Lu VB, Moran TD, Balasubramanyan S, Alier KA, Dryden WF, Colmers WF, Smith PA. Substantia Gelatinosa neurons in defined-medium organotypic slice culture are similar to those in acute slices from young adult rats.
Pain 2006;
121:261-275. [PMID:
16516387 DOI:
10.1016/j.pain.2006.01.009]
[Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/12/2005] [Accepted: 01/03/2006] [Indexed: 01/12/2023]
Abstract
Peripheral nerve injury promotes an enduring increase in the excitability of the spinal dorsal horn. This change, that likely underlies the development of chronic pain, may be a consequence of prolonged exposure of dorsal horn neurons to mediators such as neurotrophins, cytokines, and neurotransmitters. The long-term effects of such mediators can be analyzed by applying them to spinal neurons in organotypic slice culture. To assess the validity of this approach, we established serum-free, defined-medium organotypic cultures (DMOTC) from E13-14 prenatal rats. Whole-cell recordings were made from neurons maintained in DMOTC for up to 42 days. These were compared with recordings from neurons of similar age in acute spinal cord slices from 15- to 45-day-old rats. Five cell types were defined in acute slices as 'Tonic', 'Irregular', 'Delay', 'Transient' or 'Phasic' according to their discharge patterns in response to depolarizing current. Although fewer 'Phasic' cells were found in cultures, the proportions of 'Tonic', 'Irregular', 'Delay', and 'Transient' were similar to those found in acute slices. GABAergic, glycinergic, and 'mixed' inhibition were observed in neurons in acute slices and DMOTC. Pure glycinergic inhibition was absent in 7d cultures but became more pronounced as cultures aged. This parallels the development of glycinergic inhibition in vivo. These and other findings suggest that fundamental developmental processes related to neurotransmitter phenotype and neuronal firing properties are preserved in DMOTC. This validates their use in evaluating the cellular mechanisms that may contribute to the development of chronic pain.
Collapse