molecular profiles, as well as their connectivity and in vivo response properties.
Collapse
Affiliation(s)
- Leena A Ibrahim
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| | - Ben Schuman
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Rachel Bandler
- Stanley Center at the Broad, 75 Ames St., Cambridge, MA 02142, USA
| | - Bernardo Rudy
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.
| | - Gord Fishell
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA; Stanley Center at the Broad, 75 Ames St., Cambridge, MA 02142, USA.
| |
Collapse
|
52
|
D'Amour JA, Ekins T, Ganatra S, Yuan X, McBain CJ. Aberrant sorting of hippocampal complex pyramidal cells in type I lissencephaly alters topological innervation. eLife 2020; 9:55173. [PMID: 32558643 PMCID: PMC7340499 DOI: 10.7554/elife.55173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/19/2020] [Indexed: 11/30/2022] Open
Abstract
Layering has been a long-appreciated feature of higher order mammalian brain structures but the extent to which it plays an instructive role in synaptic specification remains unknown. Here we examine the formation of synaptic circuitry under cellular heterotopia in hippocampal CA1, using a mouse model of the human neurodevelopmental disorder Type I Lissencephaly. We identify calbindin-expressing principal cells which are mispositioned under cellular heterotopia. Ectopic calbindin-expressing principal cells develop relatively normal morphological features and stunted intrinsic physiological features. Regarding network development, a connectivity preference for cholecystokinin-expressing interneurons to target calbindin-expressing principal cells is diminished. Moreover, in vitro gamma oscillatory activity is less synchronous across heterotopic bands and mutants are less responsive to pharmacological inhibition of cholecystokinin-containing interneurons. This study will aid not only in our understanding of how cellular networks form but highlight vulnerable cellular circuit motifs that might be generalized across disease states.
Collapse
Affiliation(s)
- James A D'Amour
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.,Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, Bethesda, United States
| | - Tyler Ekins
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.,Brown University, Department of Neuroscience, Providence, United States
| | - Stuti Ganatra
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Xiaoqing Yuan
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Chris J McBain
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
53
|
Murata Y, Colonnese MT. GABAergic interneurons excite neonatal hippocampus in vivo. SCIENCE ADVANCES 2020; 6:eaba1430. [PMID: 32582852 PMCID: PMC7292633 DOI: 10.1126/sciadv.aba1430] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/14/2020] [Indexed: 06/01/2023]
Abstract
GABAergic interneurons are proposed to be critical for early activity and synapse formation by directly exciting, rather than inhibiting, neurons in developing hippocampus and neocortex. However, the role of GABAergic neurons in the generation of neonatal network activity has not been tested in vivo, and recent studies have challenged the excitatory nature of early GABA. By locally manipulating interneuron activity in unanesthetized neonatal mice, we show that GABAergic neurons are excitatory in CA1 hippocampus at postnatal day 3 (P3) and are responsible for most of the spontaneous firing of pyramidal cells at that age. Hippocampal interneurons become inhibitory by P7, whereas visual cortex interneurons are already inhibitory by P3 and remain so throughout development. These regional and age-specific differences are the result of a change in chloride reversal potential, because direct activation of light-gated anion channels in glutamatergic neurons drives CA1 firing at P3, but silences it at P7 in CA1, and at all ages in visual cortex. This study in the intact brain reveals that GABAergic interneuron excitation is essential for network activity in neonatal hippocampus and confirms that visual cortical interneurons are inhibitory throughout early postnatal development.
Collapse
|
54
|
Salmon CK, Pribiag H, Gizowski C, Farmer WT, Cameron S, Jones EV, Mahadevan V, Bourque CW, Stellwagen D, Woodin MA, Murai KK. Depolarizing GABA Transmission Restrains Activity-Dependent Glutamatergic Synapse Formation in the Developing Hippocampal Circuit. Front Cell Neurosci 2020; 14:36. [PMID: 32161521 PMCID: PMC7053538 DOI: 10.3389/fncel.2020.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/05/2020] [Indexed: 12/27/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mature brain but has the paradoxical property of depolarizing neurons during early development. Depolarization provided by GABAA transmission during this early phase regulates neural stem cell proliferation, neural migration, neurite outgrowth, synapse formation, and circuit refinement, making GABA a key factor in neural circuit development. Importantly, depending on the context, depolarizing GABAA transmission can either drive neural activity or inhibit it through shunting inhibition. The varying roles of depolarizing GABAA transmission during development, and its ability to both drive and inhibit neural activity, makes it a difficult developmental cue to study. This is particularly true in the later stages of development when the majority of synapses form and GABAA transmission switches from depolarizing to hyperpolarizing. Here, we addressed the importance of depolarizing but inhibitory (or shunting) GABAA transmission in glutamatergic synapse formation in hippocampal CA1 pyramidal neurons. We first showed that the developmental depolarizing-to-hyperpolarizing switch in GABAA transmission is recapitulated in organotypic hippocampal slice cultures. Based on the expression profile of K+−Cl− co-transporter 2 (KCC2) and changes in the GABA reversal potential, we pinpointed the timing of the switch from depolarizing to hyperpolarizing GABAA transmission in CA1 neurons. We found that blocking depolarizing but shunting GABAA transmission increased excitatory synapse number and strength, indicating that depolarizing GABAA transmission can restrain glutamatergic synapse formation. The increase in glutamatergic synapses was activity-dependent but independent of BDNF signaling. Importantly, the elevated number of synapses was stable for more than a week after GABAA inhibitors were washed out. Together these findings point to the ability of immature GABAergic transmission to restrain glutamatergic synapse formation and suggest an unexpected role for depolarizing GABAA transmission in shaping excitatory connectivity during neural circuit development.
Collapse
Affiliation(s)
- Christopher K Salmon
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Horia Pribiag
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Claire Gizowski
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Scott Cameron
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Emma V Jones
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Vivek Mahadevan
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - David Stellwagen
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Melanie A Woodin
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
55
|
Duan ZRS, Che A, Chu P, Modol L, Bollmann Y, Babij R, Fetcho RN, Otsuka T, Fuccillo MV, Liston C, Pisapia DJ, Cossart R, De Marco García NV. GABAergic Restriction of Network Dynamics Regulates Interneuron Survival in the Developing Cortex. Neuron 2019; 105:75-92.e5. [PMID: 31780329 DOI: 10.1016/j.neuron.2019.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
During neonatal development, sensory cortices generate spontaneous activity patterns shaped by both sensory experience and intrinsic influences. How these patterns contribute to the assembly of neuronal circuits is not clearly understood. Using longitudinal in vivo calcium imaging in un-anesthetized mouse pups, we show that spatially segregated functional assemblies composed of interneurons and pyramidal cells are prominent in the somatosensory cortex by postnatal day (P) 7. Both reduction of GABA release and synaptic inputs onto pyramidal cells erode the emergence of functional topography, leading to increased network synchrony. This aberrant pattern effectively blocks interneuron apoptosis, causing increased survival of parvalbumin and somatostatin interneurons. Furthermore, the effect of GABA on apoptosis is mediated by inputs from medial ganglionic eminence (MGE)-derived but not caudal ganglionic eminence (CGE)-derived interneurons. These findings indicate that immature MGE interneurons are fundamental for shaping GABA-driven activity patterns that balance the number of interneurons integrating into maturing cortical networks.
Collapse
Affiliation(s)
- Zhe Ran S Duan
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Alicia Che
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Philip Chu
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura Modol
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Yannick Bollmann
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Rachel Babij
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Robert N Fetcho
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Takumi Otsuka
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marc V Fuccillo
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Conor Liston
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rosa Cossart
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
56
|
Modol L, Bollmann Y, Tressard T, Baude A, Che A, Duan ZRS, Babij R, De Marco García NV, Cossart R. Assemblies of Perisomatic GABAergic Neurons in the Developing Barrel Cortex. Neuron 2019; 105:93-105.e4. [PMID: 31780328 DOI: 10.1016/j.neuron.2019.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
The developmental journey of cortical interneurons encounters several activity-dependent milestones. During the early postnatal period in developing mice, GABAergic neurons are transient preferential recipients of thalamic inputs and undergo activity-dependent migration arrest, wiring, and programmed cell-death. Despite their importance for the emergence of sensory experience and the role of activity in their integration into cortical networks, the collective dynamics of GABAergic neurons during that neonatal period remain unknown. Here, we study coordinated activity in GABAergic cells of the mouse barrel cortex using in vivo calcium imaging. We uncover a transient structure in GABAergic population dynamics that disappears in a sensory-dependent process. Its building blocks are anatomically clustered GABAergic assemblies mostly composed by prospective parvalbumin-expressing cells. These progressively widen their territories until forming a uniform perisomatic GABAergic network. Such transient patterning of GABAergic activity is a functional scaffold that links the cortex to the external world prior to active exploration. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Laura Modol
- Aix Marseille Univ, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Yannick Bollmann
- Aix Marseille Univ, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Thomas Tressard
- Aix Marseille Univ, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Agnès Baude
- Aix Marseille Univ, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Alicia Che
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Zhe Ran S Duan
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Rachel Babij
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | | | - Rosa Cossart
- Aix Marseille Univ, INSERM, INMED, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
57
|
Cheyne JE, Zabouri N, Baddeley D, Lohmann C. Spontaneous Activity Patterns Are Altered in the Developing Visual Cortex of the Fmr1 Knockout Mouse. Front Neural Circuits 2019; 13:57. [PMID: 31616256 PMCID: PMC6775252 DOI: 10.3389/fncir.2019.00057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/19/2019] [Indexed: 11/17/2022] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent inherited cause of autism and is accompanied by behavioral and sensory deficits. Errors in the wiring of the brain during early development likely contribute to these deficits, but the underlying mechanisms are unclear. Spontaneous activity patterns, which are required for fine-tuning neuronal networks before the senses become active, are perturbed in rodent models of FXS. Here, we investigated spontaneous network activity patterns in the developing visual cortex of the Fmr1 knockout mouse using in vivo calcium imaging during the second postnatal week, before eye opening. We found that while the frequency, mean amplitude and duration of spontaneous network events were unchanged in the knockout mouse, pair-wise correlations between neurons were increased compared to wild type littermate controls. Further analysis revealed that interneuronal correlations were not generally increased, rather that low-synchronization events occurred relatively less frequently than high-synchronization events. Low-, but not high-, synchronization events have been associated with retinal inputs previously. Since we found that spontaneous retinal waves were normal in the knockout, our results suggest that peripherally driven activity is underrepresented in the Fmr1 KO visual cortex. Therefore, we propose that central gating of retinal inputs may be affected in FXS and that peripherally and centrally driven activity patterns are already unbalanced before eye opening in this disorder.
Collapse
Affiliation(s)
- Juliette E Cheyne
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Nawal Zabouri
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
58
|
Lim L, Mi D, Llorca A, Marín O. Development and Functional Diversification of Cortical Interneurons. Neuron 2018; 100:294-313. [PMID: 30359598 PMCID: PMC6290988 DOI: 10.1016/j.neuron.2018.10.009] [Citation(s) in RCA: 422] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
In the cerebral cortex, GABAergic interneurons have evolved as a highly heterogeneous collection of cell types that are characterized by their unique spatial and temporal capabilities to influence neuronal circuits. Current estimates suggest that up to 50 different types of GABAergic neurons may populate the cerebral cortex, all derived from progenitor cells in the subpallium, the ventral aspect of the embryonic telencephalon. In this review, we provide an overview of the mechanisms underlying the generation of the distinct types of interneurons and their integration in cortical circuits. Interneuron diversity seems to emerge through the implementation of cell-intrinsic genetic programs in progenitor cells, which unfold over a protracted period of time until interneurons acquire mature characteristics. The developmental trajectory of interneurons is also modulated by activity-dependent, non-cell-autonomous mechanisms that influence their ability to integrate in nascent circuits and sculpt their final distribution in the adult cerebral cortex.
Collapse
Affiliation(s)
- Lynette Lim
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Da Mi
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| |
Collapse
|