51
|
HCN-related channelopathies. Pflugers Arch 2010; 460:405-15. [DOI: 10.1007/s00424-010-0810-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 01/01/2023]
|
52
|
|
53
|
Makoff A, Lai T, Barratt C, Valentin A, Moran N, Asherson P, Nashef L. High-density SNP screen of sodium channel genes by haplotype tagging and DNA pooling for association with idiopathic generalized epilepsy. Epilepsia 2009; 51:694-8. [PMID: 20041941 DOI: 10.1111/j.1528-1167.2009.02473.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated seven voltage-gated sodium channel genes for association with idiopathic generalized epilepsy (IGE). Probands and control DNA were grouped into pools and used to screen 85 single-nucleotide polymorphisms (SNPs), mostly HapMap SNPs tagging the common variation in these genes. Twelve SNPs exhibiting an allele frequency difference between pools were genotyped individually in our sample of 232 probands, 313 controls, and 95 parent-proband trios. Two SNPs, in SCN1A and SCN8A, were associated by allele and genotype at nominal level of significance, but were not significant after Bonferroni correction. Two SCN2A SNPs (rs3943809 and rs16850331) were associated by case-control with a subgroup with IGE and history of febrile seizures and also by transmission disequilibrium test (TDT) in parent-proband trios. Both SNPs are part of a linkage disequilibrium (LD) cluster of 38 SNPs, but none are obvious functional variants. The association of rs3943809 with the febrile seizure subgroup (p = 0.0004) remains significant after the conservative Bonferroni correction for multiple testing.
Collapse
Affiliation(s)
- Andrew Makoff
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, de Crespigny Park, Denmark Hill, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
54
|
Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch 2009; 460:395-403. [PMID: 20091047 DOI: 10.1007/s00424-009-0772-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/30/2022]
Abstract
It is well established that idiopathic generalized epilepsies (IGEs) show a polygenic origin and may arise from dysfunction of various types of voltage- and ligand-gated ion channels. There is an increasing body of literature implicating both high- and low-voltage-activated (HVA and LVA) calcium channels and their ancillary subunits in IGEs. Cav2.1 (P/Q-type) calcium channels control synaptic transmission at presynaptic nerve terminals, and mutations in the gene encoding the Cav2.1 alpha1 subunit (CACNA1A) have been linked to absence seizures in both humans and rodents. Similarly, mutations and loss of function mutations in ancillary HVA calcium channel subunits known to co-assemble with Cav2.1 result in IGE phenotypes in mice. It is important to note that in all these mouse models with mutations in HVA subunits, there is a compensatory increase in thalamic LVA currents which likely leads to the seizure phenotype. In fact, gain-of-function mutations have been identified in Cav3.2 (an LVA or T-type calcium channel encoded by the CACNA1H gene) in patients with congenital forms of IGEs, consistent with increased excitability of neurons as a result of enhanced T-type channel function. In this paper, we provide a broad overview of the roles of voltage-gated calcium channels, their mutations, and how they might contribute to the river that terminates in epilepsy.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | | | | |
Collapse
|
55
|
Bregestovski P, Waseem T, Mukhtarov M. Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channel activity. Front Mol Neurosci 2009; 2:15. [PMID: 20057911 PMCID: PMC2802328 DOI: 10.3389/neuro.02.015.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 08/28/2009] [Indexed: 12/31/2022] Open
Abstract
This review briefly discusses the main approaches for monitoring chloride (Cl−), the most abundant physiological anion. Noninvasive monitoring of intracellular Cl− ([Cl−]i) is a challenging task owing to two main difficulties: (i) the low transmembrane ratio for Cl−, approximately 10:1; and (ii) the small driving force for Cl−, as the Cl− reversal potential (ECl) is usually close to the resting potential of the cells. Thus, for reliable monitoring of intracellular Cl−, one has to use highly sensitive probes. From several methods for intracellular Cl− analysis, genetically encoded chloride indicators represent the most promising tools. Recent achievements in the development of genetically encoded chloride probes are based on the fact that yellow fluorescent protein (YFP) exhibits Cl−-sensitivity. YFP-based probes have been successfully used for quantitative analysis of Cl− transport in different cells and for high-throughput screening of modulators of Cl−-selective channels. Development of a ratiometric genetically encoded probe, Clomeleon, has provided a tool for noninvasive estimation of intracellular Cl− concentrations. While the sensitivity of this protein to Cl− is low (EC50 about 160 mM), it has been successfully used for monitoring intracellular Cl− in different cell types. Recently a CFP–YFP-based probe with a relatively high sensitivity to Cl− (EC50 about 30 mM) has been developed. This construct, termed Cl-Sensor, allows ratiometric monitoring using the fluorescence excitation ratio. Of particular interest are genetically encoded probes for monitoring of ion channel distribution and activity. A new molecular probe has been constructed by introducing into the cytoplasmic domain of the Cl−-selective glycine receptor (GlyR) channel the CFP–YFP-based Cl-Sensor. This construct, termed BioSensor-GlyR, has been successfully expressed in cell lines. The new genetically encoded chloride probes offer means of screening pharmacological agents, analysis of Cl− homeostasis and functions of Cl−-selective channels under different physiological and pathological conditions.
Collapse
|
56
|
Heron SE, Hernandez M, Edwards C, Edkins E, Jansen FE, Scheffer IE, Berkovic SF, Mulley JC. Neonatal seizures and long QT syndrome: a cardiocerebral channelopathy? Epilepsia 2009; 51:293-6. [PMID: 19863579 DOI: 10.1111/j.1528-1167.2009.02317.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We identified a patient with electrophysiologically verified neonatal long QT syndrome (LQTS) and neonatal seizures in the presence of a controlled cardiac rhythm. To find a cause for this unusual combination of phenotypes, we tested the patient for mutations in seven ion channel genes associated with either LQTS or benign familial neonatal seizures (BFNS). Comparative genome hybridization (CGH) was done to exclude the possibility of a contiguous gene syndrome. No mutations were found in the genes (KCNQ2, KCNQ3) associated with BFNS, and CGH was negative. A previously described mutation and a known rare variant were found in the LQTS-associated genes SCN5A and KCNE2. Both are expressed in the brain, and although mutations have not been associated with epilepsy, we propose a pathophysiologic mechanism by which the combination of molecular changes may cause seizures.
Collapse
Affiliation(s)
- Sarah E Heron
- SA Pathology at Women's and Children's Hospital, North Adelaide, SA, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Valenti MP, Cretin B, Rudolf G, Dylgjeri S, De Saint-Martin A, Hirsch E. [Is there a bridge between migraine and familial mesial temporal lobe epilepsy?]. Rev Neurol (Paris) 2009; 165:774-81. [PMID: 19762056 DOI: 10.1016/j.neurol.2009.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/28/2009] [Indexed: 11/29/2022]
Abstract
Numerous reviews have emphasized the links between certain types of epilepsy and migraine. Historically, Gowers was one of the first, in 1907, to have drawn attention to a possible relationship between migraine headache and epilepsy in a period when no additional examination was available. In the last two decades, progress in molecular biology, electrophysiology, and neuro-imaging has enabled a better approach to the fundamental elements underlying the interrelationship between these two nosological domains. During this same time, a new term "channelopathy" has appeared in the literature. This term groups together affections involving a dysfunction of ion channels. In this article, the links between the different types of migraine and familial mesial temporal lobe epilepsy are illustrated by two case reports. This association does not appear to occur at random but would undoubtedly depend on a common genetic substratum, leading to a direct comorbidity. These occasional recurring symptoms would lie within the framework of a more general concept of "Primary Brain Channelopathies".
Collapse
Affiliation(s)
- M P Valenti
- Pôle tête-cou-CETD, LINC-UMR, CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
58
|
|
59
|
Fucic A, Miskov S, Zeljezić D, Bogdanovic N, Katić J, Gjergja R, Karelson E, Gamulin M. Is the role of estrogens and estrogen receptors in epilepsy still underestimated? Med Hypotheses 2009; 73:703-5. [PMID: 19493633 DOI: 10.1016/j.mehy.2009.03.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/04/2009] [Accepted: 03/08/2009] [Indexed: 11/17/2022]
Abstract
The etiology of epilepsy still represents an open subject of discussions and research. Contrary to the majority of diseases for which drugs are developed following the origin of disease, epilepsy is treated symptomatically because it is perceived to have diverse causes. Recent results of oncological, neurological, developmental and biochemical studies suggest that the reproductive dysfunction in men and women, as a side effect related with antiepileptic therapy, points to the single origin of this disease. It seems that contrary to the present definition of estrogen as a compound affecting seizure susceptibility, based on causal chains: of increased estrogen levels (alcohol intake) and seizure, fact that all antiepileptic drugs are aromatase inhibitors or have estrogen binding properties, described cases of seizures in epileptic patients taking quinine as preventive therapy against malaria, impact of photic activation and sleep on estrogen level, it can be assumed that estrogen plays the leading role in the mutual origin of different types of epilepsy.
Collapse
Affiliation(s)
- Aleksandra Fucic
- Institute for Medical Research and Occupational Health, Ksaverska c 2, Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Castro MJ, Stam AH, Lemos C, de Vries B, Vanmolkot KRJ, Barros J, Terwindt GM, Frants RR, Sequeiros J, Ferrari MD, Pereira-Monteiro JM, van den Maagdenberg AMJM. First mutation in the voltage-gated Nav1.1 subunit gene SCN1A with co-occurring familial hemiplegic migraine and epilepsy. Cephalalgia 2009; 29:308-13. [PMID: 19220312 DOI: 10.1111/j.1468-2982.2008.01721.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Almost all mutations in the SCN1A gene, encoding the alpha(1) subunit of neuronal voltage-gated Na(V)1.1 sodium channels, are associated with severe childhood epilepsy. Recently, two mutations were identified in patients with pure familial hemiplegic migraine (FHM). Here, we identified a novel SCN1A L263V mutation in a Portuguese family with partly co-segregating hemiplegic migraine and epilepsy. The L263V mutation segregated in five FHM patients, three of whom also had epileptic attacks, occurring independently from their hemiplegic migraine attacks. L263V is the first SCN1A mutation associated with FHM and co-occurring epilepsy in multiple mutation carriers, and is the clearest molecular link between migraine and epilepsy thus far. The results extend the clinical spectrum associated with SCN1A mutations and further strengthen the molecular evidence that FHM and epilepsy share, at least in part, similar molecular pathways.
Collapse
Affiliation(s)
- M-J Castro
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Érythermalgie primitive : efficacité de l’oxcarbazépine. Ann Dermatol Venereol 2009; 136:337-40. [DOI: 10.1016/j.annder.2008.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 10/10/2008] [Indexed: 11/19/2022]
|
62
|
Mulley JC, Dibbens LM. Chipping away at the common epilepsies with complex genetics: the 15q13.3 microdeletion shows the way. Genome Med 2009; 1:33. [PMID: 19341504 PMCID: PMC2664944 DOI: 10.1186/gm33] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The idiopathic epilepsies are genetically heterogeneous with more than 50 clinical classifications. They are characterized by episodic seizures arising from erratic neuronal discharge in susceptible individuals. The most common predisposing genetic cause is the recently discovered chromosome 15q13.3 microdeletion. Other disorders previously attributed to the same lesion include autism, intellectual disability and schizophrenia. This phenotypic spectrum is most easily imagined as a contiguous gene syndrome with idiopathic generalized epilepsy as the most common clinical manifestation. Expressivity of the microdeletion in carriers is too variable for antenatal prediction of phenotype to be possible; however, when it is detected in living affected cases, it can be taken as the major predisposing cause for the observed phenotype. The discovery of this small 15q13.3 lesion barely scratches the surface that conceals what we ultimately need to know about the molecular genetic mechanisms behind the common epilepsies with complex genetics, but it provides valuable insight into how to proceed toward that goal.
Collapse
Affiliation(s)
- John C Mulley
- Epilepsy Research Program, Genetics and Molecular Pathology, SA Pathology at the Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | | |
Collapse
|
63
|
Kalscheuer VM, Musante L, Fang C, Hoffmann K, Fuchs C, Carta E, Deas E, Venkateswarlu K, Menzel C, Ullmann R, Tommerup N, Dalprà L, Tzschach A, Selicorni A, Lüscher B, Ropers HH, Harvey K, Harvey RJ. A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation. Hum Mutat 2009; 30:61-8. [PMID: 18615734 DOI: 10.1002/humu.20814] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Clustering of inhibitory gamma-aminobutyric acid(A) (GABA(A)) and glycine receptors at synapses is thought to involve key interactions between the receptors, a "scaffolding" protein known as gephyrin and the RhoGEF collybistin. We report the identification of a balanced chromosomal translocation in a female patient presenting with a disturbed sleep-wake cycle, late-onset epileptic seizures, increased anxiety, aggressive behavior, and mental retardation, but not hyperekplexia. Fine mapping of the breakpoint indicates disruption of the collybistin gene (ARHGEF9) on chromosome Xq11, while the other breakpoint lies in a region of 18q11 that lacks any known or predicted genes. We show that defective collybistin transcripts are synthesized and exons 7-10 are replaced by cryptic exons from chromosomes X and 18. These mRNAs no longer encode the pleckstrin homology (PH) domain of collybistin, which we now show binds phosphatidylinositol-3-phosphate (PI3P/PtdIns-3-P), a phosphoinositide with an emerging role in membrane trafficking and signal transduction, rather than phosphatidylinositol 3,4,5-trisphosphate (PIP3/PtdIns-3,4,5-P) as previously suggested in the "membrane activation model" of gephyrin clustering. Consistent with this finding, expression of truncated collybistin proteins in cultured neurons interferes with synaptic localization of endogenous gephyrin and GABA(A) receptors. These results suggest that collybistin has a key role in membrane trafficking of gephyrin and selected GABA(A) receptor subtypes involved in epilepsy, anxiety, aggression, insomnia, and learning and memory.
Collapse
Affiliation(s)
- Vera M Kalscheuer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Saint-Martin C, Gauvain G, Teodorescu G, Gourfinkel-An I, Fedirko E, Weber YG, Maljevic S, Ernst JP, Garcia-Olivares J, Fahlke C, Nabbout R, LeGuern E, Lerche H, Poncer JC, Depienne C. Two novelCLCN2mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy. Hum Mutat 2009; 30:397-405. [DOI: 10.1002/humu.20876] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
65
|
Manfredi I, Zani AD, Rampoldi L, Pegorini S, Bernascone I, Moretti M, Gotti C, Croci L, Consalez GG, Ferini-Strambi L, Sala M, Pattini L, Casari G. Expression of mutant β2 nicotinic receptors during development is crucial for epileptogenesis. Hum Mol Genet 2009; 18:1075-88. [DOI: 10.1093/hmg/ddp004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
66
|
Ohmori I, Ouchida M, Miki T, Mimaki N, Kiyonaka S, Nishiki T, Tomizawa K, Mori Y, Matsui H. A CACNB4 mutation shows that altered Cav2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy. Neurobiol Dis 2008; 32:349-54. [DOI: 10.1016/j.nbd.2008.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/23/2008] [Accepted: 07/25/2008] [Indexed: 11/30/2022] Open
|
67
|
[Association between ion channel subtype and its gene co-expression]. YI CHUAN = HEREDITAS 2008; 30:1157-62. [PMID: 18779173 DOI: 10.3724/sp.j.1005.2008.01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Association between ion channel functional subtype and its genes expression is important for exploring function of ion channel, annotating function of an unknown subtype and probing into molecular mechanism of ion channel diseases. In this study, we began with noise reduction by standardizing original micro-array data, which consisted of human and mouse gene expression profiles, and then we employed principle component analysis (PCA) together with fuzzy C-mean clustering algorithm to analyze the pre-processed gene expression profiles. PCA is applied to rebuild the feature space of human gene in 21 dimensions as well as the feature space of mouse gene in 26 dimensions. Using this method we largely reduced computational complexity without losing much information involved in the original data. Subsequently, fuzzy C-mean clustering was used to classify the ion channel genes of human and mouse in their reduced feature space. In the end, four ion channel functional subtypes, such as potassium ion channels, calcium ion channel, chloride ion channel, and receptor-mediated ion channel were clustered in both human and mouse gene feature space. We applied two statistic ways to conduct significance test of the findings. In one way, we randomly sampled the data for each functional subtype of the ion channel genes and recorded the true positive rate. As a result, in both human and mouse gene feature spaces, genes that belong to one functional subtype were more likely to be clustered together than expected by chance. In the other way, we performed Kappa test and used the functional subtypes as gold standard. The result showed that consistency between the ion channel gene clusters and the ion channel gene subtypes was significantly high for both human and mouse. These results indicate that ion channel genes within the same functional subtype tend to be co-expressed at least at the mRNA-level.
Collapse
|
68
|
The genetics of hyperekplexia: more than startle! Trends Genet 2008; 24:439-47. [DOI: 10.1016/j.tig.2008.06.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 11/20/2022]
|
69
|
Mulley JC. Forty Years From Markers to Genes. Twin Res Hum Genet 2008; 11:368-83. [DOI: 10.1375/twin.11.4.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThere have been incredible advances made in human genetics over the past 40 years. I have set out in the next few pages to describe just some of these changes and to illustrate how they unfolded through my own experiences.
Collapse
|
70
|
Lagae L. What's new in: "genetics in childhood epilepsy". Eur J Pediatr 2008; 167:715-22. [PMID: 18320221 DOI: 10.1007/s00431-008-0690-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/06/2008] [Indexed: 12/17/2022]
Abstract
In recent years, different mutations in genes that control the excitability of neurons have been described in idiopathic childhood epilepsies. Most commonly, sodium/potassium channelopathies and GABA-receptor mutations are involved. Major progress has been made in the field of idiopathic generalised epilepsies associated with febrile seizures (GEFS+). It now is becoming clear that mutations should not only be looked for in familial cases, but also in sporadic cases, especially in infants and young children with unexplained severe epileptic encephalopathies. Many studies also define 'epilepsy susceptibility genes', which contribute to one's individual genetic vulnerability to develop epilepsy. It should be realized, however, that in the most common idiopathic benign childhood epilepsies (benign rolandic and occipital epilepsies), major breakthroughs are still awaited. In addition, a better clinical description of the epileptic phenotypes is needed to explain more precisely the genotypic and phenotypic heterogeneity. Genetic studies are nowadays becoming a necessary diagnostic step in the evaluation of idiopathic childhood epilepsies, not only in familial cases, but also in sporadic cases.
Collapse
Affiliation(s)
- Lieven Lagae
- Department of Paediatric Neurology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
71
|
Chen Y, Yu FH, Sharp EM, Beacham D, Scheuer T, Catterall WA. Functional properties and differential neuromodulation of Na(v)1.6 channels. Mol Cell Neurosci 2008; 38:607-15. [PMID: 18599309 DOI: 10.1016/j.mcn.2008.05.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/25/2008] [Accepted: 05/07/2008] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium channel Na(v)1.6 plays unique roles in the nervous system, but its functional properties and neuromodulation are not as well established as for Na(V)1.2 channels. We found no significant differences in voltage-dependent activation or fast inactivation between Na(V)1.6 and Na(V)1.2 channels expressed in non-excitable cells. In contrast, the voltage dependence of slow inactivation was more positive for Na(v)1.6 channels, they conducted substantially larger persistent sodium currents than Na(v)1.2 channels, and they were much less sensitive to inhibition by phosphorylation by cAMP-dependent protein kinase and protein kinase C. Resurgent sodium current, a hallmark of Na(v)1.6 channels in neurons, was not observed for Na(V)1.6 expressed alone or with the auxiliary beta(4) subunit. The unique properties of Na(V)1.6 channels, together with the resurgent currents that they conduct in neurons, make these channels well-suited to provide the driving force for sustained repetitive firing, a crucial property of neurons.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Pharmacology, Mailstop 357280, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
72
|
Hoda JC, Gu W, Friedli M, Phillips HA, Bertrand S, Antonarakis SE, Goudie D, Roberts R, Scheffer IE, Marini C, Patel J, Berkovic SF, Mulley JC, Steinlein OK, Bertrand D. Human Nocturnal Frontal Lobe Epilepsy: Pharmocogenomic Profiles of Pathogenic Nicotinic Acetylcholine Receptor β-Subunit Mutations outside the Ion Channel Pore. Mol Pharmacol 2008; 74:379-91. [DOI: 10.1124/mol.107.044545] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
73
|
Fritschy JM. Epilepsy, E/I Balance and GABA(A) Receptor Plasticity. Front Mol Neurosci 2008; 1:5. [PMID: 18946538 PMCID: PMC2525999 DOI: 10.3389/neuro.02.005.2008] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 01/26/2023] Open
Abstract
GABAA receptors mediate most of the fast inhibitory transmission in the CNS. They form heteromeric complexes assembled from a large family of subunit genes. The existence of multiple GABAA receptor subtypes differing in subunit composition, localization and functional properties underlies their role for fine-tuning of neuronal circuits and genesis of network oscillations. The differential regulation of GABAA receptor subtypes represents a major facet of homeostatic synaptic plasticity and contributes to the excitation/inhibition (E/I) balance under physiological conditions and upon pathological challenges. The purpose of this review is to discuss recent findings highlighting the significance of GABAA receptor heterogeneity for the concept of E/I balance and its relevance for epilepsy. Specifically, we address the following issues: (1) role for tonic inhibition, mediated by extrasynaptic GABAA receptors, for controlling neuronal excitability; (2) significance of chloride ion transport for maintenance of the E/I balance in adult brain; and (3) molecular mechanisms underlying GABAA receptor regulation (trafficking, posttranslational modification, gene transcription) that are important for homoeostatic plasticity. Finally, the relevance of these findings is discussed in light of the involvement of GABAA receptors in epileptic disorders, based on recent experimental studies of temporal lobe epilepsy (TLE) and absence seizures and on the identification of mutations in GABAA receptor subunit genes underlying familial forms of epilepsy.
Collapse
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
74
|
Ragsdale DS. How do mutant Nav1.1 sodium channels cause epilepsy? ACTA ACUST UNITED AC 2008; 58:149-59. [PMID: 18342948 DOI: 10.1016/j.brainresrev.2008.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 11/28/2022]
Abstract
Voltage-gated sodium channels comprise pore-forming alpha subunits and auxiliary beta subunits. Nine different alpha subtypes, designated Nav1.1-Nav1.9 have been identified in excitable cells. Nav1.1, 1.2 and 1.6 are major subtypes in the adult mammalian brain. More than 200 mutations in the Nav1.1 alpha subtype have been linked to inherited epilepsy syndromes, ranging in severity from the comparatively mild disorder Generalized Epilepsy with Febrile Seizures Plus to the epileptic encephalopathy Severe Myoclonic Epilepsy of Infancy. Studies using heterologous expression and functional analysis of recombinant Nav1.1 channels suggest that epilepsy mutations in Nav1.1 may cause either gain-of-function or loss-of-function effects that are consistent with either increased or decreased neuronal excitability. How these diverse effects lead to epilepsy is poorly understood. This review summarizes the data on sodium channel mutations and epilepsy and builds a case for the hypothesis that most Nav1.1 mutations have their ultimate epileptogenic effects by reducing Nav1.1-mediated whole cell sodium currents in GABAergic neurons, resulting in widespread loss of brain inhibition, an ideal background for the genesis of epileptic seizures.
Collapse
Affiliation(s)
- David S Ragsdale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| |
Collapse
|
75
|
Abstract
Neuronal excitability is determined by the flux of ions through ion channels. Many types of ion channels are expressed in the central nervous system, each responsible for its own aspect of neuronal excitability, from postsynaptic depolarization to action potential generation to neurotransmitter release. These mechanisms are tightly regulated to create a balance between excitation and inhibition. Disruption of this balance is thought to be key in many neurological disorders, including epilepsy syndromes. More and more ion channel mutations are being identified through genetic studies; however, their incidence is still small, suggesting the presence of undiscovered mutations or other causative mechanisms. Understanding wild-type channel function during epileptic activity may also provide vital insights into the remaining idiopathic epilepsies and provide targets for future antiepileptic drugs.
Collapse
|
76
|
Camerino DC, Desaphy JF, Tricarico D, Pierno S, Liantonio A. Therapeutic Approaches to Ion Channel Diseases. ADVANCES IN GENETICS 2008; 64:81-145. [DOI: 10.1016/s0065-2660(08)00804-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
77
|
Heron SE, Khosravani H, Varela D, Bladen C, Williams TC, Newman MR, Scheffer IE, Berkovic SF, Mulley JC, Zamponi GW. Extended spectrum of idiopathic generalized epilepsies associated withCACNA1Hfunctional variants. Ann Neurol 2007; 62:560-8. [PMID: 17696120 DOI: 10.1002/ana.21169] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The relationship between genetic variation in the T-type calcium channel gene CACNA1H and childhood absence epilepsy is well established. The purpose of this study was to investigate the range of epilepsy syndromes for which CACNA1H variants may contribute to the genetic susceptibility architecture and determine the electrophysiological effects of these variants in relation to proposed mechanisms underlying seizures. METHODS Exons 3 to 35 of CACNA1H were screened for variants in 240 epilepsy patients (167 unrelated) and 95 control subjects by single-stranded conformation analysis followed by direct sequencing. Cascade testing of families was done by sequencing or single-stranded conformation analysis. Selected variants were introduced into the CACNA1H protein by site-directed mutagenesis. Constructs were transiently transfected into human embryo kidney cells, and electrophysiological data were acquired. RESULTS More than 100 variants were detected, including 19 novel variants leading to amino acid changes in subjects with phenotypes including childhood absence, juvenile absence, juvenile myoclonic and myoclonic astatic epilepsies, as well as febrile seizures and temporal lobe epilepsy. Electrophysiological analysis of 11 variants showed that 9 altered channel properties, generally in ways that would be predicted to increase calcium current. INTERPRETATION Variants in CACNA1H that alter channel properties are present in patients with various generalized epilepsy syndromes. We propose that these variants contribute to an individual's susceptibility to epilepsy but are not sufficient to cause epilepsy on their own. The genetic architecture is dominated by rare functional variants; therefore, CACNA1H would not be easily identified as a susceptibility gene by a genome-wide case-control study seeking a statistical association.
Collapse
Affiliation(s)
- Sarah E Heron
- Department of Genetic Medicine, Women's and Children's Hospital, North Adelaide South Australia, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Dibbens LM, Heron SE, Mulley JC. A polygenic heterogeneity model for common epilepsies with complex genetics. GENES BRAIN AND BEHAVIOR 2007; 6:593-7. [PMID: 17559416 DOI: 10.1111/j.1601-183x.2007.00333.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Approximately 40% of epilepsy has a complex genetic basis with an unknown number of susceptibility genes. The effect of each susceptibility gene acting alone is insufficient to account for seizure phenotypes, but certain numbers or combinations of variations in susceptibility genes are predicted to raise the level of neuronal hyperexcitability above a seizure threshold for a given individual in a given environment. Identities of susceptibility genes are beginning to be determined, initially by translation of knowledge gained from gene discovery in the monogenic epilepsies. This entrée into idiopathic epilepsies with complex genetics has led to the experimental validation of susceptibility variants in the first few susceptibility genes. The genetic architecture so far emerging from these results is consistent with what we have designated as a polygenic heterogeneity model for the epilepsies with complex genetics.
Collapse
Affiliation(s)
- L M Dibbens
- Department of Genetic Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
79
|
Heron SE, Cox K, Grinton BE, Zuberi SM, Kivity S, Afawi Z, Straussberg R, Berkovic SF, Scheffer IE, Mulley JC. Deletions or duplications in KCNQ2 can cause benign familial neonatal seizures. J Med Genet 2007; 44:791-6. [PMID: 17675531 PMCID: PMC2652819 DOI: 10.1136/jmg.2007.051938] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Benign familial neonatal seizures are most often caused by mutations in the voltage-gated potassium channel subunit gene KCNQ2. More than 60 mutations have been described in BFNS families, approximately half of which lead to protein truncation. The hypothesis of this study was that deletion or duplication of >or=1 exons of KCNQ2 could cause BFNS in cases without coding or splicing mutations. METHODS Multiplex ligation-dependent probe amplification (MLPA) was used to test a group of 21 unrelated patients with clinical features consistent with either BFNS, benign familial neonatal-infantile seizures or sporadic neonatal seizures, for exonic deletions and duplications. RESULTS Three deletions and one duplication mutation were identified in four familial cases and cascade testing of their available family members showed that the mutations segregated with the phenotype in each family. The junction fragment for one of the deletions was amplified by PCR and sequenced to characterise the breakpoint and verify that a deletion had occurred. CONCLUSIONS Submicroscopic deletions or duplications of KCNQ2 are seen in a significant proportion of BFNS families: four of nine (44%) cases previously testing negative for coding or splice site mutation by sequencing KCNQ2 and KCNQ3. MLPA is an efficient second-tier testing strategy for KCNQ2 to identify pathogenic intragenic mutations not detectable by conventional DNA sequencing methods.
Collapse
|
80
|
Heron SE, Sanchez L, Scheffer IE, Berkovic SF, Mulley JC. Association studies and functional validation or functional validation alone? Epilepsy Res 2007; 74:237-8. [DOI: 10.1016/j.eplepsyres.2007.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 03/08/2007] [Indexed: 11/16/2022]
|
81
|
Abstract
Familial hemiplegic migraine (FHM) is a rare and genetically heterogeneous autosomal dominant subtype of migraine with aura. Mutations in the genes CACNA1A and SCNA1A, encoding the pore-forming alpha(1) subunits of the neuronal voltage-gated Ca2+ channels Ca(V)2.1 and Na+ channels Na(V)1.1, are responsible for FHM1 and FHM3, respectively, whereas mutations in ATP1A2, encoding the alpha2 subunit of the Na+, K+ adenosinetriphosphatase (ATPase), are responsible for FHM2. This review discusses the functional studies of two FHM1 knockin mice and of several FHM mutants in heterologous expression systems (12 FHM1, 8 FHM2, and 1 FHM3). These studies show the following: (1) FHM1 mutations produce gain-of-function of the Ca(V)2.1 channel and, as a consequence, increased Ca(V)2.1-dependent neurotransmitter release from cortical neurons and facilitation of in vivo induction and propagation of cortical spreading depression (CSD: the phenomenon underlying migraine aura); (2) FHM2 mutations produce loss-of-function of the alpha2 Na+,K+-ATPase; and (3) the FHM3 mutation accelerates recovery from fast inactivation of Na(V)1.5 (and presumably Na(V)1.1) channels. These findings are consistent with the hypothesis that FHM mutations share the ability of rendering the brain more susceptible to CSD by causing either excessive synaptic glutamate release (FHM1) or decreased removal of K+ and glutamate from the synaptic cleft (FHM2) or excessive extracellular K+ (FHM3). The FHM data support a key role of CSD in migraine pathogenesis and point to cortical hyperexcitability as the basis for vulnerability to CSD and to migraine attacks. Hence, they support novel therapeutic strategies that consider CSD and cortical hyperexcitability as key targets for preventive migraine treatment.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy.
| |
Collapse
|
82
|
Venance SL, Herr BE, Griggs RC. Challenges in the design and conduct of therapeutic trials in channel disorders. Neurotherapeutics 2007; 4:199-204. [PMID: 17395129 DOI: 10.1016/j.nurt.2007.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Neurologic channelopathies are rare, inherited paroxysmal disorders of muscle (e.g., the periodic paralyses and nondystrophic myotonias) and brain (e.g., episodic ataxias, idiopathic epilepsies, and familial hemiplegic migraine). Mutation is necessary but not sufficient for phenotypic expression and there are no simple phenotype-genotype relationships. Attacks may be spontaneous or triggered, with affected individuals often asymptomatic and neurologically normal between attacks. Performance of daily activities may be affected by the unpredictable nature; often late-onset degenerative changes cause permanent disability; for example, muscle atrophy and fixed weakness in periodic paralysis and cerebellar atrophy and progressive ataxia in the episodic ataxias. Currently, the natural history of these disorders is being defined. Clearly, the established methodologies for randomized controlled clinical trials are not feasible for rare diseases and innovative trial design is essential. There is a requirement for clinically relevant outcome measures for episodic disorders. Increasing our knowledge of the pathophysiology will help in targeting and designing rational therapeutic approaches. We will use the current understanding of the neurological channelopathies to illustrate some of the opportunities, challenges, and strategies in bringing safe and effective treatments to patients. There are reasons for optimism that new partnerships between clinical investigators, government, patient advocacy groups, and industry will prevent symptoms and progression of the neurological channelopathies.
Collapse
|
83
|
Tawil R, Cannon SC. Neurologic channelopathies: Evolving concepts and therapeutic challenges. Neurotherapeutics 2007. [DOI: 10.1016/j.nurt.2007.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
84
|
Abstract
Because ion channels are involved in many cellular processes, drugs acting on ion channels have long been used for the treatment of many diseases, especially those affecting electrically excitable tissues. The present review discusses the pharmacology of voltage-gated and neurotransmitter-gated ion channels involved in neurologic diseases, with emphasis on neurologic channelopathies. With the discovery of ion channelopathies, the therapeutic value of many basic drugs targeting ion channels has been confirmed. The understanding of the genotype-phenotype relationship has highlighted possible action mechanisms of other empirically used drugs. Moreover, other ion channels have been pinpointed as potential new drug targets. With regards to therapy of channelopathies, experimental investigations of the intimate drug-channel interactions have demonstrated that channel mutations can either increase or decrease affinity for the drug, modifying its potential therapeutic effect. Together with the discovery of channel gene polymorphisms that may affect drug pharmacodynamics, these findings highlight the need for pharmacogenetic research to allow identification of drugs with more specific effects on channel isoforms or mutants, to increase efficacy and reduce side effects. With a greater understanding of channel genetics, structure, and function, together with the identification of novel primary and secondary channelopathies, the number of ion channel drugs for neurologic channelopathies will increase substantially.
Collapse
Affiliation(s)
- Diana Conte Camerino
- Pharmacology Division, Department of Pharmacobiology, School of Pharmacy, University of Bari, Bari, Italy.
| | | | | |
Collapse
|