51
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway-PPAR Gamma, Energy Metabolism and Circadian Rhythms. Neuromolecular Med 2018; 20:174-204. [PMID: 29572723 DOI: 10.1007/s12017-018-8486-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
Entropy production rate is increased by several metabolic and thermodynamics abnormalities in neurodegenerative diseases (NDs). Irreversible processes are quantified by changes in the entropy production rate. This review is focused on the opposing interactions observed in NDs between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In amyotrophic lateral sclerosis and Huntington's disease, WNT/beta-catenin pathway is upregulated, whereas PPAR gamma is downregulated. In Alzheimer's disease and Parkinson's disease, WNT/beta-catenin pathway is downregulated while PPAR gamma is upregulated. The dysregulation of the canonical WNT/beta-catenin pathway is responsible for the modification of thermodynamics behaviors of metabolic enzymes. Upregulation of WNT/beta-catenin pathway leads to aerobic glycolysis, named Warburg effect, through activated enzymes, such as glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactic dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). Downregulation of WNT/beta-catenin pathway leads to oxidative stress and cell death through inactivation of Glut, PKM2, PDK1, MCT-1, LDH-A but activation of PDH. In addition, in NDs, PPAR gamma is dysregulated, whereas it contributes to the regulation of several key circadian genes. NDs show many dysregulation in the mediation of circadian clock genes and so of circadian rhythms. Thermodynamics rhythms operate far-from-equilibrium and partly regulate interactions between WNT/beta-catenin pathway and PPAR gamma. In NDs, metabolism, thermodynamics and circadian rhythms are tightly interrelated.
Collapse
Affiliation(s)
- Alexandre Vallée
- DRCI, Hôpital Foch, Suresnes, France.
- LMA (Laboratoire de Mathématiques et Applications) CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- DRCI, Hôpital Foch, Suresnes, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
52
|
Pisanu A, Boi L, Mulas G, Spiga S, Fenu S, Carta AR. Neuroinflammation in L-DOPA-induced dyskinesia: beyond the immune function. J Neural Transm (Vienna) 2018. [PMID: 29541852 DOI: 10.1007/s00702-018-1874-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a main component of Parkinson's disease (PD) neuropathology, where unremitting reactive microglia and microglia-secreted soluble molecules such as cytokines, contribute to the neurodegenerative process as part of an aberrant immune reaction. Besides, pro-inflammatory cytokines, predominantly TNF-α, play an important neuromodulatory role in the healthy and diseased brain, being involved in neurotransmitter metabolism, synaptic scaling and brain plasticity. Recent preclinical studies have evidenced an exacerbated neuroinflammatory reaction in the striatum of parkinsonian rats that developed dyskinetic responses following L-DOPA administration. These findings prompted investigation of non-neuronal mechanisms of L-DOPA-induced dyskinesia (LID) involving glial cells and glial-secreted soluble molecules. Hence, besides the classical mechanisms of LID that include abnormal corticostriatal neurotransmission and maladaptive changes in striatal medium spiny neurons (MSNs), here we review studies supporting a role of striatal neuroinflammation in the development of LID, with a focus on microglia and the pro-inflammatory cytokine TNF-α. Moreover, we discuss several mechanisms that have been involved in the development of LID, which are directly or indirectly under the control of TNF-α, and might be abnormally affected by its chronic overproduction and release by microglia in PD. It is proposed that TNF-α may contribute to the altered neuronal responses occurring in LID by targeting receptor trafficking and function in MSNs, but also dopamine synthesis in preserved dopaminergic terminals and serotonin metabolism in serotonergic neurons. Therapeutic approaches specifically targeting glial-secreted cytokines may represent a novel target for preventing or treating LID.
Collapse
Affiliation(s)
- Augusta Pisanu
- Institute of Neuroscience, National Research Council, SS 554 km 4.500, Monserrato, 09042, Cagliari, Italy
| | - Laura Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy
| | - Giovanna Mulas
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, Cagliari, Italy
| | - Sandro Fenu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy.
| |
Collapse
|
53
|
Zeissler ML, Eastwood J, McCorry K, Hanemann CO, Zajicek JP, Carroll CB. Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis. Oncotarget 2018; 7:46603-46614. [PMID: 27366949 PMCID: PMC5216821 DOI: 10.18632/oncotarget.10314] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 11/25/2022] Open
Abstract
Proliferator-activated receptor γ (PPARγ) activation can result in transcription of proteins involved in oxidative stress defence and mitochondrial biogenesis which could rescue mitochondrial dysfunction in Parkinson's disease (PD).The PPARγ agonist pioglitazone is protective in models of PD; however side effects have limited its clinical use. The cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) may have PPARγ dependent anti-oxidant properties. Here we investigate the effects of Δ9-THC and pioglitazone on mitochondrial biogenesis and oxidative stress. Differentiated SH-SY5Y neuroblastoma cells were exposed to the PD relevant mitochondrial complex 1 inhibitor 1-methyl-4-phenylpyridinium iodide (MPP+). We found that only Δ9-THC was able to restore mitochondrial content in MPP+ treated SH-SY5Y cells in a PPARγ dependent manner by increasing expression of the PPARγ co-activator 1α (PGC-1α), the mitochondrial transcription factor (TFAM) as well as mitochondrial DNA content. Co-application of Δ9-THC with pioglitazone further increased the neuroprotection against MPP+ toxicity as compared to pioglitazone treatment alone. Furthermore, using lentiviral knock down of the PPARγ receptor we showed that, unlike pioglitazone, Δ9-THC resulted in a PPARγ dependent reduction of MPP+ induced oxidative stress. We therefore suggest that, in contrast to pioglitazone, Δ9-THC mediates neuroprotection via PPARγ-dependent restoration of mitochondrial content which may be beneficial for PD treatment.
Collapse
Affiliation(s)
- Marie-Louise Zeissler
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - Jordan Eastwood
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - Kieran McCorry
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - C Oliver Hanemann
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - John P Zajicek
- School of Medicine, Medical and Biological Sciences, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom
| | - Camille B Carroll
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BX, United Kingdom
| |
Collapse
|
54
|
Sekulic-Jablanovic M, Petkovic V, Wright MB, Kucharava K, Huerzeler N, Levano S, Brand Y, Leitmeyer K, Glutz A, Bausch A, Bodmer D. Effects of peroxisome proliferator activated receptors (PPAR)-γ and -α agonists on cochlear protection from oxidative stress. PLoS One 2017; 12:e0188596. [PMID: 29182629 PMCID: PMC5705132 DOI: 10.1371/journal.pone.0188596] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/09/2017] [Indexed: 01/22/2023] Open
Abstract
Various insults cause ototoxicity in mammals by increasing oxidative stress leading to apoptosis of auditory hair cells (HCs). The thiazolidinediones (TZDs; e.g., pioglitazone) and fibrate (e.g., fenofibrate) drugs are used for the treatment of diabetes and dyslipidemia. These agents target the peroxisome proliferator-activated receptors, PPARγ and PPARα, which are transcription factors that influence glucose and lipid metabolism, inflammation, and organ protection. In this study, we explored the effects of pioglitazone and other PPAR agonists to prevent gentamicin-induced oxidative stress and apoptosis in mouse organ of Corti (OC) explants. Western blots showed high levels of PPARγ and PPARα proteins in mouse OC lysates. Immunofluorescence assays indicated that PPARγ and PPARα proteins are present in auditory HCs and other cell types in the mouse cochlea. Gentamicin treatment induced production of reactive oxygen species (ROS), lipid peroxidation, caspase activation, PARP-1 cleavage, and HC apoptosis in cultured OCs. Pioglitazone mediated its anti-apoptotic effects by opposing the increase in ROS induced by gentamicin, which inhibited the subsequent formation of 4-hydroxy-2-nonenal (4-HNE) and activation of pro-apoptotic mediators. Pioglitazone mediated its effects by upregulating genes that control ROS production and detoxification pathways leading to restoration of the reduced:oxidized glutathione ratio. Structurally diverse PPAR agonists were protective of HCs. Pioglitazone (PPARγ-specific), tesaglitazar (PPARγ/α-specific), and fenofibric acid (PPARα-specific) all provided >90% protection from gentamicin toxicity by regulation of overlapping subsets of genes controlling ROS detoxification. This study revealed that PPARs play important roles in the cochlea, and that PPAR-targeting drugs possess therapeutic potential as treatment for hearing loss.
Collapse
Affiliation(s)
| | - Vesna Petkovic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Krystsina Kucharava
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nathan Huerzeler
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yves Brand
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| | - Katharina Leitmeyer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrea Glutz
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Daniel Bodmer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
55
|
Reprogramming energetic metabolism in Alzheimer's disease. Life Sci 2017; 193:141-152. [PMID: 29079469 DOI: 10.1016/j.lfs.2017.10.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022]
Abstract
Entropy rate is increased by several metabolic and thermodynamics abnormalities in neurodegenerative diseases (NDs). Changes in Gibbs energy, heat production, ionic conductance or intracellular acidity are irreversibles processes which driven modifications of the entropy rate. The present review focusses on the thermodynamic implications in the reprogramming of cellular energy metabolism enabling in Alzheimer's disease (AD) through the opposite interplay of the molecular signaling pathways WNT/β-catenin and PPARγ. In AD, WNT/β-catenin pathway is downregulated while PPARγ is upregulated. Thermodynamics behaviors of metabolic enzymes are modified by dysregulation of the canonical WNT/β-catenin pathway. Downregulation of WNT/β-catenin pathway leads to oxidative stress and cell death through inactivation of glycolytic enzymes such as Glut, PKM2, PDK1, MCT-1, LDH-A but activation of PDH. In addition, in NDs, PPARγ is dysregulated whereas it contributes to the regulation of several key circadian genes. AD is considered as a dissipative structure that exchanges energy or matter with its environment far from the thermodynamic equilibrium. Far-from-equilibrium thermodynamics are notions driven by circadian rhythms. Circadian rhythms directly participate in regulating the molecular pathways WNT/β-catenin and PPARγ involved in the reprogramming of cellular energy metabolism enabling AD processes.
Collapse
|
56
|
Brakedal B, Flønes I, Reiter SF, Torkildsen Ø, Dölle C, Assmus J, Haugarvoll K, Tzoulis C. Glitazone use associated with reduced risk of Parkinson's disease. Mov Disord 2017; 32:1594-1599. [PMID: 28861893 PMCID: PMC5697685 DOI: 10.1002/mds.27128] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 01/08/2023] Open
Abstract
Background Whether antidiabetic glitazone drugs protect against Parkinson's disease remains controversial. Although a single clinical trial showed no evidence of disease modulation, retrospective studies suggest that a disease‐preventing effect may be plausible. The objective of this study was to examine if the use of glitazone drugs is associated with a lower incidence of PD among diabetic patients. Methods We compared the incidence of PD between individuals with diabetes who used glitazones, with or without metformin, and individuals using only metformin in the Norwegian Prescription Database. This database contains all prescription drugs dispensed for the entire Norwegian population. We identified 94,349 metformin users and 8396 glitazone users during a 10‐year period and compared the incidence of PD in the 2 groups using Cox regression survival analysis, with glitazone exposure as a time‐dependent covariate. Results Glitazone use was associated with a significantly lower incidence of PD compared with metformin‐only use (hazard ratio, 0.72; 95% confidence interval, 0.55‐0.94; P = 0.01). Conclusions The use of glitazones is associated with a decreased risk of incident PD in populations with diabetes. Further studies are warranted to confirm and understand the role of glitazones in neurodegeneration. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Brage Brakedal
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Irene Flønes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Simone F Reiter
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øivind Torkildsen
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Dölle
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jörg Assmus
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Kristoffer Haugarvoll
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
57
|
Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol 2017; 48:52-108. [PMID: 28816105 DOI: 10.1080/10408444.2017.1351420] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thiazolidinedione (TZD) drugs used in the treatment of type 2 diabetes mellitus (T2DM) have proven effective in improving insulin sensitivity, hyperglycemia, and lipid metabolism. Though well tolerated by some patients, their mechanism of action as ligands of peroxisome proliferator-activated receptors (PPARs) results in the activation of several pathways in addition to those responsible for glycemic control and lipid homeostasis. These pathways, which include those related to inflammation, bone formation, and cell proliferation, may lead to adverse health outcomes. As treatment with TZDs has been associated with adverse hepatic, cardiovascular, osteological, and carcinogenic events in some studies, the role of TZDs in the treatment of T2DM continues to be debated. At the same time, new therapeutic roles for TZDs are being investigated, with new forms and isoforms currently in the pre-clinical phase for use in the prevention and treatment of some cancers, inflammatory diseases, and other conditions. The aims of this review are to provide an overview of the mechanism(s) of action of TZDs, a review of their safety for use in the treatment of T2DM, and a perspective on their current and future therapeutic roles.
Collapse
Affiliation(s)
- Melissa A Davidson
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada
| | - Donald R Mattison
- b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada
| | - Laurent Azoulay
- d Center for Clinical Epidemiology , Lady Davis Research Institute, Jewish General Hospital , Montreal , Canada.,e Department of Oncology , McGill University , Montreal , Canada
| | - Daniel Krewski
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada.,f Faculty of Medicine , University of Ottawa , Ottawa , Canada
| |
Collapse
|
58
|
Joers V, Tansey MG, Mulas G, Carta AR. Microglial phenotypes in Parkinson's disease and animal models of the disease. Prog Neurobiol 2017; 155:57-75. [PMID: 27107797 PMCID: PMC5073045 DOI: 10.1016/j.pneurobio.2016.04.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
Abstract
Over the last decade the important concept has emerged that microglia, similar to other tissue macrophages, assume different phenotypes and serve several effector functions, generating the theory that activated microglia can be organized by their pro-inflammatory or anti-inflammatory and repairing functions. Importantly, microglia exist in a heterogenous population and their phenotypes are not permanently polarized into two categories; they exist along a continuum where they acquire different profiles based on their local environment. In Parkinson's disease (PD), neuroinflammation and microglia activation are considered neuropathological hallmarks, however their precise role in relation to disease progression is not clear, yet represent a critical challenge in the search of disease-modifying strategies. This review will critically address current knowledge on the activation states of microglia as well as microglial phenotypes found in PD and in animal models of PD, focusing on the expression of surface molecules as well as pro-inflammatory and anti-inflammatory cytokine production during the disease process. While human studies have reported an elevation of both pro- or anti-inflammatory markers in the serum and CSF of PD patients, animal models have provided insights on dynamic changes of microglia phenotypes in relation to disease progression especially prior to the development of motor deficits. We also review recent evidence of malfunction at multiple steps of NFκB signaling that may have a causal interrelationship with pathological microglia activation in animal models of PD. Finally, we discuss the immune-modifying strategies that have been explored regarding mechanisms of chronic microglial activation.
Collapse
Affiliation(s)
- Valerie Joers
- Department of Physiology, Emory University, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Malú G Tansey
- Department of Physiology, Emory University, Atlanta, GA, United States.
| | - Giovanna Mulas
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
59
|
Subramaniam SR, Federoff HJ. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson's Disease. Front Aging Neurosci 2017. [PMID: 28642697 PMCID: PMC5463358 DOI: 10.3389/fnagi.2017.00176] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Parkinson’s disease (PD) is a chronic and progressive disorder characterized neuropathologically by loss of dopamine neurons in the substantia nigra, intracellular proteinaceous inclusions, reduction of dopaminergic terminals in the striatum, and increased neuroinflammatory cells. The consequent reduction of dopamine in the basal ganglia results in the classical parkinsonian motor phenotype. A growing body of evidence suggest that neuroinflammation mediated by microglia, the resident macrophage-like immune cells in the brain, play a contributory role in PD pathogenesis. Microglia participate in both physiological and pathological conditions. In the former, microglia restore the integrity of the central nervous system and, in the latter, they promote disease progression. Microglia acquire different activation states to modulate these cellular functions. Upon activation to the M1 phenotype, microglia elaborate pro-inflammatory cytokines and neurotoxic molecules promoting inflammation and cytotoxic responses. In contrast, when adopting the M2 phenotype microglia secrete anti-inflammatory gene products and trophic factors that promote repair, regeneration, and restore homeostasis. Relatively little is known about the different microglial activation states in PD and a better understanding is essential for developing putative neuroprotective agents. Targeting microglial activation states by suppressing their deleterious pro-inflammatory neurotoxicity and/or simultaneously enhancing their beneficial anti-inflammatory protective functions appear as a valid therapeutic approach for PD treatment. In this review, we summarize microglial functions and, their dual neurotoxic and neuroprotective role in PD. We also review molecules that modulate microglial activation states as a therapeutic option for PD treatment.
Collapse
Affiliation(s)
| | - Howard J Federoff
- Department of Neurology, University of California, Irvine, Irvine, CAUnited States
| |
Collapse
|
60
|
Neuroprotective Effect of the Ginsenoside Rg1 on Cerebral Ischemic Injury In Vivo and In Vitro Is Mediated by PPAR γ-Regulated Antioxidative and Anti-Inflammatory Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7842082. [PMID: 28656054 PMCID: PMC5471560 DOI: 10.1155/2017/7842082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/29/2017] [Accepted: 05/09/2017] [Indexed: 01/26/2023]
Abstract
The ginsenoside Rg1 exerts a neuroprotective effect during cerebral ischemia/reperfusion injury. Rg1 has been previously reported to improve PPARγ expression and signaling, consequently enhancing its regulatory processes. Due to PPARγ's role in the suppression of oxidative stress and inflammation, Rg1's PPARγ-normalizing capacity may play a role in the observed neuroprotective action of Rg1 during ischemic brain injury. We utilized a middle cerebral artery ischemia/reperfusion injury model in rats in addition to an oxygen glucose deprivation model in cortical neurons to elucidate the mechanisms underlying the neuroprotective effects of Rg1. We found that Rg1 significantly increased PPARγ expression and reduced multiple indicators of oxidative stress and inflammation. Ultimately, Rg1 treatment improved neurological function and diminished brain edema, indicating that Rg1 may exert its neuroprotective action on cerebral ischemia/reperfusion injury through the activation of PPARγ signaling. In addition, the present findings suggested that Rg1 was a potent PPARγ agonist in that it upregulated PPARγ expression and was inhibited by GW9662, a selective PPARγ antagonist. These findings expand our previous understanding of the molecular basis of the therapeutic action of Rg1 in cerebral ischemic injury, laying the ground work for expanded study and clinical optimization of the compound.
Collapse
|
61
|
Liu Z, Huang Y, Cao BB, Qiu YH, Peng YP. Th17 Cells Induce Dopaminergic Neuronal Death via LFA-1/ICAM-1 Interaction in a Mouse Model of Parkinson's Disease. Mol Neurobiol 2016; 54:7762-7776. [PMID: 27844285 DOI: 10.1007/s12035-016-0249-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 10/23/2016] [Indexed: 01/05/2023]
Abstract
T helper (Th)17 cells, a subset of CD4+ T lymphocytes, have strong pro-inflammatory property and appear to be essential in the pathogenesis of many inflammatory diseases. However, the involvement of Th17 cells in Parkinson's disease (PD) that is characterized by a progressive degeneration of dopaminergic (DAergic) neurons in the nigrostriatal system is unclear. Here, we aimed to demonstrate that Th17 cells infiltrate into the brain parenchyma and induce neuroinflammation and DAergic neuronal death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 1-methyl-4-phenylpyridinium (MPP+)-induced PD models. Blood-brain barrier (BBB) disruption in the substantia nigra (SN) was assessed by the signal of FITC-labeled albumin that was injected into blood circulation via the ascending aorta. Live cell imaging system was used to observe a direct contact of Th17 cells with neurons by staining these cells using the two adhesion molecules, leukocyte function-associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1, respectively. Th17 cells invaded into the SN where BBB was disrupted in MPTP-induced PD mice. Th17 cells exacerbated DAergic neuronal loss and pro-inflammatory/neurotrophic factor disorders in MPP+-treated ventral mesencephalic (VM) cell cultures. A direct contact of LFA-1-stained Th17 cells with ICAM-1-stained VM neurons was dynamically captured. Either blocking LFA-1 in Th17 cells or blocking ICAM-1 in VM neurons with neutralizing antibodies abolished Th17-induced DAergic neuronal death. These results establish that Th17 cells infiltrate into the brain parenchyma of PD mice through lesioned BBB and exert neurotoxic property by promoting glial activation and importantly by a direct damage to neurons depending on LFA-1/ICAM-1 interaction.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yan Huang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Bei-Bei Cao
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
62
|
Genetic Deletion of Neuronal PPARγ Enhances the Emotional Response to Acute Stress and Exacerbates Anxiety: An Effect Reversed by Rescue of Amygdala PPARγ Function. J Neurosci 2016; 36:12611-12623. [PMID: 27810934 DOI: 10.1523/jneurosci.4127-15.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 10/18/2016] [Accepted: 10/29/2016] [Indexed: 01/01/2023] Open
Abstract
PPARγ is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARγ is activated by thiazolidinediones such as pioglitazone and is targeted to treat insulin resistance. PPARγ is densely expressed in brain areas involved in regulation of motivational and emotional processes. Here, we investigated the role of PPARγ in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPARγ by pioglitazone did not affect basal anxiety, but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARγ (PPARγNestinCre), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPARγ antagonist, elicited a marked anxiogenic response in PPARγ wild-type (WT), but not in PPARγNestinCre knock-out (KO) mice. Using c-Fos immunohistochemistry, we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala (AMY) and the hippocampus (HIPP) of PPARγNestinCre KO mice compared with WT mice. No differences were found between WT and KO mice in hypothalamic regions responsible for hormonal response to stress or in blood corticosterone levels. Microinjection of pioglitazone into the AMY, but not into the HIPP, abolished the anxiogenic response elicited by acute stress. Results also showed that, in both regions, PPARγ colocalizes with GABAergic cells. These findings demonstrate that neuronal PPARγ is involved the regulation of the stress response and that the AMY is a key substrate for the anxiolytic effect of PPARγ. SIGNIFICANCE STATEMENT Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) is a classical target for antidiabetic therapies with thiazolidinedione compounds. PPARγ agonists such as rosiglitazone and pioglitazone are in clinical use for the treatment of insulin resistance. PPARγ has recently attracted attention for its involvement in the regulation of CNS immune response and functions. Here, we demonstrate that neuronal PPARγ activation prevented the negative emotional effects of stress and exerted anxiolytic actions without influencing hypothalamic-pituitary-adrenal axis function. Conversely, pharmacological blockade or genetic deletion of PPARγ enhanced anxiogenic responses and increased vulnerability to stress. These effects appear to be controlled by PPARγ neuronal-mediated mechanisms in the amygdala.
Collapse
|
63
|
Corona JC, Duchen MR. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 2016; 100:153-163. [PMID: 27352979 PMCID: PMC5145801 DOI: 10.1016/j.freeradbiomed.2016.06.023] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
There is increasing evidence for the involvement of mitochondrial dysfunction and oxidative stress in the pathogenesis of many of the major neurodegenerative and neuroinflammatory diseases, suggesting that mitochondrial and antioxidant pathways may represent potential novel therapeutic targets. Recent years have seen a rapidly growing interest in the use of therapeutic strategies that can limit the defects in, or even to restore, mitochondrial function while reducing free radical generation. The peroxisome proliferation-activated receptor gamma (PPARγ), a ligand-activated transcription factor, has a wide spectrum of biological functions, regulating mitochondrial function, mitochondrial turnover, energy metabolism, antioxidant defence and redox balance, immune responses and fatty acid oxidation. In this review, we explore the evidence for potential beneficial effects of PPARγ agonists in a number of neurological disorders, including Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis and Huntington's disease, ischaemia, autoimmune encephalomyelitis and neuropathic pain. We discuss the mechanisms underlying those beneficial effects in particular in relation to mitochondrial function, antioxidant defence, cell death and inflammation, and suggest that the PPARγ agonists show significant promise as therapeutic agents in otherwise intractable neurological disease.
Collapse
Affiliation(s)
- Juan Carlos Corona
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom; Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
64
|
Parkinson Disease and Pioglitazone: Could Traumatic Brain Injury Catch a Lift? World Neurosurg 2016; 95:580-581. [DOI: 10.1016/j.wneu.2016.08.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
65
|
Mulas G, Espa E, Fenu S, Spiga S, Cossu G, Pillai E, Carboni E, Simbula G, Jadžić D, Angius F, Spolitu S, Batetta B, Lecca D, Giuffrida A, Carta AR. Differential induction of dyskinesia and neuroinflammation by pulsatile versus continuous l-DOPA delivery in the 6-OHDA model of Parkinson's disease. Exp Neurol 2016; 286:83-92. [PMID: 27697481 DOI: 10.1016/j.expneurol.2016.09.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
Abstract
Neuroinflammation is associated with l-DOPA treatment in Parkinson's disease (PD), suggesting a role in l-DOPA-induced dyskinesia (LID), however it is unclear whether increased inflammation is specifically related to the dyskinetic outcome of l-DOPA treatment. Diversely from oral l-DOPA, continuous intrajejunal l-DOPA infusion is associated with very low dyskinetic outcome in PD patients. We reproduced these regimens of administration in 6-OHDA-lesioned hemiparkinsonian rats, where dyskinetic responses and striatal neuroinflammation induced by chronic pulsatile (DOPAp) or continuous (DOPAc) l-DOPA were compared. Moreover, we investigated the contribution of a peripheral inflammatory challenge with lipopolysaccharide (LPS), to DOPAp-induced dyskinetic and neuroinflammatory responses. Rats 6-OHDA-infused in the medial forebrain bundle received two weeks treatment with DOPAp, DOPAc via subcutaneous osmotic minipumps, or DOPAp followed by DOPAc. l-DOPA plasma levels were measured in all experimental groups. An independent group of rats received one peripheral dose of LPS 24h before DOPAp treatment. Abnormal involuntary movements (AIMs) were evaluated as a rat model of LID. Immunoreactivity (IR) for OX-42, microglial and neuronal TNF-α, iNOS and GFAP was quantified in denervated and contralateral striatum. In addition, serum TNF-α was measured. The 6-OHDA denervation induced a mild microgliosis in the striatum two weeks after neurotoxin infusion, and increased TNF-α IR in microglia. Rats receiving the DOPAp treatment developed AIMs and displayed increased striatal OX-42, microglial TNF-α, iNOS and GFAP. Moreover, TNF-α IR was also increased in a subpopulation of striatal neurons. Conversely, DOPAc did not induce AIMs or inflammatory responses in either drug-naïve animals or rats that were previously dyskinetic when exposed to DOPAp. Serum TNF-α was not altered by any l-DOPA treatment. LPS pre-treatment increased the degree of DOPAp-induced AIMs and striatal IR for OX-42, TNF-α, iNOS and GFAP. Altogether the present findings indicate that in the 6-OHDA model, chronic l-DOPA induces striatal inflammatory responses, which however depend upon the administration regimen and the dyskinetic outcome of drug treatment. The potentiation of dyskinetic responses by LPS suggests a reciprocal causal link between neuroinflammation and LID.
Collapse
Affiliation(s)
- Giovanna Mulas
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy
| | - Elena Espa
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy
| | - Sandro Fenu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, via Fiorelli 1, Cagliari, Italy
| | - Giovanni Cossu
- Department of Neurology, AOB "G. Brotzu" General Hospital, via Peretti 2, Cagliari, Italy
| | - Elisabetta Pillai
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy
| | - Gabriella Simbula
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy
| | - Dragana Jadžić
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy
| | - Fabrizio Angius
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy
| | - Stefano Spolitu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy
| | - Barbara Batetta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy
| | - Daniela Lecca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy
| | - Andrea Giuffrida
- Department of Pharmacology, UT Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
66
|
The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson's disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain. Acta Neuropathol Commun 2016; 4:86. [PMID: 27535749 PMCID: PMC4989531 DOI: 10.1186/s40478-016-0346-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s Disease (PD) is the second most common neurodegenerative disease worldwide, affecting 1 % of the population over 65 years of age. Dopaminergic cell death in the substantia nigra and accumulation of Lewy bodies are the defining neuropathological hallmarks of the disease. Neuronal death and dysfunction have been reported in other central nervous system regions, including the retina. Symptoms of PD typically manifest only when more than 70 % of dopaminergic cells are lost, and the definitive diagnosis of PD can only be made histologically at post-mortem, with few biomarkers available. In this study, a rotenone-induced rodent model of PD was employed to investigate retinal manifestations in PD and their usefulness in assessing the efficacy of a novel therapeutic intervention with a liposomal formulation of the PPAR-γ (Peroxisome proliferator-activated receptor gamma) agonist rosiglitazone. Retinal assessment was performed using longitudinal in vivo imaging with DARC (detection of apoptosing retinal cells) and OCT (optical coherence tomography) technologies and revealed increased RGCs (Retinal Ganglion Cells) apoptosis and a transient swelling of the retinal layers at day 20 of the rotenone insult. Follow-up of this model demonstrated characteristic histological neurodegenerative changes in the substantia nigra and striatum by day 60, suggesting that retinal changes precede the “traditional” pathological manifestations of PD. The therapeutic effect of systemic administration of different formulations of rosiglitazone was then evaluated, both in the retina and the brain. Of all treatment regimen tested, sustained release administration of liposome-encapsulated rosiglitazone proved to be the most potent therapeutic strategy, as evidenced by its significant neuroprotective effect on retinal neurons at day 20, and on nigrostriatal neurons at day 60, provided convincing evidence for its potential as a treatment for PD. Our results demonstrate significant retinal changes occurring in this model of PD. We show that rosiglitazone can efficiently protect retinal neurons from the rotenone insult, and that systemic administration of liposome-encapsulated rosiglitazone has an enhanced neuroprotective effect on the retina and CNS (Central Nervous System). To our knowledge, this is the first in vivo evidence of RGCs loss and early retinal thickness alterations in a PD model. Together, these findings suggest that retinal changes may be a good surrogate biomarker for PD, which may be used to assess new treatments both experimentally and clinically.
Collapse
|
67
|
Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun 2016; 483:1166-1177. [PMID: 27514452 DOI: 10.1016/j.bbrc.2016.08.043] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/21/2016] [Accepted: 08/07/2016] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found that the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models.
Collapse
Affiliation(s)
- Swati Agarwal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India.
| |
Collapse
|
68
|
Wang J, Wu WY, Huang H, Li WZ, Chen HQ, Yin YY. Biochanin A Protects Against Lipopolysaccharide-Induced Damage of Dopaminergic Neurons Both In Vivo and In Vitro via Inhibition of Microglial Activation. Neurotox Res 2016; 30:486-98. [PMID: 27417698 DOI: 10.1007/s12640-016-9648-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/28/2022]
Abstract
Neuroinflammation has been reported to be involved in the pathogenesis of Parkinson's disease (PD). Inhibition of microglia-mediated neuroinflammation might be a potential strategy for PD treatment. Biochanin A, is an O-methylated isoflavone, classified as a kind of phytoestrogens due to its chemical structure that is similar to mammalian estrogens. It has been found to possess antifibrotic, antiapoptotic, and antioxidant effects. In the present study, we investigated the neuroprotective effects of biochanin A on lipopolysaccharide (LPS)-induced dopaminergic neurons damage both in vivo and in vitro and the related molecular mechanisms. The results showed that biochanin A treatment for 21 days significantly attenuated the behavioral dysfunction of PD rats, prevented dopaminergic neurons damage, and inhibited activation of microglia in the LPS-induced PD rats. Furthermore, biochanin A decreased the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the serum, and inhibited the phosphorylation of ERK, JNK, p38 in the substantia nigra of PD rats. In vitro test, biochanin A also inhibited primary microglial activation and protected dopaminergic neurons, decreased the content of nitric oxide, IL-1β, and TNF-α in supernatants, and inhibited the reactive oxygen species production. Taken together, these results suggest that biochanin A exerts protective effects on LPS-induced PD rats, and the mechanisms may be associated with the inhibition of inflammatory response and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,School of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, People's Republic of China
| | - Wang-Yang Wu
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,School of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, People's Republic of China
| | - Huan Huang
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Wei-Zu Li
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Han-Qing Chen
- School of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, People's Republic of China.
| | - Yan-Yan Yin
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
69
|
Liu M, Bachstetter AD, Cass WA, Lifshitz J, Bing G. Pioglitazone Attenuates Neuroinflammation and Promotes Dopaminergic Neuronal Survival in the Nigrostriatal System of Rats after Diffuse Brain Injury. J Neurotrauma 2016; 34:414-422. [PMID: 27142118 DOI: 10.1089/neu.2015.4361] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests that traumatic brain injury (TBI) may raise the risk of developing late-onset Parkinson's disease (PD). Recently, the peroxisome proliferation-activated receptor gamma (PPARγ) agonist pioglitazone has been demonstrated to be neuroprotective in animal models of neurodegeneration. The present study investigates the vulnerability of the nigrostriatal system after TBI, and intervention with pioglitazone treatment. Adult male Sprague-Dawley rats were subjected to sham or moderate midline fluid percussion brain injury (mFPI), followed by an intraperitoneal injection of 10 mg/kg pioglitazone or vehicle beginning 30 min after the injury and subsequently every 24 h for 5 days. Following injury, pro-inflammatory cytokines and chemokine were acutely increased in the striatum and substantia nigra within 6 h. Dopaminergic axonal damage and microglial activation were revealed using immunohistochemistry in the medial forebrain bundle at 1 day post-injury. Microglial activation identified by Iba1 and OX-6 immunostaining was persistently increased in the substantia nigra pars compacta 7 to 28 days post-injury. Further, brain injury induced significant dopaminergic neuronal loss, which was quantified by tyrosine hydroxylase immunostaining and retrograde fluorescent tracer fluorogold labeling in the nigra at 28 days. Loss of neurons was accompanied by increased extracellular dopamine (DA) turnover in the striatum, indicating enhanced dopaminergic activity in functional compensation after nigrostriatal damage. Strikingly, pioglitazone treatment greatly attenuated microglial activation and improved dopaminergic neuronal survival in the nigrostriatal system, which may promote locomotor recovery. These results suggest that interventions that attenuate secondary inflammation could be a feasible therapeutic treatment to improve outcome after TBI.
Collapse
Affiliation(s)
- Mei Liu
- 1 Department of Anatomy and Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Adam D Bachstetter
- 2 Sanders-Brown Center on Aging, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Wayne A Cass
- 1 Department of Anatomy and Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Jonathan Lifshitz
- 3 BARROW Neurological Institute at Phoenix Children's Hospital; Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona; Phoenix Veteran Affairs Healthcare System, Phoenix, Arizona; Interdisciplinary Graduate Program in Neuroscience, Arizona State University , Tempe, Arizona
| | - Guoying Bing
- 1 Department of Anatomy and Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| |
Collapse
|
70
|
Shen T, Pu J, Si X, Ye R, Zhang B. An update on potential therapeutic strategies for Parkinson's disease based on pathogenic mechanisms. Expert Rev Neurother 2016; 16:711-22. [PMID: 27138872 DOI: 10.1080/14737175.2016.1179112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Parkinson's disease is a common neurodegenerative disorder mainly caused by the loss of nigral dopaminergic neurons, of which the pathogenesis remains essentially unknown. Current therapeutic strategies help manage signs and symptoms but have no effect in disease modification. Over the past several decades, scientists have devoted a lot of effort to clarifying the pathological mechanism and searching for new targets for Parkinson's disease treatment. AREAS COVERED Treatment of Parkinson's disease. Expert Commentary: Illustrated in this review are newly found discoveries and evidence that contribute to the understanding of Parkinson's disease pathogenic mechanism. Also discussed are potential therapeutic strategies that are being studied, including disease-modifying and genetically mediated small molecule compounds, cell- and gene-based therapeutic strategies, immunization strategies and anti-diabetic therapy, which may be very promising therapeutic methods in the future.
Collapse
Affiliation(s)
- Ting Shen
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Jiali Pu
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Xiaoli Si
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Rong Ye
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Baorong Zhang
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| |
Collapse
|
71
|
Lindholm D, Mäkelä J, Di Liberto V, Mudò G, Belluardo N, Eriksson O, Saarma M. Current disease modifying approaches to treat Parkinson's disease. Cell Mol Life Sci 2016; 73:1365-79. [PMID: 26616211 PMCID: PMC11108524 DOI: 10.1007/s00018-015-2101-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland.
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland.
| | - Johanna Mäkelä
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Valentina Di Liberto
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Natale Belluardo
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, P.O.Box 56, Viikinkaari 9, 00014, Helsinki, Finland
| |
Collapse
|
72
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
73
|
Liu Y, Huang Y, Lee S, Bookout AL, Castorena CM, Wu H, Gautron L. PPARγ mRNA in the adult mouse hypothalamus: distribution and regulation in response to dietary challenges. Front Neuroanat 2015; 9:120. [PMID: 26388745 PMCID: PMC4558427 DOI: 10.3389/fnana.2015.00120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/20/2015] [Indexed: 11/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that was originally identified as a regulator of peroxisome proliferation and adipocyte differentiation. Emerging evidence suggests that functional PPARγ signaling also occurs within the hypothalamus. However, the exact distribution and identities of PPARγ-expressing hypothalamic cells remains under debate. The present study systematically mapped PPARγ mRNA expression in the adult mouse brain using in situ hybridization histochemistry. PPARγ mRNA was found to be expressed at high levels outside the hypothalamus including the neocortex, the olfactory bulb, the organ of the vasculosum of the lamina terminalis (VOLT), and the subfornical organ. Within the hypothalamus, PPARγ was present at moderate levels in the suprachiasmatic nucleus (SCh) and the ependymal of the 3rd ventricle. In all examined feeding-related hypothalamic nuclei, PPARγ was expressed at very low levels that were close to the limit of detection. Using qPCR techniques, we demonstrated that PPARγ mRNA expression was upregulated in the SCh in response to fasting. Double in situ hybridization further demonstrated that PPARγ was primarily expressed in neurons rather than glia. Collectively, our observations provide a comprehensive map of PPARγ distribution in the intact adult mouse hypothalamus.
Collapse
Affiliation(s)
- Yang Liu
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA ; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Ying Huang
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Angie L Bookout
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Carlos M Castorena
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
74
|
Yao N, Wu Y, Zhou Y, Ju L, Liu Y, Ju R, Duan D, Xu Q. Lesion of the locus coeruleus aggravates dopaminergic neuron degeneration by modulating microglial function in mouse models of Parkinson׳s disease. Brain Res 2015; 1625:255-74. [PMID: 26342895 DOI: 10.1016/j.brainres.2015.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023]
Abstract
The degeneration of noradrenergic neurons in the locus coeruleus (LC) commonly occurs in patients with Parkinson's disease (PD), which is characterized by a selective injury of dopaminergic neurons in the substantia nigra (SN). The pathological impact of the LC on the SN in the disease is unknown. In the present study, we used a noradrenergic toxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), to deplete noradrenaline (NA) derived from the LC to explore its influence on degeneration or injury of dopaminergic neurons in the SN in mouse model produced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or lipopolysaccharide (LPS). Our results demonstrated that lesion of the LC could change microglial function in the brain, which led to enhanced or prolonged expression of pro-inflammatory cytokines, diminished neurotrophic factors, and weakened ability of anti-oxidation in the SN. The in vitro experiments further confirmed that NA could reduce the inflammatory reaction of microglia. The selective injury of dopaminergic neurons by inflammation, however, was due to the inflammation in different brain regions rather than the depletion of NA. Our results indicate that the lesion in the LC is an important factor in promoting dopaminergic neuron degeneration by impacting the function of microglia in the midbrain.
Collapse
Affiliation(s)
- Ning Yao
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Yanhong Wu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China; Beijing Children׳s Hospital Affiliated to Capital Medical University, Beijing 100045, China
| | - Yan Zhou
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Lili Ju
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Yujun Liu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Rongkai Ju
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Deyi Duan
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Qunyuan Xu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
75
|
Brauer R, Bhaskaran K, Chaturvedi N, Dexter DT, Smeeth L, Douglas I. Glitazone Treatment and Incidence of Parkinson's Disease among People with Diabetes: A Retrospective Cohort Study. PLoS Med 2015; 12:e1001854. [PMID: 26196151 PMCID: PMC4511413 DOI: 10.1371/journal.pmed.1001854] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/12/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Recent in vitro and animal experiments suggest that peroxisome proliferation-activated receptor gamma (PPARɣ) agonist medications, such as antidiabetic glitazone (GTZ) drugs, are neuroprotective in models of Parkinson's disease (PD). These findings have not been tested in humans. We hypothesized that individuals prescribed GTZ drugs would have a lower incidence of PD compared to individuals prescribed other treatments for diabetes. METHODS AND FINDINGS Using primary care data from the United Kingdom Clinical Practice Research Datalink (CPRD), we conducted a retrospective cohort study in which individuals with diabetes who were newly prescribed GTZ (GTZ-exposed group) were matched by age, sex, practice, and diabetes treatment stage with up to five individuals prescribed other diabetes treatments (other antidiabetic drug-exposed group). Patients were followed up from 1999 until the first recording of a PD diagnosis, end of observation in the database, or end of the study (1 August 2013). An incidence rate ratio (IRR) was calculated using conditional Poisson regression, adjusted for possible confounders. 44,597 GTZ exposed individuals were matched to 120,373 other antidiabetic users. 175 GTZ-exposed individuals were diagnosed with PD compared to 517 individuals in the other antidiabetic drug-exposed group. The incidence rate (IR) of PD in the GTZ-exposed group was 6.4 per 10,000 patient years compared with 8.8 per 10,000 patient years in those prescribed other antidiabetic treatments (IRR 0.72, 95% confidence interval [CI] 0.60-0.87). Adjustments for potential confounding variables, including smoking, other medications, head injury, and disease severity, had no material impact (fully adjusted IRR 0.75, 0.59-0.94). The risk was reduced in those with current GTZ prescriptions (current GTZ-exposed IRR 0.59, 0.46-0.77) but not reduced among those with past prescriptions (past GTZ-exposed IRR 0.85, 0.65-1.10). Our study only included patients with diabetes who did not have a PD diagnosis when they were first prescribed GTZ, and thus, it cannot establish whether GTZ use prevents or slows the progression of PD. CONCLUSIONS In patients with diabetes, a current prescription for GTZ is associated with a reduction in incidence of PD. This suggests PPAR gamma pathways may be a fruitful drug target in PD.
Collapse
Affiliation(s)
- Ruth Brauer
- Non-communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Krishnan Bhaskaran
- Non-communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nishi Chaturvedi
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - David T. Dexter
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Liam Smeeth
- Non-communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ian Douglas
- Non-communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
76
|
Role of Peroxisome Proliferator-Activated Receptor γ in Ocular Diseases. J Ophthalmol 2015; 2015:275435. [PMID: 26146566 PMCID: PMC4471377 DOI: 10.1155/2015/275435] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/19/2015] [Indexed: 01/14/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPAR γ), a member of the nuclear receptor superfamily, is a ligand-activated transcription factor that plays an important role in the control of a variety of physiological processes. The last decade has witnessed an increasing interest for the role played by the agonists of PPAR γ in antiangiogenesis, antifibrosis, anti-inflammation effects and in controlling oxidative stress response in various organs. As the pathologic mechanisms of major blinding diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), keratitis, and optic neuropathy, often involve neoangiogenesis and inflammation- and oxidative stress-mediated cell death, evidences are accumulating on the potential benefits of PPAR γ to improve or prevent these vision threatening eye diseases. In this paper we describe what is known about the role of PPAR γ in the ocular pathophysiological processes and PPAR γ agonists as novel adjuvants in the treatment of eye diseases.
Collapse
|
77
|
Lecca D, Nevin DK, Mulas G, Casu MA, Diana A, Rossi D, Sacchetti G, Fayne D, Carta AR. Neuroprotective and anti-inflammatory properties of a novel non-thiazolidinedione PPARγ agonist in vitro and in MPTP-treated mice. Neuroscience 2015; 302:23-35. [PMID: 25907448 DOI: 10.1016/j.neuroscience.2015.04.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/12/2015] [Accepted: 04/11/2015] [Indexed: 11/29/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)γ is a potential pharmacological target for disease-modification in Parkinson's disease (PD), mainly acting by modulating the neuroinflammatory response. However, currently available agonists thiazolidinediones (TZDs) present limitations due to safety concerns. We evaluated a novel thiobarbituric-like compound MDG548, which acts as a functional PPARγ agonist displaying higher and selective binding affinity as compared to TZDs. Neuroprotection by MDG548 was tested in vitro and in a mouse MPTP model of PD, and neuroinflammation was investigated as a putative underlying mechanism. Viability assay on rat cortical neurons showed lack of cytotoxic effect in the dose-range of 100 nM-10 μM, which was therefore used for testing in vitro protection against H2O2 and MPP+ neurotoxicity. MDG548 dose-dependently increased cell viability of rat cortical neurons co-treated with H2O2 or pre-exposed to MDG548 prior to H2O2. Moreover, MDG548 induced neuroprotection in MPP+-treated PC12 cells. NF-kB activation was investigated to assess anti-inflammatory activity. MDG548 dose-dependently decreased NF-kB activation induced by LPS (100 ng/100ml) in HEK-Blue-hTLR4 cells. Given the supposed cancer risk of other PPARγ agonists, Ames test for genotoxicity was performed in Salmonella typhimurium TA100 and TA98 strains, showing that MDG548 was not genotoxic. In vivo, BL/6J mice were treated with MPTP (20mg/kg i.p. once/day for 4 days) in association with saline or MDG548 (2, 5, 10 mg/kg i.p.). Stereological counting showed that MDG548 prevented the MPTP-induced reduction in TH-positive cells in the substantia nigra compacta (SNc) at all doses tested. Moreover, MDG548 reduced reactive microglia and iNOS induction in the SNc. MDG548, being a non-TZD compound with high PPARγ affinity, void of genotoxicity, and with in vitro as well as in vivo neuroprotective properties, provides a promising alternative in the search for safer PPARγ agonists to be tested as potential disease-modifying drugs in PD.
Collapse
Affiliation(s)
- D Lecca
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - D K Nevin
- School of Biochemistry & Immunology, Trinity College, Dublin, Ireland
| | - G Mulas
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - M A Casu
- CNR-Institute of Translational Pharmacology, U.O.S. of Cagliari, Italy
| | - A Diana
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - D Rossi
- Department of Life Science and Biotechnology, University of Ferrara, Italy
| | - G Sacchetti
- Department of Life Science and Biotechnology, University of Ferrara, Italy
| | | | - A R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy
| |
Collapse
|
78
|
Evaluation of the synuclein-γ (SNCG) gene as a PPARγ target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue. PLoS One 2015; 10:e0115830. [PMID: 25756178 PMCID: PMC4355072 DOI: 10.1371/journal.pone.0115830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
Recent evidence in adipocytes points to a role for synuclein-γ in metabolism and lipid droplet dynamics, but interestingly this factor is also robustly expressed in peripheral neurons. Specific regulation of the synuclein-γ gene (Sncg) by PPARγ requires further evaluation, especially in peripheral neurons, prompting us to test if Sncg is a bona fide PPARγ target in murine adipocytes and peripheral somatosensory neurons derived from the dorsal root ganglia (DRG). Sncg mRNA was decreased in 3T3-L1 adipocytes (~68%) by rosiglitazone, and this effect was diminished by the PPARγ antagonist T0070907. Chromatin immunoprecipitation experiments confirmed PPARγ protein binding at two promoter sequences of Sncg during 3T3-L1 adipogenesis. Rosiglitazone did not affect Sncg mRNA expression in murine cultured DRG neurons. In subcutaneous human WAT samples from two cohorts treated with pioglitazone (>11 wks), SNCG mRNA expression was reduced, albeit highly variable and most evident in type 2 diabetes. Leptin (Lep) expression, thought to be coordinately-regulated with Sncg based on correlations in human adipose tissue, was also reduced in 3T3-L1 adipocytes by rosiglitazone. However, Lep was unaffected by PPARγ antagonist, and the LXR agonist T0901317 significantly reduced Lep expression (~64%) while not impacting Sncg. The results support the concept that synuclein-γ shares some, but not all, gene regulators with leptin and is a PPARγ target in adipocytes but not DRG neurons. Regulation of synuclein-γ by cues such as PPARγ agonism in adipocytes is logical based on recent evidence for an important role for synuclein-γ in the maintenance and dynamics of adipocyte lipid droplets.
Collapse
|
79
|
Martinez AA, Morgese MG, Pisanu A, Macheda T, Paquette MA, Seillier A, Cassano T, Carta AR, Giuffrida A. Activation of PPAR gamma receptors reduces levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Neurobiol Dis 2014; 74:295-304. [PMID: 25486547 DOI: 10.1016/j.nbd.2014.11.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/18/2014] [Accepted: 11/26/2014] [Indexed: 01/31/2023] Open
Abstract
Long-term administration of l-3,4-dihydroxyphenylalanine (levodopa), the mainstay treatment for Parkinson's disease (PD), is accompanied by fluctuations in its duration of action and motor complications (dyskinesia) that dramatically affect the quality of life of patients. Levodopa-induced dyskinesias (LID) can be modeled in rats with unilateral 6-OHDA lesions via chronic administration of levodopa, which causes increasingly severe axial, limb, and orofacial abnormal involuntary movements (AIMs) over time. In previous studies, we showed that the direct activation of CB1 cannabinoid receptors alleviated rat AIMs. Interestingly, elevation of the endocannabinoid anandamide by URB597 (URB), an inhibitor of endocannabinoid catabolism, produced an anti-dyskinetic response that was only partially mediated via CB1 receptors and required the concomitant blockade of transient receptor potential vanilloid type-1 (TRPV1) channels by capsazepine (CPZ) (Morgese et al., 2007). In this study, we showed that the stimulation of peroxisome proliferator-activated receptors (PPAR), a family of transcription factors activated by anandamide, contributes to the anti-dyskinetic effects of URB+CPZ, and that the direct activation of the PPARγ subtype by rosiglitazone (RGZ) alleviates levodopa-induced AIMs in 6-OHDA rats. AIM reduction was associated with an attenuation of levodopa-induced increase of dynorphin, zif-268, and of ERK phosphorylation in the denervated striatum. RGZ treatment did not decrease striatal levodopa and dopamine bioavailability, nor did it affect levodopa anti-parkinsonian activity. Collectively, these data indicate that PPARγ may represent a new pharmacological target for the treatment of LID.
Collapse
Affiliation(s)
- A A Martinez
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - M G Morgese
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto 1, Foggia 71100, Italy
| | - A Pisanu
- Institute of Neuroscience, National Research Council of Italy (CNR), Cagliari, Italy
| | - T Macheda
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - M A Paquette
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - A Seillier
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - T Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto 1, Foggia 71100, Italy
| | - A R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - A Giuffrida
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
80
|
Skerrett R, Malm T, Landreth G. Nuclear receptors in neurodegenerative diseases. Neurobiol Dis 2014; 72 Pt A:104-16. [PMID: 24874548 PMCID: PMC4246019 DOI: 10.1016/j.nbd.2014.05.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/14/2014] [Accepted: 05/17/2014] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors have generated substantial interest in the past decade as potential therapeutic targets for the treatment of neurodegenerative disorders. Despite years of effort, effective treatments for progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and ALS remain elusive, making non-classical drug targets such as nuclear receptors an attractive alternative. A substantial literature in mouse models of disease and several clinical trials have investigated the role of nuclear receptors in various neurodegenerative disorders, most prominently AD. These studies have met with mixed results, yet the majority of studies in mouse models report positive outcomes. The mechanisms by which nuclear receptor agonists affect disease pathology remain unclear. Deciphering the complex signaling underlying nuclear receptor action in neurodegenerative diseases is essential for understanding this variability in preclinical studies, and for the successful translation of nuclear receptor agonists into clinical therapies.
Collapse
Affiliation(s)
- Rebecca Skerrett
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Tarja Malm
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; A.I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Gary Landreth
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
81
|
De Miranda BR, Popichak KA, Hammond SL, Miller JA, Safe S, Tjalkens RB. Novel para-phenyl substituted diindolylmethanes protect against MPTP neurotoxicity and suppress glial activation in a mouse model of Parkinson's disease. Toxicol Sci 2014; 143:360-73. [PMID: 25406165 DOI: 10.1093/toxsci/kfu236] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The orphan nuclear receptor NR4A2 (Nurr1) constitutively regulates inflammatory gene expression in glial cells by suppressing DNA binding activity of NF-κB. We recently reported that novel 1,1-bis(3'-indolyl)-1-(p-substitutedphenyl)methane (C-DIM) compounds that activate NR4A family nuclear receptors in cancer lines also suppress inflammatory gene expression in primary astrocytes and prevent loss of dopaminergic neurons in mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp). In this study, we postulated that the basis for this neuroprotection involves blockade of glial activation and subsequent expression of NF-κB-regulated inflammatory genes. To examine this mechanism, we treated transgenic NF-κB/EGFP reporter mice with MPTPp for 7 days (MPTPp7d) followed by daily oral gavage with either vehicle (corn oil; MPTPp14d) or C-DIMs containing p-methoxyphenyl (C-DIM5), p-hydroxyphenyl (C-DIM8), or p-chlorophenyl (C-DIM12) groups. Each compound conferred significant protection against progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), even when given after 7 days of dosing with MPTPp. C-DIM12 had the greatest neuroprotective activity in MPTPp-treated mice, and was also the most potent compound in suppressing activation of microglia and astrocytes, expression of cytokines and chemokines in quantitative polymerase chain reaction (qPCR) array studies, and in reducing expression of NF-κB/EGFP in the SN. C-DIM12 prevented nuclear export of Nurr1 in dopaminergic neurons and enhanced expression of the Nurr1-regulated proteins tyrosine hydroxylase and the dopamine transporter. These data indicate that NR4A-active C-DIM compounds protect against loss of dopamine neurons in the MPTPp model of PD by preventing glial-mediated neuronal injury and by supporting a dopaminergic phenotype in TH-positive neurons in the SNpc.
Collapse
Affiliation(s)
- Briana R De Miranda
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Katriana A Popichak
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Sean L Hammond
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - James A Miller
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Stephen Safe
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Ronald B Tjalkens
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| |
Collapse
|
82
|
Barbiero JK, Santiago RM, Persike DS, da Silva Fernandes MJ, Tonin FS, da Cunha C, Lucio Boschen S, Lima MM, Vital MA. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav Brain Res 2014; 274:390-9. [DOI: 10.1016/j.bbr.2014.08.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/20/2022]
|
83
|
Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, Carta AR. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiol Dis 2014; 71:280-91. [DOI: 10.1016/j.nbd.2014.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022] Open
|
84
|
Lycopene attenuates insulin signaling deficits, oxidative stress, neuroinflammation, and cognitive impairment in fructose-drinking insulin resistant rats. Neuropharmacology 2014; 86:389-96. [DOI: 10.1016/j.neuropharm.2014.07.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 12/25/2022]
|
85
|
Carta AR, Simuni T. Thiazolidinediones under preclinical and early clinical development for the treatment of Parkinson's disease. Expert Opin Investig Drugs 2014; 24:219-27. [PMID: 25227476 DOI: 10.1517/13543784.2015.963195] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Current treatment of Parkinson's disease (PD) is limited to symptomatic dopaminergic therapy, while no interventions have been shown to slow down disease progression. AREAS COVERED The following article highlights a group of PPAR-γ agonists called thiazolidinediones (TZDs), which are currently being tested for a putative disease-modifying benefit in PD, using pioglitazone as a prototypic compound. PPAR-γ is highly expressed in neurons of the substantia nigra and CNS immune cells. Preclinical data in rodent and primate support an effect of TZDs in preventing and/or arresting neurodegeneration and development of motor symptoms. Although no data on the neuroprotective effect of TZDs is currently available, a clinical trial is ongoing where the primary objective is to assess pioglitazone's impact on the progression of PD. The trial is also evaluating the drug's safety concerns. EXPERT OPINION The efficacy data from clinical trials must be carefully weighed against the safety concerns. However, given the solid preclinical data, and since the safety data are not yet fully conclusive and limited to the diabetic population, PPAR-γ research in PD can continue with caution. Ideally, drug discovery and development efforts will lead to the identification of new compounds with reduced risk of peripheral side effects.
Collapse
Affiliation(s)
- Anna R Carta
- University of Cagliari, Department of Biomedical Sciences , via Ospedale 72, 09124, Cagliari , Italy +39 0706758662 ; +39 0706758665 ;
| | | |
Collapse
|
86
|
Bowes AL, Yip PK. Modulating inflammatory cell responses to spinal cord injury: all in good time. J Neurotrauma 2014; 31:1753-66. [PMID: 24934600 DOI: 10.1089/neu.2014.3429] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury can have a range of debilitating effects, permanently impacting a patient's quality of life. Initially thought to be an immune privileged site, the spinal cord is able to mount a timely and well organized inflammatory response to injury. Intricate immune cell interactions are triggered, typically consisting of a staggered multiphasic immune cell response, which can become deregulated if left unchecked. Although several immunomodulatory compounds have yielded success in experimental rodent spinal cord injury models, their translation to human clinical studies needs further consideration. Because temporal differences between rodent and human inflammatory responses to spinal cord injury do exist, drug delivery timing will be a crucial component in recovery from spinal cord injury. Given too early, immunomodulatory therapies may impede beneficial inflammatory reactions to the injured spinal cord or even miss the opportunity to dampen delayed harmful autoimmune processes. Therefore, this review aims to summarize the temporal inflammatory response to spinal cord injury, as well as detailing specific immune cell functions. By clearly defining the chronological order of inflammatory events after trauma, immunomodulatory drug delivery timing can be better optimized. Further, we compare spinal cord injury-induced inflammatory responses in rodent and human studies, enabling clinicians to consider these differences when initiating clinical trials. Improved understanding of the cellular immune response after spinal cord injury would enhance the efficacy of immunomodulatory agents, enabling combined therapies to be considered.
Collapse
Affiliation(s)
- Amy L Bowes
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London, United Kingdom
| | | |
Collapse
|
87
|
Wei W, Yuan YH, Gao YN, Yan WF, Li CJ, Zhang DM, Chen NH. Polygalasaponin F inhibits secretion of inflammatory cytokines via NF-κB pathway regulation. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 16:865-875. [PMID: 25082394 DOI: 10.1080/10286020.2014.918962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To study the anti-neuroinflammatory mechanisms of polygalasaponin F (PS-F), ELISA method was used to detect the secretion of inflammatory cytokines. Western blot was used to detect the protein expression and phosphorylation levels. Immunofluorescence assay was used to observe the NF-κB nuclear translocation. PS-F could inhibit the release of inflammatory cytokines TNF-α and NO induced by lipopolysaccharides (LPS) and reduce the expression of inducible nitric oxide synthases (iNOS). As for MAPK-signaling pathway, PS-F could only inhibit the phosphorylation levels of p38 MAPK, but did not significantly affect the phosphorylation levels of JNK and ERK1/2 protein kinases. PS-F could inhibit NF-κB nuclear translocation in a dose-dependent manner. The results of Western blot assay were consistent with immunofluorescence assays. Meanwhile, p38-specific inhibitor SB203580 (20 μM) and p65-specific inhibitor PDTC (100 μM) were, respectively, administered as a positive control. In addition, PS-F could significantly inhibit the cytotoxicity of conditioned medium prepared by LPS-stimulated BV-2 microglia (LPS conditioned media) to neuronal PC12 cells and improve cell viability. PS-F inhibits the secretions of neuroinflammatory cytokines by the regulation of NF-κB-signaling pathway.
Collapse
Affiliation(s)
- Wei Wei
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | | | | | | | | | | | | |
Collapse
|
88
|
PPARγ and PGC-1α as therapeutic targets in Parkinson's. Neurochem Res 2014; 40:308-16. [PMID: 25007880 PMCID: PMC4326663 DOI: 10.1007/s11064-014-1377-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/19/2014] [Accepted: 06/28/2014] [Indexed: 12/30/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. PPARγ was initially identified through its role in the regulation of glucose and lipid metabolism and cell differentiation. It also influences the expression or activity of a number of genes in a variety of signalling networks. These include regulation of redox balance, fatty acid oxidation, immune responses and mitochondrial function. Recent studies suggest that the PPARγ agonists may serve as good candidates for the treatment of several neurodegenerative disorders including Parkinson’s disease (PD), Alzheimer’s disease, Huntington’s disease and amyotrophic lateral sclerosis, even though multiple etiological factors contribute to the development of these disorders. Recent reports have also signposted a role for PPARγ coactivator-1α (PGC-1α) in several neurodegenerative disorders including PD. In this review, we explore the current knowledge of mechanisms underlying the beneficial effects of PPARγ agonists and PGC-1α in models of PD.
Collapse
|
89
|
Dentesano G, Serratosa J, Tusell JM, Ramón P, Valente T, Saura J, Solà C. CD200R1 and CD200 expression are regulated by PPAR-γ in activated glial cells. Glia 2014; 62:982-98. [PMID: 24639050 DOI: 10.1002/glia.22656] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
Abstract
The mechanisms that control microglial activation are of interest, since neuroinflammation, which involves reactive microglia, may be an additional target in the search for therapeutic strategies to treat neurodegenerative diseases. Neuron-microglia interaction through contact-dependent or independent mechanisms is involved in the regulation of the microglial phenotype in both physiological and pathological conditions. The interaction between CD200, which is mainly present in neurons but also in astrocytes, and CD200R1, which is mainly present in microglia, is one of the mechanisms involved in keeping the microglial proinflammatory phenotype under control in physiological conditions. Alterations in the expression of CD200 and CD200R1 have been described in neurodegenerative diseases, but little is known about the mechanism of regulation of these proteins under physiological or pathological conditions. The aim of this work was to study the modulation of CD200 and CD200R1 expression by peroxisome proliferator-activated receptor gamma (PPAR-γ), a transcription factor involved in the control of the inflammatory response. Mouse primary neuronal and glial cultures and neuron-microglia cocultures were treated with the PPAR-γ endogenous ligand 15-deoxy-Δ(12, 14) -prostaglandin J2 (15d-PGJ2 ) in the presence and absence of lipopolysaccharide plus interferon-γ (LPS/IFN-γ)-induced glial activation. We show that 15d-PGJ2 inhibits the pro-inflammatory response and prevents both CD200R1 downregulation and CD200 upregulation in reactive glial cells. In addition, 15d-PGJ2 abrogates reactive-microglia induced neurotoxicity in neuron-microglia cultures through a CD200-CD200R1 dependent mechanism. These results suggest that PPAR-γ modulates CD200 and CD200R1 gene expression and that CD200-CD200R1 interaction is involved in the anti-inflammatory and neuroprotective action of PPAR-γ agonists.
Collapse
Affiliation(s)
- Guido Dentesano
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
90
|
Intracerebral administration of ultrasound-induced dissolution of lipid-coated GDNF microbubbles provides neuroprotection in a rat model of Parkinson's disease. Brain Res Bull 2014; 103:60-5. [PMID: 24583079 DOI: 10.1016/j.brainresbull.2014.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of dopaminergic neurons in the substantia nigra. Neurotrophic factors, such as glial cell derived neurotrophic factor (GDNF), have been shown to provide a neuroprotective effect in PD rats. We have previously reported that ultrasound-induced lipid-coated GDNF microspheres, which release GDNF in a sustained manner after low frequency ultrasound stimulation, can reduce hypoxic-ischemic injury in neonatal rats. In the present study, we investigated whether lipid-coated GDNF microspheres can provide a neuroprotective effect in a rat model of PD. After a rat model of PD was produced by 6-hydroxydompamine (6-OHDA) injections, lipid-coated GDNF microspheres (1.5mg/kg) were injected into the striatum of PD rats. We found that GDNF levels were increased in the striatum of PD rats after lipid-coated GDNF microspheres administration following low frequency ultrasound stimulation (20kHz, 5min per day, daily for 4 weeks). Moreover, GDNF microspheres reduced apomorphine-induced rotations, and increased striatal dopamine and nigral tyrosine hydroxylase (TH) levels in PD rats. Additionally, GDNF microspheres reduced caspase-3, tumor necrosis factor-alpha, matrix metalloproteinase 9 (MMP-9) and OX-6 levels induced by 6-OHDA injections in PD rats. These data indicated that lipid-coated GDNF microspheres can provide a neuroprotective effect in PD rats.
Collapse
|
91
|
Swanson C, Emborg M. Expression of peroxisome proliferator-activated receptor-gamma in the substantia nigra of hemiparkinsonian nonhuman primates. Neurol Res 2013; 36:634-46. [PMID: 24620964 DOI: 10.1179/1743132813y.0000000305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To characterize the distribution of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the substantia nigra of normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated hemiparkinsonian monkeys, in order to validate PPAR-gamma as a target for neuroprotection. METHODS Immunohistochemical analysis of PPAR-gamma expression was performed in the substantia nigra and other select brain regions of fifteen rhesus monkeys including controls (n = 3), hemiparkinsonian necropsied after 3 (n = 5) or 12 (n = 3) months after MPTP, and animals who received MPTP+5 mg/kg of the PPAR-gamma agonist pioglitazone (n = 4). RESULTS PPAR-gamma expression was prominent in the subthalamic nucleus, oculomotor nucleus, ventral tegmental nucleus, and to a lesser extent, in the putamen; 3 or 12 months after MPTP, only the lesioned putamen had increased PPAR-gamma. Stereological cell quantification in normal subjects showed that approximately 50% of neurons in the substantia nigra pars compacta (SNpc) expressed PPAR-gamma. After MPTP, there was a significant loss of dopaminergic neurons in the ipsilateral SNpc and the actual numbers of tyrosine hydroxylase (TH) and PPAR-gamma cells were not significantly different at either time point. Pioglitazone dosing protected TH-positive neurons, closely matching the number of PPAR-gamma expressing cells in the ipsilateral SNpc. Nigral immunofluorescence verified colocalization of PPAR-gamma in neurons. DISCUSSION These results demonstrate that PPAR-gamma is expressed in the SNpc and putamen of nonhuman primates and, that the dopaminergic nigral neurons expressing PPAR-gamma are more likely to survive neurotoxin challenge after ligand activation by pioglitazone, therefore providing neuroanatomical validation for the use of PPAR-gamma agonists in Parkinson's disease (PD).
Collapse
|
92
|
Corona JC, de Souza SC, Duchen MR. PPARγ activation rescues mitochondrial function from inhibition of complex I and loss of PINK1. Exp Neurol 2013; 253:16-27. [PMID: 24374061 DOI: 10.1016/j.expneurol.2013.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 01/19/2023]
Abstract
Parkinson's disease has long been associated with impaired mitochondrial complex I activity, while several gene defects associated with familial Parkinson's involve defects in mitochondrial function or 'quality control' pathways, causing an imbalance between mitochondrial biogenesis and removal of dysfunctional mitochondria by autophagy. Amongst these are mutations of the gene for PTEN-induced kinase 1 (PINK1) in which mitochondrial function is abnormal. Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor and ligand-dependent transcription factor, regulates pathways of inflammation, lipid and carbohydrate metabolism, antioxidant defences and mitochondrial biogenesis. We have found that inhibition of complex I in human differentiated SHSY-5Y cells by the complex I inhibitor rotenone irreversibly decrease mitochondrial mass, membrane potential and oxygen consumption, while increasing free radical generation and autophagy. Similar changes are seen in PINK1 knockdown cells, in which potential, oxygen consumption and mitochondrial mass are all decreased. In both models, all these changes were reversed by pre-treatment of the cells with the PPARγ agonist, rosiglitazone, which increased mitochondrial biogenesis, increased oxygen consumption and suppressed free radical generation and autophagy. Thus, rosiglitazone is neuroprotective in two different models of mitochondrial dysfunction associated with Parkinson's disease through a direct impact on mitochondrial function.
Collapse
Affiliation(s)
- Juan Carlos Corona
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Senio Campos de Souza
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
93
|
Neuroprotective Properties of a Novel Non-Thiazoledinedione Partial PPAR- γ Agonist against MPTP. PPAR Res 2013; 2013:582809. [PMID: 24223584 PMCID: PMC3808726 DOI: 10.1155/2013/582809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/25/2022] Open
Abstract
Activation of the peroxisome proliferator activated receptor-gamma (PPAR)-γ is proposed as a neuroprotective strategy to treat neurodegenerative disorders. In this study, we examined if LSN862 (LSN), a novel non-thiazoledinedione partial PPAR-γ agonist, was neuroprotective in a mouse model of Parkinson's disease (PD) and assessed possible mechanisms of action. LSN (3, 10, or 30 mg/kg) or vehicle was orally administered daily to C57BL/6 and antioxidant response element-human placental alkaline phosphatase (ARE-hPAP) reporter mice 3 days prior to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg, i.p. × 5 days) or PBS administration. LSN elicited a dose-dependent preservation of dopaminergic nigrostriatal innervation that was not associated with inhibition of MPTP metabolism or activation of Nrf2-ARE, although changes in NQO1 and SOD2 mRNA were observed. A significant dose-dependent downregulation in MAC-1 and GFAP positive cells was observed in MPTP + LSN-treated mice as well as significant downregulation of mRNA expression levels of these inflammatory markers. MPTP-induced increases in PPAR-γ and PGC1α expression were ameliorated by LSN dosing. Our results demonstrate that oral administration of LSN is neuroprotective against MPTP-induced neurodegeneration, and this effect is associated with downregulation of neuroinflammation, decreased oxidative stress, and modulation of PPAR-γ and PGC1α expression. These results suggest that LSN can be a candidate alternative non-thiazoledinedione partial PPAR-γ agonist for neuroprotective treatment of PD.
Collapse
|
94
|
Zhu J, Zhang J, Ji M, Gu H, Xu Y, Chen C, Hu N. The role of peroxisome proliferator-activated receptor and effects of its agonist, pioglitazone, on a rat model of optic nerve crush: PPARγ in retinal neuroprotection. PLoS One 2013; 8:e68935. [PMID: 23874818 PMCID: PMC3715510 DOI: 10.1371/journal.pone.0068935] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/04/2013] [Indexed: 01/29/2023] Open
Abstract
It has been shown that peroxisome proliferators-activated receptor gamma (PPARγ) is beneficial for central nervous system injury. However its role on optic nerve injury remains unknown. In the present study, we examined the change of PPARγ expression in rat retina following optic nerve injury and investigated the effect of pioglitazone (Pio), a PPARγ agonist, on retinal ganglion cells (RGCs) neuroprotection using a rat optic nerve crush (ONC) model. Our results showed that PPARγ mRNA and protein levels were increased after ONC, and most of PPARγ-immunoreactive cells colocalized with Müller cells. Pio treatment significantly enhanced the number of surviving RGCs and inhibited RGCs apoptosis induced by ONC. However, when PPARγ antagonist GW9662 was used, these neuroprotective effects were abolished. In addition, pio attenuated Müller cell activation after ONC. These results indicate that PPARγ appears to protect RGCs from ONC possibly via the reduction of Müller glial activation. It provides evidence that activation of PPARγ may be a potential alternative treatment for RGCs neuroprotection.
Collapse
Affiliation(s)
- Juming Zhu
- Eye Institute, Nantong University, Nantong, China
| | | | - Min Ji
- Eye Institute, Nantong University, Nantong, China
| | - Hongwei Gu
- Eye Institute, Nantong University, Nantong, China
| | - Yue Xu
- Eye Institute, Nantong University, Nantong, China
| | - Chen Chen
- Eye Institute, Nantong University, Nantong, China
| | - Nan Hu
- Eye Institute, Nantong University, Nantong, China
- * E-mail:
| |
Collapse
|
95
|
Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 2013; 62:803-19. [DOI: 10.1016/j.neuint.2012.12.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 12/21/2022]
|
96
|
Lu M, Hu G. Targeting metabolic inflammation in Parkinson's disease: implications for prospective therapeutic strategies. Clin Exp Pharmacol Physiol 2013; 39:577-85. [PMID: 22126374 DOI: 10.1111/j.1440-1681.2011.05650.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the aetiology of PD has not been clarified as yet, it is believed that ageing, diet, diabetes and adiposity are associated with PD. 2. Type 2 diabetes and lipid abnormalities share multiple common pathophysiological mechanisms with PD. In particular, inflammation plays a critical role in the destruction of both pancreatic islet β-cells and dopaminergic neurons in the substantia nigra. Emerging evidence indicates that dysfunctions of energy metabolism evoke metabolic inflammation, which differs to the narrow concept of inflammation, participating in systemic pathological processes such as neurodegenerative disease and diabetes. 3. The brain is considered an immunologically privileged organ, free from immune reactions, because it is protected by the blood-brain barrier (BBB). However, studies have shown that there is gradual impairment of neurovascular function with ageing and in neurodegenerative disorders, resulting in abnormal states, including increased BBB permeability. Consequently, harmful elements that would not normally be able to cross the BBB, such as pro-inflammatory factors, reactive oxygen species and neurotoxins, infiltrate into the brain, triggering neural injury. 4. Currently, the drugs available for the treatment of PD only ameliorate the symptoms of the disease. Therapeutic strategies aimed at stopping or modifying disease progression are still being sought. Most recent studies suggest that both central and peripheral inflammation may be dysregulated in PD. Therefore, therapeutic strategies aimed at modulating systemic inflammatory reactions or energy metabolism may represent a goal in neuroprotection in PD.
Collapse
Affiliation(s)
- Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | |
Collapse
|
97
|
Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, Ross CA, Duan W. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington's disease. J Neurochem 2013; 125:410-9. [PMID: 23373812 DOI: 10.1111/jnc.12190] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is a devastating genetic neurodegenerative disease caused by CAG trinucleotide expansion in the exon-1 region of the huntingtin gene. Currently, no cure is available. It is becoming increasingly apparent that mutant Huntingtin (HTT) impairs metabolic homeostasis and causes transcriptional dysregulation. The peroxisome proliferator-activated receptor gamma (PPAR-γ) is a transcriptional factor that plays a key role in regulating genes involved in energy metabolism; recent studies demonstrated that PPAR-γ activation prevented mitochondrial depolarization in cells expressing mutant HTT and attenuated neurodegeneration in various models of neurodegenerative diseases. PPAR-γ-coactivator 1α (PGC-1 α) transcription activity is also impaired by mutant HTT. We now report that the PPAR-γ agonist, rosiglitazone (RSG), significantly attenuated mutant HTT-induced toxicity in striatal cells and that the protective effect of RSG is mediated by activation of PPAR-γ. Moreover, chronic administration of RSG (10 mg/kg/day, i.p) significantly improved motor function and attenuated hyperglycemia in N171-82Q HD mice. RSG administration rescued brain derived neurotrophic factor(BDNF) deficiency in the cerebral cortex, and prevented loss of orexin-A-immunopositive neurons in the hypothalamus of N171-82Q HD mice. RSG also prevented PGC-1α reduction and increased Sirt6 protein levels in HD mouse brain. Our results suggest that modifying the PPAR-γ pathway plays a beneficial role in rescuing motor function as well as glucose metabolic abnormalities in HD.
Collapse
Affiliation(s)
- Jing Jin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson's disease. Neurotox Res 2013; 23:145-53. [PMID: 22573480 PMCID: PMC3597389 DOI: 10.1007/s12640-012-9328-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/20/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Microglial activation and subsequent release of toxic pro-inflammatory factors are believed to play an important role in neuronal cell death associated with Parkinson's disease (PD). Compounds that inhibit microglia activation and suppress pro-inflammatory factor release have been reported to have neuroprotective effects in animal models of PD. In this study, we tested whether diadzein, a natural isoflavone found in soybean, attenuated lipopolysaccharide (LPS)-induced release of inflammatory mediators in BV-2, a murine microglial cell line. Diadzein pretreatment was found to significantly suppress the production of the pro-inflammatory factors nitric oxide and IL-6 as well as their mRNA expression in conjunction with reductions in ROS production, p38 MAPK phosphorylation, and NF-κB activation. Furthermore, transfer of conditioned media (CM) from BV-2 cells pretreated with diadzein resulted in a significantly reduction in dopaminergic neurotoxicity compared with CM from microglia stimulated with LPS alone. Together, our results suggest that diadzein's neuroprotective properties may be due to its ability to dampen induction of microglial activation and the subsequent release of soluble pro-inflammatory factors. This appears to be via inhibition of oxidative induction of the p38 MAP kinase-NFκB pathway, resulting in reduced expression of pro-inflammatory genes and release of their corresponding gene products.
Collapse
Affiliation(s)
- Shankar J. Chinta
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Abirami Ganesan
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | | | - Gordon J. Lithgow
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Julie K. Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| |
Collapse
|
99
|
De Miranda BR, Miller JA, Hansen RJ, Lunghofer PJ, Safe S, Gustafson DL, Colagiovanni D, Tjalkens RB. Neuroprotective efficacy and pharmacokinetic behavior of novel anti-inflammatory para-phenyl substituted diindolylmethanes in a mouse model of Parkinson's disease. J Pharmacol Exp Ther 2013; 345:125-38. [PMID: 23318470 DOI: 10.1124/jpet.112.201558] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There are currently no registered drugs that slow the progression of neurodegenerative diseases, in part because translation from animal models to the clinic has been hampered by poor distribution to the brain. The present studies examined a selected series of para-phenyl-substituted diindolylmethane (C-DIM) compounds that display anti-inflammatory and neuroprotective efficacy in vitro. We postulated that the pharmacokinetic behavior of C-DIM compounds after oral administration would correlate with neuroprotective efficacy in vivo in a mouse model of Parkinson's disease. Pharmacokinetics and metabolism of 1,1-bis(3'-indolyl)-1-(p-methoxyphenyl)methane (C-DIM5), 1,1-bis(3'-indolyl)-1-(phenyl)methane, 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (C-DIM8), and 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12) were determined in plasma and brain of C57Bl/6 mice after oral and intravenous administration at 10 and 1 mg/Kg, respectively. Putative metabolites were measured in plasma, liver, and urine. C-DIM compounds given orally displayed the highest area under the curve, Cmax, and Tmax levels, and C-DIM12 exhibited the most favorable pharmacokinetics of the compounds tested. Oral bioavailability of each compound ranged from 6% (C-DIM8) to 42% (C-DIM12). After pharmacokinetic studies, the neuroprotective efficacy of C-DIM5, C-DIM8, and C-DIM12 (50 mg/Kg per oral) was examined in mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid for 14 days, a model of progressive neurodegeneration with a strong neuroinflammatory component. C-DIM5 and C-DIM12 given orally once daily after one week of exposure to MPTP and probenecid prevented further loss of dopaminergic neurons in the substantia nigra pars compacta and striatal dopamine terminals, indicating that these compounds could be effective therapeutic agents to prevent neurodegeneration.
Collapse
Affiliation(s)
- Briana R De Miranda
- Center for Environmental Medicine, Department of Environmental and Radiological Health Sciences, Animal Cancer Center, Colorado State University, Fort Collins, Colorado 80523-1680, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Nolan YM, Sullivan AM, Toulouse A. Parkinson's disease in the nuclear age of neuroinflammation. Trends Mol Med 2013; 19:187-96. [PMID: 23318001 DOI: 10.1016/j.molmed.2012.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Chronic neuroinflammation is associated with the pathophysiology of Parkinson's disease, a movement disorder characterised by deterioration of the nigrostriatal system of the brain. Recent studies have yielded important insights into the regulation of inflammation by nuclear receptors, a superfamily of ligand-activated transcription factors. Certain nuclear receptors are also emerging as regulators of neurodegeneration, including the degeneration of dopaminergic neurons in Parkinson's disease, and the importance of transcriptional control in this process is becoming increasingly apparent. Here, we discuss the role of Nurr1, peroxisome proliferator-activated receptors (PPARs), retinoic acid receptors, and glucocorticoid receptors in neuroinflammatory processes that contribute to dopaminergic neuronal degeneration. We examine current evidence providing insight into the potential of these important players as therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
- Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|