51
|
Liu Y, Yang R, Liu X, Zhou Y, Qu C, Kikuiri T, Wang S, Zandi E, Du J, Ambudkar IS, Shi S. Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 2014; 15:66-78. [PMID: 24726192 DOI: 10.1016/j.stem.2014.03.005] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/14/2014] [Accepted: 03/12/2014] [Indexed: 01/15/2023]
Abstract
Gaseous signaling molecules such as hydrogen sulfide (H2S) are produced endogenously and mediate effects through diverse mechanisms. H2S is one such gasotransmitters that regulates multiple signaling pathways in mammalian cells, and abnormal H2S metabolism has been linked to defects in bone homeostasis. Here, we demonstrate that bone marrow mesenchymal stem cells (BMMSCs) produce H2S in order to regulate their self-renewal and osteogenic differentiation, and H2S deficiency results in defects in BMMSC differentiation. H2S deficiency causes aberrant intracellular Ca(2+) influx because of reduced sulfhydration of cysteine residues on multiple Ca(2+) TRP channels. This decreased Ca(2+) flux downregulates PKC/Erk-mediated Wnt/β-catenin signaling which controls osteogenic differentiation of BMMSCs. Consistently, H2S-deficient mice display an osteoporotic phenotype that can be rescued by small molecules that release H2S. These results demonstrate that H2S regulates BMMSCs and that restoring H2S levels via nontoxic donors may provide treatments for diseases such as osteoporosis that can arise from H2S deficiencies.
Collapse
Affiliation(s)
- Yi Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA; Department of Periodontics, Capital Medical University School of Stomatology, Tian Tan Xi Li Number 4, Beijing 100050, China.
| | - Ruili Yang
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Xibao Liu
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Yu Zhou
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Cunye Qu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Takashi Kikuiri
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Songlin Wang
- Department of Periodontics, Capital Medical University School of Stomatology, Tian Tan Xi Li Number 4, Beijing 100050, China
| | - Ebrahim Zandi
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Indu S Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Songtao Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA.
| |
Collapse
|
52
|
Miyamoto R, Otsuguro KI, Yamaguchi S, Ito S. Contribution of cysteine aminotransferase and mercaptopyruvate sulfurtransferase to hydrogen sulfide production in peripheral neurons. J Neurochem 2014; 130:29-40. [DOI: 10.1111/jnc.12698] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Ryo Miyamoto
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Ken-ichi Otsuguro
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Soichiro Yamaguchi
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Shigeo Ito
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| |
Collapse
|
53
|
Abstract
SIGNIFICANCE The current literature regarding the effects of the gaseous signal molecule hydrogen sulfide (H2S) in the gastrointestinal system is reviewed. Bacterial, host and pharmaceutical-derived H2S are all considered and presented according to the physiological or pathophysiological effects of the gaseous signal molecule. These subjects include the toxicology of intestinal H2S with emphasis on bacterial-derived H2S, especially from sulfate-reducing bacteria, the role of endogenous and exogenous H2S in intestinal inflammation, and the roles of H2S in gastrointestinal motility, secretion and nociception. RECENT ADVANCES While its pro- and anti-inflammatory, smooth muscle relaxant, prosecretory, and pro- and antinociceptive actions continue to remain the major effects of H2S in this system; recent findings have expanded the potential molecular targets for H2S in the gastrointestinal tract. CRITICAL ISSUES Numerous discrepancies remain in the literature, and definitive molecular targets in this system have not been supported by the use of competitive antagonism. FUTURE DIRECTIONS Future work will hopefully resolve discrepancies in the literature and identify molecular targets and mechanisms of action for H2S. It is clear from the current literature that the long-appreciated relationship between H2S and the gastrointestinal tract continues to be strong as we endeavor to unravel its mysteries.
Collapse
Affiliation(s)
- David R Linden
- Enteric NeuroScience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
54
|
Kimura H. The physiological role of hydrogen sulfide and beyond. Nitric Oxide 2014; 41:4-10. [PMID: 24491257 DOI: 10.1016/j.niox.2014.01.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) has been considered to be a physiological mediator since the identification of endogenous sulfides in the mammalian brain. H2S is produced from L-cysteine by enzymes such as cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3MST), and cysteine aminotransferase (CAT). CSE and CAT are regulated by Ca(2+). At steady-state low intracellular concentrations of Ca(2+), CSE and the 3MST/CAT pathway produce H2S. However, after intracellular concentrations of Ca(2+) increase in stimulated cells, the production of H2S by these enzymes decreases. We recently identified a fourth pathway, by which H2S is produced from D-cysteine by the enzymes D-amino acid oxidase (DAO) and 3MST. This pathway is mainly localized in the cerebellum and the kidney. The production of H2S from D-cysteine is 80 times more efficient than that from L-cysteine in the kidney, and the administration of D-cysteine to mice ameliorates renal ischemia-reperfusion injury more effectively than L-cysteine. These results suggest that D-cysteine might be used to treat renal diseases or even increase the success of kidney transplantation. We found that H2S-derived polysulfides exist in the brain and activate transient receptor potential ankyrin-1 (TRPA1) channels 300 times more potently than H2S. Although TRPA1 channels mediate sensory transduction and respond to a variety of stimuli, including cold temperature, pungent compounds and environmental irritants, their endogenous ligand(s) has not been identified. The sulfane sulfur of polysulfides is a reactive electrophile that is readily transferred to a nucleophilic protein thiolate to generate the protein persulfide or bound sulfane sulfur by sulfhydration (as referred to as sulfuration). The bound sulfane sulfur-producing activity of polysulfides is much greater than that of H2S. This review focuses on the physiological roles of H2S and H2S-derived polysulfides as signaling molecules.
Collapse
Affiliation(s)
- Hideo Kimura
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
55
|
Abstract
The transient receptor potential ankyrin subtype 1 protein (TRPA1) is a nonselective cation channel permeable to Ca(2+), Na(+), and K(+). TRPA1 is a promiscuous chemical nocisensor that is also involved in noxious cold and mechanical sensation. It is present in a subpopulation of Aδ- and C-fiber nociceptive sensory neurons as well as in other sensory cells including epithelial cells. In primary sensory neurons, Ca(2+) and Na(+) flowing through TRPA1 into the cell cause membrane depolarization, action potential discharge, and neurotransmitter release both at peripheral and central neural projections. In addition to being activated by cysteine and lysine reactive electrophiles and oxidants, TRPA1 is indirectly activated by pro-inflammatory agents via the phospholipase C signaling pathway, in which cytosolic Ca(2+) is an important regulator of channel gating. The finding that non-electrophilic compounds, including menthol and cannabinoids, activate TRPA1 may provide templates for the design of non-tissue damaging activators to fine-tune the activity of TRPA1 and raises the possibility that endogenous ligands sharing binding sites with such non-electrophiles exist and regulate TRPA1 channel activity. TRPA1 is promising as a drug target for novel treatments of pain, itch, and sensory hyperreactivity in visceral organs including the airways, bladder, and gastrointestinal tract.
Collapse
Affiliation(s)
- Peter M Zygmunt
- Clinical and Experimental Pharmacology, Clinical Chemistry, Department of Laboratory Medicine, Lund University, Skåne University Hospital, SE-221 85, Lund, Sweden,
| | | |
Collapse
|
56
|
Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochem Int 2013; 63:492-7. [DOI: 10.1016/j.neuint.2013.09.003] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 11/22/2022]
|
57
|
Fernandes VS, Ribeiro AS, Barahona MV, Orensanz LM, Martínez-Sáenz A, Recio P, Martínez AC, Bustamante S, Carballido J, García-Sacristán A, Prieto D, Hernández M. Hydrogen Sulfide Mediated Inhibitory Neurotransmission to the Pig Bladder Neck: Role of K
ATP
Channels, Sensory Nerves and Calcium Signaling. J Urol 2013; 190:746-56. [DOI: 10.1016/j.juro.2013.02.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
Affiliation(s)
- Vítor S. Fernandes
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana S.F. Ribeiro
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - María Victoria Barahona
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis M. Orensanz
- Departamento de Investigación, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ana Martínez-Sáenz
- Departamento de Urología, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Paz Recio
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Cristina Martínez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Salvador Bustamante
- Departamento de Urología, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Joaquín Carballido
- Departamento de Urología, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
58
|
Takahashi K, Ohta T. Inflammatory acidic pH enhances hydrogen sulfide-induced transient receptor potential ankyrin 1 activation in RIN-14B cells. J Neurosci Res 2013; 91:1322-7. [PMID: 23873754 DOI: 10.1002/jnr.23251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/04/2013] [Accepted: 04/13/2013] [Indexed: 12/19/2022]
Abstract
Hydrogen sulfide (H2 S), a toxic volcanic gas, functions as a gaseous physiological and pathophysiological molecule. Recently we have shown that H2 S elicits acute pain through the activation of transient receptor potential ankyrin 1 (TRPA1), which is expressed mainly in primary nociceptive neurons. We also demonstrated enhancement of H2 S-induced TRPA1 activation and pain under inflammatory acidic conditions, but the underlying mechanism has not been elucidated. Here, we attempted to clarify this mechanism by using endogenously TRPA1-expressing RIN-14B, a rat pancreatic islet cell line. For this purpose, the intracellular Ca(2+) concentration ([Ca(2+) ]i )], reactive oxygen species (ROS), and intracellular pH (pHi ) were measured with fluorescent imaging techniques. The intracellular H2 S concentration was assayed by the methylene blue method. To clarify the cellular function of H2 S, 5-hydroxytryptamine (5-HT) secretion was analyzed. In RIN-14B, the increase of [Ca(2+) ]i and the release of 5-HT induced by NaHS, an H2 S donor, were enhanced under inflammatory acidic conditions. Transition of H2 S into cells was enhanced at pH 6.8. H2 S failed to increase the intracellular ROS level and only slightly decreased pHi . These results suggest that H2 S directly activates TRPA1 and that its increment of diffusion into cells may be involved in the potentiation of TRPA1 activation under external acidic conditions. Thus, our study supports the pathophysiological functions of H2 S in inflammatory pain.
Collapse
Affiliation(s)
- Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | | |
Collapse
|
59
|
Miura S, Takahashi K, Imagawa T, Uchida K, Saito S, Tominaga M, Ohta T. Involvement of TRPA1 activation in acute pain induced by cadmium in mice. Mol Pain 2013; 9:7. [PMID: 23448290 PMCID: PMC3599231 DOI: 10.1186/1744-8069-9-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/26/2013] [Indexed: 11/30/2022] Open
Abstract
Background Cadmium (Cd) is an environmental pollutant and acute exposure to it causes symptoms related to pain and inflammation in the airway and gastrointestinal tract, but the underlying mechanisms are still unclear. TRPA1 is a nonselective cation channel expressed in sensory neurons and acts as a nociceptive receptor. Some metal ions such as Ca, Mg, Ba and Zn are reported to modulate TRPA1 channel activity. In the present study, we investigated the effect of Cd on cultured mouse dorsal root ganglion neurons and a heterologous expression system to analyze the effect of Cd at the molecular level. In addition, we examined whether Cd caused acute pain in vivo. Results In wild-type mouse sensory neurons, Cd evoked an elevation of the intracellular Ca concentration ([Ca2+]i) that was inhibited by external Ca removal and TRPA1 blockers. Most of the Cd-sensitive neurons were also sensitive to cinnamaldehyde (a TRPA1 agonist) and [Ca2+]i responses to Cd were absent in TRPA1(−/−) mouse neurons. Heterologous expression of TRPA1 mutant channels that were less sensitive to Zn showed attenuation of Cd sensitivity. Intracellular Cd imaging revealed that Cd entered sensory neurons through TRPA1. The stimulatory effects of Cd were confirmed in TRPA1-expressing rat pancreatic cancer cells (RIN-14B). Intraplantar injection of Cd induced pain-related behaviors that were largely attenuated in TRPA1(−/−) mice. Conclusions Cd excites sensory neurons via activation of TRPA1 and causes acute pain, the mechanism of which may be similar to that of Zn. The present results indicate that TRPA1 is involved in the nociceptive or inflammatory effects of Cd.
Collapse
Affiliation(s)
- Saeko Miura
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | | | | | | | | | | | | |
Collapse
|
60
|
Kimura Y, Mikami Y, Osumi K, Tsugane M, Oka JI, Kimura H. Polysulfides are possible H2S-derived signaling molecules in rat brain. FASEB J 2013; 27:2451-7. [PMID: 23413359 DOI: 10.1096/fj.12-226415] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Accumulating evidence shows that hydrogen sulfide (H2S) has a variety of physiological functions. H2S is produced from cysteine by 3 sulfurtransferases. H2S, in turn, generates polysulfides, the functions of which are not well understood. H2S induces Ca(2+) influx in astrocytes, a type of glia. However, the receptor that mediates the response has not been identified. Here, we have shown that polysulfides induce Ca(2+) influx by activating transient receptor potential (TRP)A1 channels in rat astrocytes (EC50 91 nM, Hill coefficient value 1.77±0.26) and that the maximum response was induced at 0.5 μM, which is 1/320 of the concentration of H2S required to achieve a response of similar magnitude (160 μM, EC50 116 μM). TRPA1-selective agonists, allyl isothiocyanate and cinnamaldehyde, induced Ca(2+) influx, and responses to polysulfides were suppressed by TRPA1-selective inhibitors, HC-030031 and AP-18, as well as by siRNAs selective to TRPA1. The present study suggests that polysulfides are possible H2S-derived signaling molecules that stimulate TRP channels in the brain.
Collapse
Affiliation(s)
- Yuka Kimura
- Department of Molecular Pharmacology, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
61
|
Andersson DA, Gentry C, Bevan S. TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide. PLoS One 2012; 7:e46917. [PMID: 23071662 PMCID: PMC3469557 DOI: 10.1371/journal.pone.0046917] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/06/2012] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S), which is produced endogenously from L-cysteine, is an irritant with pro-nociceptive actions. We have used measurements of intracellular calcium concentration, electrophysiology and behavioral measurements to show that the somatic pronociceptive actions of H2S require TRPA1. A H2S donor, NaHS, activated TRPA1 expressed in CHO cells and stimulated DRG neurons isolated from Trpa1+/+ but not Trpa1−/− mice. TRPA1 activation by NaHS was pH dependent with increased activity at acidic pH. The midpoint of the relationship between NaHS EC50 values and external pH was pH 7.21, close to the expected dissociation constant for H2S (pKa 7.04). NaHS evoked single channel currents in inside-out and cell-attached membrane patches consistent with an intracellular site of action. In behavioral experiments, intraplantar administration of NaHS and L-cysteine evoked mechanical and cold hypersensitivities in Trpa1+/+ but not in Trpa1−/− mice. The sensitizing effects of L-cysteine in wild-type mice were inhibited by a cystathionine β-synthase inhibitor, D,L-propargylglycine (PAG), which inhibits H2S formation. Mechanical hypersensitivity evoked by intraplantar injections of LPS was prevented by PAG and the TRPA1 antagonist AP-18 and was absent in Trpa1−/− mice, indicating that H2S mediated stimulation of TRPA1 is necessary for the local pronociceptive effects of LPS. The pro-nociceptive effects of intraplantar NaHS were retained in Trpv1−/− mice ruling out TRPV1 as a molecular target. In behavioral studies, NaHS mediated sensitization was also inhibited by a T-type calcium channel inhibitor, mibefradil. In contrast to the effects of NaHS on somatic sensitivity, intracolonic NaHS administration evoked similar nociceptive effects in Trpa1+/+ and Trpa1−/− mice, suggesting that the visceral pro-nociceptive effects of H2S are independent of TRPA1. In electrophysiological studies, the depolarizing actions of H2S on isolated DRG neurons were inhibited by AP-18, but not by mibefradil indicating that the primary excitatory effect of H2S on DRG neurons is TRPA1 mediated depolarization.
Collapse
Affiliation(s)
- David A. Andersson
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Clive Gentry
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Stuart Bevan
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
62
|
The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 2012; 464:425-58. [DOI: 10.1007/s00424-012-1158-z] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
|
63
|
Dux M, Sántha P, Jancsó G. The role of chemosensitive afferent nerves and TRP ion channels in the pathomechanism of headaches. Pflugers Arch 2012; 464:239-48. [PMID: 22875278 DOI: 10.1007/s00424-012-1142-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
Abstract
The involvement of trigeminovascular afferent nerves in the pathomechanism of primary headaches is well established, but a pivotal role of a particular class of primary sensory neurons has not been advocated. This review focuses on the evidence that supports the critical involvement of transient receptor potential (TRP) channels in the pathophysiology of primary headaches, in particular, migraine. Transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 receptors sensitive to vanilloids and other irritants are localized on chemosensitive afferent nerves, and they are involved in meningeal nociceptive and vascular responses involving neurogenic dural vasodilatation and plasma extravasation. The concept of the trigeminal nocisensor complex is put forward which involves the trigeminal chemosensitive afferent fibers/neurons equipped with specific nocisensor molecules, the elements of the meningeal microcirculatory system, and the dural mast cells. It is suggested that the activation level of this complex may explain some of the specific features of migraine headache. Pharmacological modulation of TRP channel function may offer a novel approach to the management of head pain, in particular, migraine.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Dóm tér 10., 6720, Szeged, Hungary.
| | | | | |
Collapse
|