51
|
Han W, Shi J, Cao J, Dong B, Guan W. Latest Advances of Long Non-Coding RNA SNHG5 in Human Cancers. Onco Targets Ther 2020; 13:6393-6403. [PMID: 32753882 PMCID: PMC7342554 DOI: 10.2147/ott.s252750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 01/19/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been potent regulators in the initiation and development of human cancers regarding their biological roles in the modulation of dosage compensation effect, epigenetics and cell differentiation. Recently, aberrant expression of lncRNA small nucleolar RNA host gene 5 (SNHG5) has been observed in various solid tumors, which was intently correlated with tumor range, metastasis, pathological stage and prognosis. Additional mechanical investigation disclosed that SNHG5 was involved in multiple cellular activities, including proliferation, migration, invasion, cell-cycle, apoptosis and autophagy, via targeting miRNAs, signaling pathways and other biological molecules or proteins. In this review, we summarized the latest advances made towards understanding the roles of SNHG5 in human cancers and further discussed potential methods that could be adopted for clinical interventions.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Jia Shi
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Jiachao Cao
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Bo Dong
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Wei Guan
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| |
Collapse
|
52
|
Li W, Lu Y, Wu Y, Qin Z, Tang Q, Wei H, Wang J, Pu J. SNHG5 functions as competitive RNA with miR-23c to regulate HMGB2 expression in hepatocellular carcinoma. Am J Transl Res 2020; 12:2192-2200. [PMID: 32509211 PMCID: PMC7270010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidence demonstrated long non-coding RNA (lncRNA) small nucleolar RNA host gene 5 (SNHG5) participates in the tumorigenesis. The aim of this work was to characterize the expression and biology roles of SNHG5 in hepatocellular carcinoma (HCC). Expression level of SNHG5 in HCC cells was analyzed with RT-qPCR. Cell proliferation rate, cell cycle distribution, and cell migration ability was analyzed with cell counting kit-8 assay, flow cytometry, and wound-healing assay, respectively. Targets prediction were performed at LncBase V2.0 and TargetScan. SNHG5 was found elevated expression in HCC cell lines. In vitro functional experiments showed knockdown of SNHG5 inhibits cell proliferation and migration, while overexpression of SNHG5 exerted opposite effects. Mechanism studies showed SNHG5 functions as competitive endogenous RNA (ceRNA) for microRNA-23c (miR-23c) to promote high mobility group box 2 (HMGB2) expression. miR-23c was downregulated, while HMGB2 was upregulated in HCC tissues and cells. We revealed SNHG5 could exert an oncogenic role in HCC via regulating miR-23c/HMGB2 axis. Targeting SNHG5 might be a novel therapeutic measure to suppresses HCC progression.
Collapse
Affiliation(s)
- Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for NationalitiesGuangxi, China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for NationalitiesGuangxi, China
| | - Yi Wu
- Graduate College, Youjiang Medical University for NationalitiesGuangxi, China
| | - Zebang Qin
- Graduate College, Youjiang Medical University for NationalitiesGuangxi, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for NationalitiesGuangxi, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for NationalitiesGuangxi, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for NationalitiesGuangxi, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for NationalitiesGuangxi, China
| |
Collapse
|
53
|
Li YH, Hu YQ, Wang SC, Li Y, Chen DM. LncRNA SNHG5: A new budding star in human cancers. Gene 2020; 749:144724. [PMID: 32360843 DOI: 10.1016/j.gene.2020.144724] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/12/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Long non-coding RNA (LncRNA) belongs to non-coding RNAs longer than 200 nucleic acids. More and more studies have revealed that lncRNA can participate in the occurrence and pathophysiology of diseases, especially in cancers. Although research on lncRNAs has doubled year by year, little is known about the specific regulatory mechanisms of lncRNAs in diseases. The main purpose of this review is to explore the molecular mechanism and clinical significance of SNHG5 in cancers. We systematically search Pubmed to obtain relevant literature on SNHG5. In this review, the functional role, molecular mechanism, and clinical significance of SNHG5 in human cancers are described in detail. Small nucleolar RNA host gene 5 (SNHG5) has been shown to be involved in the development and tumorigenesis of a variety of cancers (colorectal, bladder, gastric, endometrial, acute lymphocytic leukemia, osteosarcoma, etc.). Its disorder is closely related to metastasis, pathological staging, and prognosis. LncRNA SNHG5 might be a potential and novel diagnostic marker for cancer patients, a target for molecular targeted therapy, and a prognostic diagnostic marker.
Collapse
Affiliation(s)
- Yu-Han Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Qian Hu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng-Chan Wang
- Department of Geriatrics, The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dong-Ming Chen
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
54
|
Wang B, Zhang Y, Zhang H, Lin F, Tan Q, Qin Q, Bao W, Liu Y, Xie J, Zeng Q. Long intergenic non-protein coding RNA 324 prevents breast cancer progression by modulating miR-10b-5p. Aging (Albany NY) 2020; 12:6680-6699. [PMID: 32305959 PMCID: PMC7202516 DOI: 10.18632/aging.103021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Mounting evidence suggests that long noncoding RNAs serve as specific biomarkers and potent modulators of multiple cancers. Long intergenic non-protein coding RNA 324 (LINC00324) is ubiquitously expressed in various tissues, including breast cancer. The biological function of LINC00324 in the development and progression of breast cancer remains unknown. Here, we fully elucidate the relation between LINC00324 expression and breast cancer, and suggest a potential mechanism of action. We found that decreased expression of LINC00324 was dramatically correlated with malignancy of breast cancer, both in breast cancer tissues and in cell lines. Overexpression of LINC00324 in MDA-MB-231 cells resulted in a decrease in cell proliferation, invasion, and migration, while increasing cells apoptosis. On the other hand, loss-of-function experiments indicated that deficiency of LINC00324 promoted malignant phenotypes in breast cancer cells. Mechanically, we found that LINC00324 is mainly distributed in the cytoplasm, fostering the expression of E-cadherin by sponging miR-10b-5p. Taken together, these findings suggest that LINC00324 plays a critical role in breast cancer progression by directly interacting with miR-10b-5p. LINC00324 can thus potentially act as an early diagnostic marker and a novel therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Yangyang Zhang
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Haitian Zhang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Qixin Tan
- Department of Breast Surgery, Guangxi Medical University Tumor Hospital, Nanning 530021, Guangxi, P.R. China
| | - Qinghong Qin
- Department of Breast Surgery, Guangxi Medical University Tumor Hospital, Nanning 530021, Guangxi, P.R. China
| | - Wei Bao
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Jiaying Xie
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Qiyan Zeng
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| |
Collapse
|
55
|
Yu XN, Deng Y, Zhang GC, Liu J, Liu TT, Dong L, Zhu CF, Shen XZ, Li YH, Zhu JM. Sorafenib-Conjugated Zinc Phthalocyanine Based Nanocapsule for Trimodal Therapy in an Orthotopic Hepatocellular Carcinoma Xenograft Mouse Model. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17193-17206. [PMID: 32207914 DOI: 10.1021/acsami.0c00375] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sorafenib, a multitargeted kinase inhibitor, has been reported to elicit a limited therapeutic effect in hepatocellular carcinoma (HCC). Currently, phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is emerging as a powerful modality for cancer therapy. However, few studies have been reported the effectiveness of the combination of sorafenib with PDT and PTT in HCC. Herein, we designed and synthesized bovine serum albumin (BSA)-coated zinc phthalocyanine (ZnPc) and sorafenib (SFB) nanoparticle (ZnPc/SFB@BSA). The obtained ZnPc/SFB@BSA was able to trigger PDT, PTT, and chemotherapy. After irradiation by a 730 nm light, ZnPc/SFB@BSA significantly suppressed HCC cell proliferation and metastasis while promoted cell apoptosis in vitro. Furthermore, intravenous injection of ZnPc/SFB@BSA led to dramatically reduced tumor growth in an orthotopic xenograft HCC model. More importantly, ZnPc/SFB@BSA presented low toxicity and adequate blood compatibility. Therefore, a combination of ZnPc with sorafenib via BSA-assembled nanoparticle can markedly suppress HCC growth, representing a promising strategy for HCC patients.
Collapse
Affiliation(s)
- Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Yong Deng
- Institute of Bismuth Science & College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Jie Liu
- Institute of Bismuth Science & College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Chang-Feng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yu-Hao Li
- Institute of Bismuth Science & College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Shanghai Institute of Liver Disease, Shanghai 200032, China
| |
Collapse
|
56
|
Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front Oncol 2020; 10:389. [PMID: 32318335 PMCID: PMC7154078 DOI: 10.3389/fonc.2020.00389] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of long non-coding RNAs, which are reported in many studies as being overexpressed in various cancers. With very few exceptions, the SNHGs (SNHG1, SNHG3, SNHG5, SNHG6, SNHG7, SNHG12, SNHG15, SNHG16, SNHG20) are recognized as inducing increased proliferation, cell cycle progression, invasion, and metastasis of cancer cells, which makes this class of transcripts a viable biomarker for cancer development and aggressiveness. Through our literature research, we also found that silencing of SNHGs through small interfering RNAs or short hairpin RNAs is very effective in both in vitro and in vivo experiments by lowering the aggressiveness of solid cancers. The knockdown of SNHG as a new cancer therapeutic option should be investigated more in the future.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Stefan
- African Organisation for Research and Training in Cancer, Cape Town, South Africa
| | - Calin Ionescu
- Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. I. Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
57
|
Chen M, Yang Y, Zhang W, Li X, Wu J, Zou X, Zeng X. Long Noncoding RNA SNHG5 Knockdown Alleviates Neuropathic Pain by Targeting the miR-154-5p/CXCL13 Axis. Neurochem Res 2020; 45:1566-1575. [PMID: 32248399 DOI: 10.1007/s11064-020-03021-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is an unneglectable pain condition with limited treatment options owing to its enigmatic underlying mechanisms. Long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) is involved in the progression of a spectrum of human cancers. However, its role in neuropathic pain remains undiscovered. In the present study, we established a mouse spinal nerve ligation (SNL) model, and a significant upregulation of SNHG5 was observed. Then we knocked down SNHG5 level in mouse L5 dorsal root ganglion (DRG) by delivering specific short hairpin RNA against SNHG5 with adenovirus vehicle. Mouse paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in response to mechanical stimuli was increased after SNHG5 knockdown, accompanied with decreased protein levels of glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule 1 (IBA-1). Besides, SNHG5 directly modulated the expression of miR-154-5p, which was downregulated in SNL mice. MiR-154-5p inhibition abolished the effect of SNHG5 knockdown on mouse behavioral tests and GFAP and IBA-1 levels. In addition, we validated that C-X-C motif chemokine 13 (CXCL13) was a novel downstream target of miR-154-5p, and CXCL13 level was positively related to that of SNHG5 in SNL mice. In conclusion, our study demonstrated that SNHG5 knockdown alleviated neuropathic pain and inhibited the activation of astrocytes and microglia by targeting the miR-154-5p/CXCL13 axis, which might be a novel therapeutic target for neuropathic treatment clinically.
Collapse
Affiliation(s)
- Mi Chen
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China
| | - Yang Yang
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China
| | - Wenqi Zhang
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China
| | - Xinning Li
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang, 550004, China
| | - Jinli Wu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China
| | - Xiaohua Zou
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China.
| | - Xianggang Zeng
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China.
| |
Collapse
|
58
|
Crudele F, Bianchi N, Reali E, Galasso M, Agnoletto C, Volinia S. The network of non-coding RNAs and their molecular targets in breast cancer. Mol Cancer 2020; 19:61. [PMID: 32188472 PMCID: PMC7079433 DOI: 10.1186/s12943-020-01181-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-coding RNAs are now recognized as fundamental components of the cellular processes. Non-coding RNAs are composed of different classes, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Their detailed roles in breast cancer are still under scrutiny. Main body We systematically reviewed from recent literature the many functional and physical interactions of non-coding RNAs in breast cancer. We used a data driven approach to establish the network of direct, and indirect, interactions. Human curation was essential to de-convolute and critically assess the experimental approaches in the reviewed articles. To enrol the scientific papers in our article cohort, due to the short time span (shorter than 5 years) we considered the journal impact factor rather than the citation number. The outcome of our work is the formal establishment of different sub-networks composed by non-coding RNAs and coding genes with validated relations in human breast cancer. This review describes in a concise and unbiased fashion the core of our current knowledge on the role of lncRNAs, miRNAs and other non-coding RNAs in breast cancer. Conclusions A number of coding/non-coding gene interactions have been investigated in breast cancer during recent years and their full extent is still being established. Here, we have unveiled some of the most important networks embracing those interactions, and described their involvement in cancer development and in its malignant progression.
Collapse
Affiliation(s)
- Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Area of Neuroscience, International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy. .,LTTA, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
59
|
Lin H, Shen L, Lin Q, Dong C, Maswela B, Illahi GS, Wu X. SNHG5 enhances Paclitaxel sensitivity of ovarian cancer cells through sponging miR-23a. Biomed Pharmacother 2020; 123:109711. [DOI: 10.1016/j.biopha.2019.109711] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
|
60
|
Sun S, Xia C, Xu Y. HIF-1α induced lncRNA LINC00511 accelerates the colorectal cancer proliferation through positive feedback loop. Biomed Pharmacother 2020; 125:110014. [PMID: 32092829 DOI: 10.1016/j.biopha.2020.110014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs lncRNAs play an essential role in the epigenetic regulation of colorectal cancer CRC. However, the biological function of lncRNA Long Intergenic Noncoding RNA 00511 LINC00511 in the CRC is unclear. Here, present research found that LINC00511 was significantly up-regulated in the CRC tissue samples and cell lines. Consistently, LINC00011 overexpression was correlated with larger tumor size and advanced tumor stage. Functionally, LINC00511 promoted the proliferation and reduced the apoptosis of CRC cells in vitro, and LINC00511 knockdown repressed tumor growth in vivo. Mechanistically, hypoxia-inducible factor 1α (HIF-1α) bound the promoter region of LINC00511 to active tits transcription. Moreover, LINC00511 functioned as the miR-153-5p sponge in the cytoplasmic portion, and miR-153-5p also targeted the 3'-UTR of HIF-1α. In conclusion, this study identifies the roles of LINC00511 in CRC progression and uncovers the positive feedback loop of HIF-1α/LINC00511/miR-153-5p in CRC, providing a potential therapeutic target.
Collapse
Affiliation(s)
- Shuzhen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Chao Xia
- Department of Gastroenterology, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yapo Xu
- Department of Gastroenterology, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
61
|
HOTTIP knockdown inhibits cell proliferation and migration via regulating miR-490-3p/HMGB1 axis and PI3K-AKT signaling pathway in ox-LDL-induced VSMCs. Life Sci 2020; 248:117445. [PMID: 32081664 DOI: 10.1016/j.lfs.2020.117445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
AIMS Atherosclerosis (AS) is a common cardiovascular disease with complicated pathogenesis. Long non-coding RNAs (lncRNAs) have been reported to be associated with AS progression. We aimed to explore the role and underlying mechanism of HOXA transcript at the distal tip (HOTTIP) in AS. MATERIALS AND METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of HOTTIP, miR-490-3p and high mobility group B 1 (HMGB1) in AS patients' sera and oxidized low-density lipoprotein (ox-LDL) induced human aortic vascular smooth muscle cells (HA-VSMCs). Cell Counting Kit-8 (CCK-8) assay and transwell assay were conducted to evaluate the proliferation and migration of HA-VSMCs, respectively. Western blot assay was carried out to determine the levels of proliferating cell nuclear antigen (PCNA), matrix metalloprotein 2 (MMP2), MMP9 and HMGB1. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to verify the targeting association between HOTTIP and miR-490-3p, as well as miR-490-3p and HMGB1. KEY FINDINGS HOTTIP and HMGB1 were upregulated and miR-490-3p was downregulated in the sera of AS patients and ox-LDL-stimulated HA-VSMCs. HOTTIP knockdown suppressed ox-LDL induced proliferation and migration in HA-VSMCs. MiR-490-3p was identified as a target of HOTTIP and HOTTIP overexpression abolished the inhibition on cell proliferation and migration mediated by miR-490-3p in ox-LDL-induced HA-VSMCs. Moreover, miR-490-3p inhibition promoted cell proliferation and migration by directly targeting HMGB1 in ox-LDL-induced HA-VSMCs. Besides, HOTTIP knockdown repressed the activation of PI3K-AKT signaling pathway. SIGNIFICANCE HOTTIP knockdown suppressed cell proliferation and migration by regulating miR-490-3p/HMGB1 axis and PI3K-AKT pathway in ox-LDL-induced HA-VSMCs.
Collapse
|
62
|
Inferences of Individual Drug Response-Related Long Non-coding RNAs Based on Integrating Multi-omics Data in Breast Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:128-139. [PMID: 32163894 PMCID: PMC7066040 DOI: 10.1016/j.omtn.2020.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/19/2020] [Accepted: 01/31/2020] [Indexed: 12/25/2022]
Abstract
Differences in individual drug responses are obstacles in breast cancer (BRCA) treatment, so predicting responses would help to plan treatment strategies. The accumulation of cancer molecular profiling and drug response data provide opportunities and challenges to identify novel molecular signatures and mechanisms of tumor responsiveness to drugs in BRCA. This study evaluated drug responses with a multi-omics integrated system that depended on long non-coding RNAs (lncRNAs). We identified drug response-related lncRNAs (DRlncs) by combining expression data of lncRNA, microRNA, messenger RNA, methylation levels, somatic mutations, and the survival data of cancer patients treated with drugs. We constructed an integrated and computational multi-omics approach to identify DRlncs for diverse chemotherapeutic drugs in BRCA. Some DRlncs were identified with Adriamycin, Cytoxan, Tamoxifen, and all samples for BRCA patients. These DRlncs showed specific features regarding both expression and computational accuracies. The DRlnc-gene co-expression networks were constructed and analyzed. Key DRlncs, such as HOXA-AS2 (Ensembl: ENSG00000253552), in the drug Adriamycin were characterized. The experimental analysis also suggested that HOXA-AS2 (Ensembl: ENSG00000253552) was a key DRlnc in Adriamycin drug resistance in BRCA patients. Some DRlncs were associated with survival and some specific functions. A possible mechanism of DRlnc HOXA-AS2 (Ensembl: ENSG00000253552) in the Adriamycin drug response for BRCA resistance was inferred. In summary, this study provides a framework for lncRNA-based evaluation of clinical drug responses in BRCA. Understanding the underlying molecular mechanisms of drug responses will facilitate improved responses to chemotherapy and outcomes of BRCA treatment.
Collapse
|
63
|
Fan H, Yuan J, Li X, Ma Y, Wang X, Xu B, Li X. LncRNA LINC00173 enhances triple-negative breast cancer progression by suppressing miR-490-3p expression. Biomed Pharmacother 2020; 125:109987. [PMID: 32058222 DOI: 10.1016/j.biopha.2020.109987] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNA (lncRNA) LINC00173 has been previously shown to promote chemoresistance and progression of small-cell lung cancer. Herein, we examine the clinical significance and biological function of LINC00173 in triple-negative breast cancer (TNBC). Quantitative PCR analysis was performed to determine the expression of LINC00173 in TNBC and adjacent breast tissues (n = 84). The associations of LINC00173 expression with cancer features and survival of TNBC patients were analyzed. The function of LINC00173 in TNBC cell proliferation, colony formation, and invasion was explored. TNBCs expressed increased levels of LINC00173 relative to normal breast tissues. TNBC patients with high tumoral LINC00173 levels had a lower recurrence-free survival and overall survival rate than those with low LINC00173 expression. Silencing of LINC00173 inhibited the proliferation, colony formation, and invasion of TNBC cells, whereas overexpression of LINC00173 exerted opposite effects. In vivo studies confirmed the reduction of tumor growth by LINC00173 depletion. Mechanistic investigation revealed that LINC00173 suppressed miR-490-3p to promote aggressive phenotype in TNBC cells. There was an inverse correlation between miR-490-3p and LINC00173 in TNBC (r = -0.2647, P = 0.0149). Altogether, LINC00173 functions as an oncogene in TNBC through antagonization of miR-490-3p. Upregulation of LINC00173 is associated with poor prognosis in TNBC. Targeting LINC00173 provides a potential therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Huijie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Yuan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiangyu Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yihui Ma
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaofeng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Benling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xingya Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
64
|
Shuwen H, Xi Y, Quan Q, Yin J, Miao D. Can small nucleolar RNA be a novel molecular target for hepatocellular carcinoma? Gene 2020; 733:144384. [PMID: 31978508 DOI: 10.1016/j.gene.2020.144384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Globally, hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death. Recently, many studies have demonstrated that small nucleolar RNA (snoRNA) was closely related to HCC. OBJECTIVE To explore whether snoRNA can be used as a molecular target for HCC. METHODS The PubMed, Embase, and Cochrane databases were searched for the published literatures related to snoRNA and HCC until August 12, 2019. After identification, screening, and verification, this study finally included 26 studies correlating small nucleolar RNA host gene (SNHG) and HCC, and 8 studies correlating snoRNA and HCC. Based on the collation of the relevant literature, the correlation network diagram between snoRNAs and HCC was constructed. RESULTS The SNHGs, such as SNHG1, SNHG6, SNHG16, and SNHG20 can play varied roles in HCC through different regulatory mechanisms. These SNHGs can promote and inhibit tumorigenesis. SNORD76 can promote the proliferation of tumor tissues and cells in vitro through different pathways. SnoU2_19 and SNORD76 can function through the same pathway. SNHG3, SNHG20, SNHG6, SNORD76, and snoRA47 can modulate epithelial-mesenchymal transition (EMT) to regulate the development of HCC cell or tissue. SNHG16, SNORD76, and SnoU2_19 can regulate the development of HCC through Wnt/β-catenin signaling pathway. CONCLUSION snoRNA can regulate the occurrence of HCC by modulating multiple molecular signaling pathways. Hence, snoRNA can be a potential molecular target for HCC.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University, 198 Hongqi Rd, Huzhou, Zhejiang, PR China
| | - Yang Xi
- Department of Intervention and Radiotherapy, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China
| | - Qi Quan
- Department of Oncology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China
| | - Jin Yin
- Department of Clinical Laboratory, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China
| | - Da Miao
- Department of Nursing, Huzhou Third Municipal Hospital, Huzhou, Zhejiang Province, PR China.
| |
Collapse
|
65
|
Wang D, Zeng T, Lin Z, Yan L, Wang F, Tang L, Wang L, Tang D, Chen P, Yang M. Long non-coding RNA SNHG5 regulates chemotherapy resistance through the miR-32/DNAJB9 axis in acute myeloid leukemia. Biomed Pharmacother 2019; 123:109802. [PMID: 31884339 DOI: 10.1016/j.biopha.2019.109802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a common hematopoietic malignancy with invasive activity. Drug resistance greatly contributes to the poor efficacy of chemotherapy in AML treatment. Recent research indicates that long non-coding RNAs (LncRNAs) regulates chemotherapy resistance in malignancy. METHODS Microarray analysis was used to screen out AML related genes, and interaction between small nucleolar RNA host gene 5(SNHG5) and miR-32, as well as that between miR-32 and DNAJB9. Quantitative real-time PCR (qRT-PCR) and In situ hybridization(ISH) were used to determine the expression levels of SNHG5, miR-32 and DNAJB9 mRNA in AML cell lines and clinic samples. Western blot was performed to detect protein expression levels. After being treated with varying concentrations of Adriamycin(ADM), cell viability was evaluated using a cell counting kit-8(CCK8). RESULTS We carried out a genome-wide LncRNA expression study and found SNHG5 aberrantly overexpressed in AML comparing to the donors. Knock-down of SNHG5 promoted sensitivity of AML cells to chemotherapy. In addition, miR-32 was identified as the downstream target of SNHG5 and miR-32 inhibitor abrogated the inhibiting effects of downregulated SNHG5 on AML cell viability. Furthermore, inhibited SNHG5 decreased DNAJB9 expression levels by sponging miR-32. The SNHG5/miR-32/DNAJB9 axis targeted autophagy to regulate chemotherapy resistance. CONCLUSION SHNG5 regulates chemotherapy resistance by targeting the miR-32/DNAJB9 axis in acute myeloid leukemia, which provided a novel potential target for AML and revealed an important mechanism of chemotherapy resistance.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Zeng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Lin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fenglin Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lanlan Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Leyuan Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
66
|
LncRNA RGMB-AS1 promotes laryngeal squamous cell carcinoma cells progression via sponging miR-22/NLRP3 axis. Biomed Pharmacother 2019; 118:109222. [DOI: 10.1016/j.biopha.2019.109222] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
|