51
|
Paulose JK, Wang C, O'Hara BF, Cassone VM. The effects of aging on sleep parameters in a healthy, melatonin-competent mouse model. Nat Sci Sleep 2019; 11:113-121. [PMID: 31496853 PMCID: PMC6697669 DOI: 10.2147/nss.s214423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/24/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sleep disturbances are common maladies associated with human age. Sleep duration is decreased, sleep fragmentation is increased, and the timing of sleep onset and sleep offset is earlier. These disturbances have been associated with several neurodegenerative diseases. Mouse models for human sleep disturbances can be powerful due to the accessibility to neuroscientific and genetic approaches, but these are hampered by the fact that most mouse models employed in sleep research have spontaneous mutations in the biosynthetic pathway(s) regulating the rhythmic production of the pineal hormone melatonin, which has been implicated in human sleep. PURPOSE AND METHOD The present study employed a non-invasive piezoelectric measure of sleep wake cycles in young, middle-aged and old CBA mice, a strain capable of melatonin biosynthesis, to investigate naturally-occurring changes in sleep and circadian parameters as the result of aging. RESULTS The results indicate that young mice sleep less than do middle-aged or aged mice, especially during the night, while the timing of activity onset and acrophase is delayed in aged mice compared to younger mice. CONCLUSION These data point to an effect of aging on the quality and timing of sleep in these mice but also that there are fundamental differences between control of sleep in humans and in laboratory mice.
Collapse
Affiliation(s)
- Jiffin K Paulose
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA
| | - Chanung Wang
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA
| | - Vincent M Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA
| |
Collapse
|
52
|
Hiller AJ, Ishii M. Disorders of Body Weight, Sleep and Circadian Rhythm as Manifestations of Hypothalamic Dysfunction in Alzheimer's Disease. Front Cell Neurosci 2018; 12:471. [PMID: 30568576 PMCID: PMC6289975 DOI: 10.3389/fncel.2018.00471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
While cognitive decline and memory loss are the major clinical manifestations of Alzheimer’s disease (AD), they are now recognized as late features of the disease. Recent failures in clinical drug trials highlight the importance of evaluating and treating patients with AD as early as possible and the difficulties in developing effective therapies once the disease progresses. Since the pathological hallmarks of AD including the abnormal aggregation of amyloid-beta (Aβ) and tau can occur decades before any significant cognitive decline in the preclinical stage of AD, it is important to identify the earliest clinical manifestations of AD and elucidate their underlying cellular and molecular mechanisms. Importantly, metabolic and non-cognitive manifestations of AD such as weight loss and alterations of peripheral metabolic signals can occur before the onset of cognitive symptoms and worsen with disease progression. Accumulating evidence suggests that the major culprit behind these early metabolic and non-cognitive manifestations of AD is AD pathology causing dysfunction of the hypothalamus, a brain region critical for integrating peripheral signals with essential homeostatic physiological functions. Here, we aim to highlight recent developments that address the role of AD pathology in the development of hypothalamic dysfunction associated with metabolic and non-cognitive manifestations seen in AD. Understanding the mechanisms underlying hypothalamic dysfunction in AD could give key new insights into the development of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Abigail J Hiller
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Makoto Ishii
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States.,Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
53
|
Black SW, Sun JD, Santiago P, Laihsu A, Kimura N, Yamanaka A, Bersot R, Humphries PS. Partial ablation of the orexin field induces a sub-narcoleptic phenotype in a conditional mouse model of orexin neurodegeneration. Sleep 2018; 41:5025920. [DOI: 10.1093/sleep/zsy116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/29/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sarah Wurts Black
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Jessica D Sun
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Pamela Santiago
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Alex Laihsu
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Nikki Kimura
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ross Bersot
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Paul S Humphries
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| |
Collapse
|
54
|
Song JZ, Cui SY, Cui XY, Hu X, Ma YN, Ding H, Ye H, Zhang YH. Dysfunction of GABAergic neurons in the parafacial zone mediates sleep disturbances in a streptozotocin-induced rat model of sporadic Alzheimer's disease. Metab Brain Dis 2018; 33:127-137. [PMID: 29080930 DOI: 10.1007/s11011-017-0125-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/09/2017] [Indexed: 01/17/2023]
Abstract
Sleep disturbances are prevalent among patients with Alzheimer's disease (AD) and often precede the onset and progression of dementia. However, there are no reliable animal models for investigating sleep disturbances in patients with sporadic AD (sAD), which accounts for more than 90% of all AD cases. In the present study, we characterize the sleep/wake cycles and explore a potential mechanism underlying sleep disturbance in a rat model of sAD induced via intracerebroventricular (icv) injection of streptozotocin (STZ). STZ-icv rats exhibited progressive decreases in slow wave sleep (SWS) during the light phase and throughout the light/dark cycle beginning from 7 days after STZ-icv. Additionally, increased wakefulness and decreased rapid-eye-movement (REM) and non-REM (NREM) sleep were observed from 14 days after STZ-icv. Beginning on day 7, STZ-icv rats exhibited significant decreases in delta (0.5-4.0 Hz) power accompanied by increased power in the beta (12-30 Hz) and low gamma bands (30-50 Hz) during NREM sleep, resembling deficits in sleep quality observed in patients with AD. Immunohistochemical staining revealed a significant reduction in the ratio of c-Fos-positive GABAergic neurons in the parafacial zone (PZ) beginning from day 7 after STZ-icv. These results suggest that the STZ-icv rat model is useful for evaluating sleep disturbances associated with AD, and implicate the dysregulation of GABAergic neuronal activity in the PZ is associated with sleep disturbance induced by STZ.
Collapse
Affiliation(s)
- Jin-Zhi Song
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Su-Ying Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Xiang-Yu Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Xiao Hu
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Yu-Nu Ma
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Hui Ding
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Hui Ye
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Yong-He Zhang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
55
|
Zhang F, Zhong R, Li S, Chang RCC, Le W. The missing link between sleep disorders and age-related dementia: recent evidence and plausible mechanisms. J Neural Transm (Vienna) 2017; 124:559-568. [PMID: 28188439 DOI: 10.1007/s00702-017-1696-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/30/2016] [Indexed: 12/14/2022]
Abstract
Sleep disorders are among the most common clinical problems and possess a significant concern for the geriatric population. More importantly, while around 40% of elderly adults have sleep-related complaints, sleep disorders are more frequently associated with co-morbidities including age-related neurodegenerative diseases and mild cognitive impairment. Recently, increasing evidence has indicated that disturbed sleep may not only serve as the consequence of brain atrophy, but also contribute to the pathogenesis of dementia and, therefore, significantly increase dementia risk. Since the current therapeutic interventions lack efficacies to prevent, delay or reverse the pathological progress of dementia, a better understanding of underlying mechanisms by which sleep disorders interact with the pathogenesis of dementia will provide possible targets for the prevention and treatment of dementia. In this review, we briefly describe the physiological roles of sleep in learning/memory, and specifically update the recent research evidence demonstrating the association between sleep disorders and dementia. Plausible mechanisms are further discussed. Moreover, we also evaluate the possibility of sleep therapy as a potential intervention for dementia.
Collapse
Affiliation(s)
- Feng Zhang
- Liaoning Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Rujia Zhong
- Liaoning Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Liaoning Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Weidong Le
- Liaoning Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China. .,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China. .,Collaborative Innovation Center for Brain Science, The First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
56
|
Coronas-Samano G, Baker KL, Tan WJT, Ivanova AV, Verhagen JV. Fus1 KO Mouse As a Model of Oxidative Stress-Mediated Sporadic Alzheimer's Disease: Circadian Disruption and Long-Term Spatial and Olfactory Memory Impairments. Front Aging Neurosci 2016; 8:268. [PMID: 27895577 PMCID: PMC5108791 DOI: 10.3389/fnagi.2016.00268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD) to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD) these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4-5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1), disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK), autophagy (decreased levels of LC3-II), PKC (decreased levels of RACK1) and calcium signaling (decreased levels of Calb2) in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus), in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term), olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie), spatial memory (learning impairments on finding the platform in the Morris water maze) and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation), association memory (passive avoidance) or in species-typical behavior (nest building) and no increased anxiety (open field, light-dark box) or depression/anhedonia (sucrose preference) at this relatively young age. These neurobehavioral deficits of the Fus1 KO mice at this relatively young age are highly relevant to sAD, making them suitable for effective research on pharmacological targets in the context of early intervention of sAD.
Collapse
Affiliation(s)
| | - Keeley L Baker
- The John B. Pierce LaboratoryNew Haven, CT, USA; Department of Neuroscience, Yale University School of MedicineNew Haven, CT, USA
| | - Winston J T Tan
- Department of Surgery, Yale University School of Medicine New Haven, CT, USA
| | - Alla V Ivanova
- Department of Surgery, Yale University School of Medicine New Haven, CT, USA
| | - Justus V Verhagen
- The John B. Pierce LaboratoryNew Haven, CT, USA; Department of Neuroscience, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
57
|
Abstract
Sleep disorders are prevalent in Alzheimer's disease (AD) and a major cause of institutionalization. Like AD pathology, sleep abnormalities can appear years before cognitive decline and may be predictive of dementia. A bidirectional relationship between sleep and amyloid β (Aβ) has been well established with disturbed sleep and increased wakefulness leading to increased Aβ production and decreased Aβ clearance; whereas Aβ deposition is associated with increased wakefulness and sleep disturbances. Aβ fluctuates with the sleep-wake cycle and is higher during wakefulness and lower during sleep. This fluctuation is lost with Aβ deposition, likely due to its sequestration into amyloid plaques. As such, Aβ is believed to play a significant role in the development of sleep disturbances in the preclinical and clinical phases of AD. In addition to Aβ, the influence of tau AD pathology is likely important to the sleep disturbances observed in AD. Abnormal tau is the earliest observable AD-like pathology in the brain with abnormal tau phosphorylation in many sleep regulating regions such as the locus coeruleus, dorsal raphe, tuberomammillary nucleus, parabrachial nucleus, and basal forebrain prior to the appearance of amyloid or cortical tau pathology. Furthermore, human tau mouse models exhibit AD-like sleep disturbances and sleep changes are common in other tauopathies including frontotemporal dementia and progressive supranuclear palsy. Together these observations suggest that tau pathology can induce sleep disturbances and may play a large role in the sleep disruption seen in AD. To elucidate the relationship between sleep and AD it will be necessary to not only understand the role of amyloid but also tau and how these two pathologies, together with comorbid pathology such as alpha-synuclein, interact and affect sleep regulation in the brain.
Collapse
|
58
|
Yaghouby F, Donohue KD, O'Hara BF, Sunderam S. Noninvasive dissection of mouse sleep using a piezoelectric motion sensor. J Neurosci Methods 2016; 259:90-100. [PMID: 26582569 PMCID: PMC4715949 DOI: 10.1016/j.jneumeth.2015.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/01/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Changes in autonomic control cause regular breathing during NREM sleep to fluctuate during REM. Piezoelectric cage-floor sensors have been used to successfully discriminate sleep and wake states in mice based on signal features related to respiration and other movements. This study presents a classifier for noninvasively classifying REM and NREM using a piezoelectric sensor. NEW METHOD Vigilance state was scored manually in 4-s epochs for 24-h EEG/EMG recordings in 20 mice. An unsupervised classifier clustered piezoelectric signal features quantifying movement and respiration into three states: one active; and two inactive with regular and irregular breathing, respectively. These states were hypothesized to correspond to Wake, NREM, and REM, respectively. States predicted by the classifier were compared against manual EEG/EMG scores to test this hypothesis. RESULTS Using only piezoelectric signal features, an unsupervised classifier distinguished Wake with high (89% sensitivity, 96% specificity) and REM with moderate (73% sensitivity, 75% specificity) accuracy, but NREM with poor sensitivity (51%) and high specificity (96%). The classifier sometimes confused light NREM sleep - characterized by irregular breathing and moderate delta EEG power - with REM. A supervised classifier improved sensitivities to 90, 81, and 67% and all specificities to over 90% for Wake, NREM, and REM, respectively. COMPARISON WITH EXISTING METHODS Unlike most actigraphic techniques, which only differentiate sleep from wake, the proposed piezoelectric method further dissects sleep based on breathing regularity into states strongly correlated with REM and NREM. CONCLUSIONS This approach could facilitate large-sample screening for genes influencing different sleep traits, besides drug studies or other manipulations.
Collapse
Affiliation(s)
- Farid Yaghouby
- Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave., Lexington, KY 40506-0108, United States
| | - Kevin D Donohue
- Electrical and Computer Engineering, University of Kentucky, Lexington, KY, United States
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Sridhar Sunderam
- Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave., Lexington, KY 40506-0108, United States.
| |
Collapse
|
59
|
Ishii M, Iadecola C. Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metab 2015; 22:761-76. [PMID: 26365177 PMCID: PMC4654127 DOI: 10.1016/j.cmet.2015.08.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is increasingly recognized as a complex neurodegenerative disease beginning decades prior to the cognitive decline. While cognitive deficits remain the cardinal manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in body weight and neuroendocrine functions, are also present, often preceding the cognitive decline. Furthermore, hypothalamic dysfunction can also be a driver of AD pathology. Here we offer a brief appraisal of hypothalamic dysfunction in AD and provide insight into an underappreciated dual role of the hypothalamus as both a culprit and target of AD pathology, as well as into new opportunities for therapeutic interventions and biomarker development.
Collapse
Affiliation(s)
- Makoto Ishii
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
60
|
Colby-Milley J, Cavanagh C, Jego S, Breitner JCS, Quirion R, Adamantidis A. Sleep-Wake Cycle Dysfunction in the TgCRND8 Mouse Model of Alzheimer's Disease: From Early to Advanced Pathological Stages. PLoS One 2015; 10:e0130177. [PMID: 26076358 PMCID: PMC4468206 DOI: 10.1371/journal.pone.0130177] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/18/2015] [Indexed: 12/11/2022] Open
Abstract
In addition to cognitive decline, individuals affected by Alzheimer’s disease (AD) can experience important neuropsychiatric symptoms including sleep disturbances. We characterized the sleep-wake cycle in the TgCRND8 mouse model of AD, which overexpresses a mutant human form of amyloid precursor protein resulting in high levels of β-amyloid and plaque formation by 3 months of age. Polysomnographic recordings in freely-moving mice were conducted to study sleep-wake cycle architecture at 3, 7 and 11 months of age and corresponding levels of β-amyloid in brain regions regulating sleep-wake states were measured. At all ages, TgCRND8 mice showed increased wakefulness and reduced non-rapid eye movement (NREM) sleep during the resting and active phases. Increased wakefulness in TgCRND8 mice was accompanied by a shift in the waking power spectrum towards fast frequency oscillations in the beta (14-20 Hz) and low gamma range (20-50 Hz). Given the phenotype of hyperarousal observed in TgCRND8 mice, the role of noradrenergic transmission in the promotion of arousal, and previous work reporting an early disruption of the noradrenergic system in TgCRND8, we tested the effects of the alpha-1-adrenoreceptor antagonist, prazosin, on sleep-wake patterns in TgCRND8 and non-transgenic (NTg) mice. We found that a lower dose (2 mg/kg) of prazosin increased NREM sleep in NTg but not in TgCRND8 mice, whereas a higher dose (5 mg/kg) increased NREM sleep in both genotypes, suggesting altered sensitivity to noradrenergic blockade in TgCRND8 mice. Collectively our results demonstrate that amyloidosis in TgCRND8 mice is associated with sleep-wake cycle dysfunction, characterized by hyperarousal, validating this model as a tool towards understanding the relationship between β-amyloid overproduction and disrupted sleep-wake patterns in AD.
Collapse
Affiliation(s)
- Jessica Colby-Milley
- Douglas Mental Health University Institute, Dept. of Psychiatry, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Chelsea Cavanagh
- Douglas Mental Health University Institute, Dept. of Psychiatry, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Sonia Jego
- Douglas Mental Health University Institute, Dept. of Psychiatry, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - John C. S. Breitner
- Douglas Mental Health University Institute, Dept. of Psychiatry, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Rémi Quirion
- Douglas Mental Health University Institute, Dept. of Psychiatry, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Antoine Adamantidis
- Douglas Mental Health University Institute, Dept. of Psychiatry, McGill University, Montreal, Quebec, H4H 1R3, Canada
- Inselspital, Bern University Hospital, Bern University, Dept. of Neurology, Freiburgstrasse, 18, 3010 Bern, Switzerland
- * E-mail:
| |
Collapse
|