51
|
Behavioral, Electrophysiological, and Histological Characterization of a New Rat Model for Neoadjuvant Chemotherapy–Induced Neuropathic Pain: Therapeutic Potential of Duloxetine and Allopregnanolone Concomitant Treatment. Neurotox Res 2020; 38:145-162. [DOI: 10.1007/s12640-020-00176-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/12/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
|
52
|
Noh MC, Mikler B, Joy T, Smith PA. Time Course of Inflammation in Dorsal Root Ganglia Correlates with Differential Reversibility of Mechanical Allodynia. Neuroscience 2020; 428:199-216. [DOI: 10.1016/j.neuroscience.2019.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
|
53
|
Liu S, Karaganis S, Mo RF, Li XX, Wen RX, Song XJ. IFNβ Treatment Inhibits Nerve Injury-induced Mechanical Allodynia and MAPK Signaling By Activating ISG15 in Mouse Spinal Cord. THE JOURNAL OF PAIN 2019; 21:836-847. [PMID: 31785403 DOI: 10.1016/j.jpain.2019.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023]
Abstract
Neuropathic pain is difficult to treat and remains a major clinical challenge worldwide. While the mechanisms which underlie the development of neuropathic pain are incompletely understood, interferon signaling by the immune system is known to play a role. Here, we demonstrate a role for interferon β (IFNβ) in attenuating mechanical allodynia induced by the spared nerve injury in mice. The results show that intrathecal administration of IFNβ (dosages up to 5,000 U) produces significant, transient, and dose-dependent attenuation of mechanical allodynia without observable effects on motor activity or feeding behavior, as is common with IFN administration. This analgesic effect is mediated by the ubiquitin-like protein interferon-stimulated gene 15 (ISG15), which is potently induced within the spinal cord following intrathecal delivery of IFNβ. Both free and conjugated ISG15 are elevated following IFNβ treatment, and this effect is increased in UBP43-/- mice lacking a key deconjugating enzyme. The IFNβ-mediated analgesia reduces MAPK signaling activation following nerve injury, and this effect requires induction of ISG15. These findings highlight a new role for IFNβ, ISG15, and MAPK signaling in immunomodulation of neuropathic pain and may lead to new therapeutic possibilities. PERSPECTIVE: Neuropathic pain is frequently intractable in a clinical setting, and new treatment options are needed. Characterizing the antinociceptive potential of IFNβ and the associated downstream signaling pathways in preclinical models may lead to the development of new therapeutic options for debilitating neuropathies.
Collapse
Affiliation(s)
- Su Liu
- SUSTech Center for Pain Medicine, Medical School, Southern University of Science and Technology, Shenzhen, Guangdong, China; Department of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Stephen Karaganis
- SUSTech Center for Pain Medicine, Medical School, Southern University of Science and Technology, Shenzhen, Guangdong, China; Department of Life, Earth and Environmental Sciences, West Texas A&M University, Amarillo, Texas
| | - Ru-Fan Mo
- SUSTech Center for Pain Medicine, Medical School, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Xiao Li
- Department of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruo-Xin Wen
- SUSTech Center for Pain Medicine, Medical School, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xue-Jun Song
- SUSTech Center for Pain Medicine, Medical School, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
54
|
Ferre IM, Roof MA, Anoushiravani AA, Wasterlain AS, Lajam CM. Understanding the Observed Sex Discrepancy in the Prevalence of Osteoarthritis. JBJS Rev 2019; 7:e8. [PMID: 31567717 DOI: 10.2106/jbjs.rvw.18.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Isabella M Ferre
- Department of Orthopedic Surgery, NYU Langone Health, New York, NY
| | - Mackenzie A Roof
- Department of Orthopedic Surgery, NYU Langone Health, New York, NY
| | | | - Amy S Wasterlain
- Department of Orthopedic Surgery, NYU Langone Health, New York, NY
| | | |
Collapse
|
55
|
Custodio-Patsey L, Donahue RR, Fu W, Lambert J, Smith BN, Taylor BK. Sex differences in kappa opioid receptor inhibition of latent postoperative pain sensitization in dorsal horn. Neuropharmacology 2019; 163:107726. [PMID: 31351975 DOI: 10.1016/j.neuropharm.2019.107726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
Abstract
Tissue injury produces a delicate balance between latent pain sensitization (LS) and compensatory endogenous opioid receptor analgesia that continues for months, even after re-establishment of normal pain thresholds. To evaluate the contribution of mu (MOR), delta (DOR), and/or kappa (KOR) opioid receptors to the silencing of chronic postoperative pain, we performed plantar incision at the hindpaw, waited 21 days for the resolution of hyperalgesia, and then intrathecally injected subtype-selective ligands. We found that the MOR-selective inhibitor CTOP (1-1000 ng) dose-dependently reinstated mechanical hyperalgesia. Two DOR-selective inhibitors naltrindole (1-10 μg) and TIPP[Ψ] (1-20 μg) reinstated mechanical hyperalgesia, but only at the highest dose that also produced itching, licking, and tail biting. Both the prototypical KOR-selective inhibitors nor-BNI (0.1-10 μg) and the newer KOR inhibitor with more canonical pharmocodynamic effects, LY2456302 (0.1-10 μg), reinstated mechanical hyperalgesia. Furthermore, LY2456302 (10 μg) increased the expression of phosphorylated signal-regulated kinase (pERK), a marker of central sensitization, in dorsal horn neurons but not glia. Sex studies revealed that LY2456302 (0.3 μg) reinstated hyperalgesia and pERK expression to a greater degree in female as compared to male mice. Our results suggest that spinal MOR and KOR, but not DOR, maintain LS within a state of remission to reduce the intensity and duration of postoperative pain, and that endogenous KOR but not MOR analgesia is greater in female mice.
Collapse
Affiliation(s)
- Lilian Custodio-Patsey
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA
| | - Renée R Donahue
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA
| | - Weisi Fu
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA
| | - Joshua Lambert
- Department of Statistics, College of Arts and Sciences, University of Kentucky, 302 Multidisciplinary Science Building, Lexington, KY, 40536-0082, USA
| | - Bret N Smith
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA; Department of Neuroscience, College of Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA
| | - Bradley K Taylor
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Pittsburgh Project to End Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
56
|
Tumor necrosis factor receptor 1 inhibition is therapeutic for neuropathic pain in males but not in females. Pain 2019; 160:922-931. [PMID: 30586024 DOI: 10.1097/j.pain.0000000000001470] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor (TNF) is a proinflammatory cytokine, which is involved in physiological and pathological processes and has been found to be crucial for pain development. In the current study, we were interested in the effects of blocking Tumor necrosis factor receptor 1 (TNFR1) signaling on neuropathic pain after peripheral nerve injury with the use of transgenic mice and pharmacological inhibition. We have previously shown that TNFR1 mice failed to develop neuropathic pain and depressive symptoms after chronic constriction injury (CCI). To investigate the therapeutic effects of inhibiting TNFR1 signaling after injury, we delivered a drug that inactivates soluble TNF (XPro1595). Inhibition of solTNF signaling resulted in an accelerated recovery from neuropathic pain in males, but not in females. To begin exploring a mechanism, we investigated changes in N-methyl-D-aspartate (NMDA) receptors because neuropathic pain has been shown to invoke an increase in glutamatergic signaling. In male mice, XPro1595 treatment reduces elevated NMDA receptor levels in the brain after injury, whereas in female mice, NMDA receptor levels decrease after CCI. We further show that estrogen inhibits the therapeutic response of XPro1595 in females. Our results suggest that TNFR1 signaling plays an essential role in pain induction after CCI in males but not in females.
Collapse
|
57
|
Stephens KE, Zhou W, Ji Z, Chen Z, He S, Ji H, Guan Y, Taverna SD. Sex differences in gene regulation in the dorsal root ganglion after nerve injury. BMC Genomics 2019; 20:147. [PMID: 30782122 PMCID: PMC6381758 DOI: 10.1186/s12864-019-5512-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pain is a subjective experience derived from complex interactions among biological, environmental, and psychosocial pathways. Sex differences in pain sensitivity and chronic pain prevalence are well established. However, the molecular basis underlying these sex dimorphisms are poorly understood particularly with regard to the role of the peripheral nervous system. Here we sought to identify shared and distinct gene networks functioning in the peripheral nervous systems that may contribute to sex differences of pain in rats after nerve injury. RESULTS We performed RNA-seq on dorsal root ganglia following chronic constriction injury of the sciatic nerve in male and female rats. Analysis from paired naive and injured tissues showed that 1513 genes were differentially expressed between sexes. Genes which facilitated synaptic transmission in naïve and injured females did not show increased expression in males. CONCLUSIONS Appreciating sex-related gene expression differences and similarities in neuropathic pain models may help to improve the translational relevance to clinical populations and efficacy of clinical trials of this major health issue.
Collapse
Affiliation(s)
- Kimberly E. Stephens
- Department of Pharmacology and Molecular Sciences, School of Medicine, Center for Epigenetics, Johns Hopkins University, Baltimore, MD USA
| | - Weiqiang Zhou
- Department of Biostatics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Zhicheng Ji
- Department of Biostatics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Zhiyong Chen
- Department of Anesthesia and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Shaoqiu He
- Department of Anesthesia and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Hongkai Ji
- Department of Biostatics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Yun Guan
- Department of Anesthesia and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Sean D. Taverna
- Department of Pharmacology and Molecular Sciences, School of Medicine, Center for Epigenetics, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
58
|
Sivas F, Uzun Ö, Başkan B, Bodur H. The neuropathic pain component among patients with chronic low back-radicular pain. J Back Musculoskelet Rehabil 2019; 31:939-946. [PMID: 29945338 DOI: 10.3233/bmr-160786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Determining neuropathic pain component (NPC) among patients with chronic low back pain-radicular pain (CLBP-RP) and the adjustment between scales of neuropathic pain. MATERIAL-METHODS One hundred and one patients with CLBP-RP were included in the study. The severity of CLBP-RP was evaluated by visual analogue scale (VAS). The Douleur Neuropathique 4 Questions (DN4) and Leeds Assessment of Neuropathic Symptoms and Signs Scales (LANSS) were used to evaluate the NPC. RESULTS The mean score of CLBP-RP assessed by VAS was 80 mm. NPC was detected a rate of 65.3% by DN4 and 40.6% by LANSS. NPC was 75.4% in females and 47.2% in males according to DN4, and 52.3% in females and 19.4% in males according to LANSS. The female gender, occupation, and VAS scores were determined to be significant factors contributing to presence of NPC according to logistic regression analyses (p< 0.01, p< 0.05, p< 0.05). A medium degree accordance was established between DN4 and LANSS scales according to kappa coefficient (Kappa = 0.532, p< 0.05). CONCLUSION CLBP is among the diseases causing mixed type pain accompanied by nociceptive and neuropathic pain. NPC was detected in a considerable part of patients with radicular pain. Identifying the character of radicular pain is significant to develop proper management strategies.
Collapse
|
59
|
Gomez-Varela D, Barry AM, Schmidt M. Proteome-based systems biology in chronic pain. J Proteomics 2019; 190:1-11. [DOI: 10.1016/j.jprot.2018.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
|
60
|
|
61
|
Barry AM, Sondermann JR, Sondermann JH, Gomez-Varela D, Schmidt M. Region-Resolved Quantitative Proteome Profiling Reveals Molecular Dynamics Associated With Chronic Pain in the PNS and Spinal Cord. Front Mol Neurosci 2018; 11:259. [PMID: 30154697 PMCID: PMC6103001 DOI: 10.3389/fnmol.2018.00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022] Open
Abstract
To obtain a thorough understanding of chronic pain, large-scale molecular mapping of the pain axis at the protein level is necessary, but has not yet been achieved. We applied quantitative proteome profiling to build a comprehensive protein compendium of three regions of the pain neuraxis in mice: the sciatic nerve (SN), the dorsal root ganglia (DRG), and the spinal cord (SC). Furthermore, extensive bioinformatics analysis enabled us to reveal unique protein subsets which are specifically enriched in the peripheral nervous system (PNS) and SC. The immense value of these datasets for the scientific community is highlighted by validation experiments, where we monitored protein network dynamics during neuropathic pain. Here, we resolved profound region-specific differences and distinct changes of PNS-enriched proteins under pathological conditions. Overall, we provide a unique and validated systems biology proteome resource (summarized in our online database painproteome.em.mpg.de), which facilitates mechanistic insights into somatosensory biology and chronic pain—a prerequisite for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Allison M Barry
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - Julia R Sondermann
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - Jan-Hendrik Sondermann
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - David Gomez-Varela
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - Manuela Schmidt
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| |
Collapse
|
62
|
Popiolek‐Barczyk K, Łażewska D, Latacz G, Olejarz A, Makuch W, Stark H, Kieć‐Kononowicz K, Mika J. Antinociceptive effects of novel histamine H 3 and H 4 receptor antagonists and their influence on morphine analgesia of neuropathic pain in the mouse. Br J Pharmacol 2018; 175:2897-2910. [PMID: 29486058 PMCID: PMC6016676 DOI: 10.1111/bph.14185] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The histaminergic system is a promising target for the development of new analgesics, as histamine H3 and H4 receptors are expressed in regions concerned with nociceptive transmission. Here we have determined the analgesic effects of new H3 and H4 receptor antagonists in naive and neuropathic mice. EXPERIMENTAL APPROACH We used chronic constriction injury (CCI) to the sciatic nerve in mice to model neuropathy. Effects of a new H3 receptor antagonist, E-162(1-(5-(naphthalen-1-yloxy)pentyl)piperidine) and H4 receptor antagonist, TR-7(4-(4-chlorophenyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine) were assessed on mechanical (von Frey) and thermal (cold plate, tail flick) stimuli in mice with and without CCI (7 days after injury). Effects of these antagonists on morphine analgesia were also evaluated, along with the possible participation of H1 receptors in their effects. We analysed the compounds in binding and functional cAMP assays at the H3 and H4 receptors and determined metabolic stability. KEY RESULTS E-162 and TR-7 attenuated nociceptive responses and profound morphine analgesia in males with CCI. These antagonists showed analgesia in naive mice (tail flick test) and produced prolonged analgesia in neuropathic females. E-162-induced analgesia was reversed by pyrilamine, an H1 receptor antagonist. E-162 bound potently to H3 receptors (Ki = 55 nM) and inhibited cAMP accumulation (IC50 = 165 nM). TR-7 showed lower affinity for H4 receptors (Ki = 203 nM) and IC50 of 512 nM. CONCLUSIONS AND IMPLICATIONS We describe a therapeutic use for new H3 (E-162) and H4 receptor (TR-7) antagonists in neuropathy. Targeting H3 and H4 receptors enhanced morphine analgesia, consistent with multimodal pain therapy.
Collapse
Affiliation(s)
- Katarzyna Popiolek‐Barczyk
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical CollegeKrakowPoland
- Department of Pain Pharmacology, Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical CollegeKrakowPoland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical CollegeKrakowPoland
| | - Agnieszka Olejarz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical CollegeKrakowPoland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Katarzyna Kieć‐Kononowicz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical CollegeKrakowPoland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| |
Collapse
|
63
|
Djouhri L, Smith T, Alotaibi M, Weng X. Membrane potential oscillations are not essential for spontaneous firing generation in L4 Aβ-afferent neurons after L5 spinal nerve axotomy and are not mediated by HCN channels. Exp Physiol 2018; 103:1145-1156. [PMID: 29860719 DOI: 10.1113/ep087013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is spontaneous activity (SA) in L4 dorsal root ganglion (DRG) neurons induced by L5 spinal nerve axotomy associated with membrane potential oscillations in these neurons, and if so, are these membrane oscillations mediated by HCN channels? What is the main finding and its importance? Unlike injured L5 DRG neurons, which have been shown to be incapable of firing spontaneously without membrane potential oscillations, membrane potential oscillations are not essential for SA generation in conducting 'uninjured' L4 neurons, and they are not mediated by HCN channels. These findings suggest that the underlying cellular mechanisms of SA in injured and 'uninjured' DRG neurons induced by spinal nerve injury are distinct. ABSTRACT The underlying cellular and molecular mechanisms of peripheral neuropathic pain are not fully understood. However, preclinical studies using animal models suggest that this debilitating condition is driven partly by aberrant spontaneous activity (SA) in injured and uninjured dorsal root ganglion (DRG) neurons, and that SA in injured DRG neurons is triggered by subthreshold membrane potential oscillations (SMPOs). Here, using in vivo intracellular recording from control L4-DRG neurons, and ipsilateral L4-DRG neurons in female Wistar rats that had previously undergone L5 spinal nerve axotomy (SNA), we examined whether conducting 'uninjured' L4-DRG neurons in SNA rats exhibit SMPOs, and if so, whether such SMPOs are associated with SA in those L4 neurons, and whether they are mediated by hyperpolarization-activated cyclic nucleotide gated (HCN) channels. We found that 7 days after SNA: (a) none of the control A- or C-fibre DRG neurons showed SMPOs or SA, but 50%, 43% and 0% of spontaneously active cutaneous L4 Aβ-low threshold mechanoreceptors, Aβ-nociceptors and C-nociceptors exhibited SMPOs, respectively, in SNA rats with established neuropathic pain behaviors; (b) neither SMPOs nor SA in L4 Aβ-neurons was suppressed by blocking HCN channels with ZD7288 (10 mg kg-1 , i.v.); and (c) there is a tendency for female rats to show greater pain hypersensitivity than male rats. These results suggest that SMPOs are linked to SA only in some of the conducting L4 Aβ-neurons, that such oscillations are not a prerequisite for SA generation in those L4 A- or C-fibre neurons, and that HCN channels are not involved in their electrogenesis.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, College of Medicine, Alfaisal University, PO Box 50927, Riyadh, 11533, Saudi Arabia
| | - T Smith
- Wolfson CARD, Neurorestoration Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - M Alotaibi
- Department of Physiology, College of Medicine, King Saud University, PO Box 7805, Riyadh, 11472, Saudi Arabia
| | - X Weng
- Department of Neurobiology and State Key Laboratory of Proteomics, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| |
Collapse
|
64
|
Durrant A, Swift M, Beazley-Long N. A role for pericytes in chronic pain? Curr Opin Support Palliat Care 2018; 12:154-161. [PMID: 29553988 PMCID: PMC6027993 DOI: 10.1097/spc.0000000000000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW The importance of the blood-brain barrier (BBB) and neuroinflammation in neurodegenerative conditions is becoming increasingly apparent, yet very little is known about these neurovascular functions in nonmalignant disease chronic pain. Neural tissue pericytes play critical roles in the formation and maintenance of the BBB. Herein, we review the important roles of neural pericytes and address their potential role in chronic pain. RECENT FINDINGS Pericytes are implicated in the function of neural microvasculature, including BBB permeability, neuroimmune factor secretion and leukocyte transmigration. In addition, the multipotent stem cell nature of pericytes affords pericytes the ability to migrate into neural parenchyma and differentiate into pain-associated cell types. These recent findings indicate that pericytes are key players in pathological BBB disruption and neuroinflammation, and as such pericytes may be key players in chronic pain states. SUMMARY Pericytes play key roles in pathological processes associated with chronic pain. We propose that pericytes may be a therapeutic target for painful diseases that have associated neural vascular dysfunction. Given the paucity of new pharmacotherapies for chronic pain conditions, we hope that this review inspires researchers to unearth the potential role(s) of pericytes in chronic pain sowing the seeds for future new chronic pain therapies.
Collapse
Affiliation(s)
- A.M. Durrant
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| | - M.N Swift
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| | - N. Beazley-Long
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| |
Collapse
|
65
|
Beazley-Long N, Durrant AM, Swift MN, Donaldson LF. The physiological functions of central nervous system pericytes and a potential role in pain. F1000Res 2018; 7:341. [PMID: 29623199 PMCID: PMC5861511 DOI: 10.12688/f1000research.13548.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 12/29/2022] Open
Abstract
Central nervous system (CNS) pericytes regulate critical functions of the neurovascular unit in health and disease. CNS pericytes are an attractive pharmacological target for their position within the neurovasculature and for their role in neuroinflammation. Whether the function of CNS pericytes also affects pain states and nociceptive mechanisms is currently not understood. Could it be that pericytes hold the key to pain associated with CNS blood vessel dysfunction? This article reviews recent findings on the important physiological functions of CNS pericytes and highlights how these neurovascular functions could be linked to pain states.
Collapse
Affiliation(s)
- Nicholas Beazley-Long
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Alexandra M Durrant
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Matthew N Swift
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Lucy F Donaldson
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| |
Collapse
|
66
|
Gianazza E, Miller I, Guerrini U, Palazzolo L, Parravicini C, Eberini I. Gender proteomics I. Which proteins in non-sexual organs. J Proteomics 2017; 178:7-17. [PMID: 28988882 DOI: 10.1016/j.jprot.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Differences related to gender have long been neglected but recent investigations show that they are widespread and may be recognized with all types of omics approaches, both in tissues and in biological fluids. Our review compiles evidence collected with proteomics techniques in our species, mainly focusing on baseline parameters in non-sexual organs in healthy men and women. Data from human specimens had to be replaced with information from other mammals every time invasive procedures of sample procurement were involved. SIGNIFICANCE As our knowledge, and the methods to build it, get refined, gender differences need to receive more and more attention, as they influence the outcome of all aspects in lifestyle, including diet, exercise and environmental factors. In turn this background modulates a differential susceptibility to some disease, or a different pathogenetic mechanism, depending on gender, and a different response to pharmacological therapy. Preparing this review we meant to raise awareness about the gender issue. We anticipate that more and more often, in the future, separate evaluations will be carried out on male and female subjects as an alternative - and an upgrade - to the current approach of reference and test groups being 'matched for age and sex'.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy.
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| |
Collapse
|
67
|
Khangura RK, Bali A, Kaur G, Singh N, Jaggi AS. Neuropathic pain attenuating effects of perampanel in an experimental model of chronic constriction injury in rats. Biomed Pharmacother 2017; 94:557-563. [DOI: 10.1016/j.biopha.2017.07.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 01/31/2023] Open
|
68
|
Zou W, Xu W, Song Z, Zhong T, Weng Y, Huang C, Li M, Zhang C, Zhan X, Guo Q. Proteomic Identification of an Upregulated Isoform of Annexin A3 in the Spinal Cords of Rats in a Neuropathic Pain Model. Front Neurosci 2017; 11:484. [PMID: 28928629 PMCID: PMC5591859 DOI: 10.3389/fnins.2017.00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain (NP) is induced by nerve damage or a disturbance in the peripheral or central nervous systems. Nerve damage causes the activation of sensitizing mechanisms in the peripheral and central nervous systems, which induces transcriptional and post-transcriptional alterations in sensory nerves. However, the underlying mechanisms of NP remain elusive. In the study, Two-dimensional gel electrophoresis (2DGE)-based comparative proteomics identified 38 differential gel spots, and 15 differentially expressed proteins (DEPs) between the sham and the chronic constriction injury (CCI)-induced neuropathic pain rats. Of them, Annexin A3 (ANXA3) was significantly increased after CCI with Western blot analysis and immunofluorescence imaging. A lentivirus delivering ANXA3 shRNA (LV-shANXA3) was administered intrathecally to determine the analgesic effects of ANXA3 on allodynia and hyperalgesia in a CCI-induced neuropathic pain model in rats. Further study showed that LV-shANXA3 reversed the upregulation of ANXA3, alleviated CCI-induced mechanical allodynia and thermal hyperalgesia. The study indicated that ANXA3 may play an important role in neuropathic pain.
Collapse
Affiliation(s)
- Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Wei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Tao Zhong
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South UniversityChangsha, China
| | - Chuanlei Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South UniversityChangsha, China.,Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South UniversityChangsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
69
|
Serum protein changes in a rat model of chronic pain show a correlation between animal and humans. Sci Rep 2017; 7:41723. [PMID: 28145509 PMCID: PMC5286399 DOI: 10.1038/srep41723] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/03/2017] [Indexed: 01/02/2023] Open
Abstract
In previous works we showed the overexpression of some proteins in biological fluids from patients suffering chronic pain. In this proteomic study we analysed serum from a rat model of neuropathic pain obtained by the chronic constriction injury (CCI) of sciatic nerve, at two time intervals, 2 and 5 weeks after the insult, to find proteins involved in the expression or mediation of pain. Sham-operated and CCI rats were treated with saline or indomethacin. Two weeks after ligation, we identified three serum proteins overexpressed in CCI rats, two of which, alpha-1-macroglobulin and vitamin D-binding protein (VDBP), remained increased 5 weeks post-surgery; at this time interval, we found increased levels of further proteins, namely apolipoprotein A-I (APOA1), apolipoprotein E (APOE), prostaglandin-H2 D-isomerase (PTGDS) and transthyretin (TTR), that overlap the overexpressed proteins found in humans. Indomethacin treatment reversed the effects of ligation. The qPCR analysis showed that transcript levels of APOA1, APOE, PTGDS and VDBP were overexpressed in the lumbar spinal cord (origin of sciatic nerve), but not in the striatum (an unrelated brain region), of CCI rats treated with saline 5 weeks after surgery, demonstrating that the lumbar spinal cord is a possible source of these proteins.
Collapse
|
70
|
Barr GA, Wang S, Weisshaar CL, Winkelstein BA. Developmental Changes in Pain and Spinal Immune Gene Expression after Radicular Trauma in the Rat. Front Neurol 2016; 7:223. [PMID: 28018284 PMCID: PMC5156703 DOI: 10.3389/fneur.2016.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Neuropathic pain is chronic pain that develops after nerve injury and is less frequent in infants and children than in adults. Likewise, in animal models of neuropathic pain, allodynia and hyperalgesia are non-existent or attenuated in the infant, with a “switch” during development by which acute nerve injury transitions to chronic pain. Concomitant with the delay in neuropathic pain, there is a parallel delay in the ability of nerve injury to activate the immune system. Models of neuropathic pain in the infant have used various ligation methods and find that neuropathic pain does not occur under after postnatal days 21–28 (PN21–PN28), linked to activation of immune processes and developmental regulation of anti-inflammatory cytokines. We applied a model of neuropathic pain in the adult using a transient compression of the cervical nerve or nerve root in infant rats (injured at 10, 14, 21, or 28 days of age) to define transition periods during which injury results in no change in thermal and mechanical pain sensitivity or in short-term changes in pain. There was little to no hyperalgesia when the injury was imposed at PN10, but significant thermal hyperalgesia and mechanical allodynia 1 day after compression injury when performed at PN14, 21, or 28. Thermal withdrawal latencies returned to near baseline by 7 days postsurgery when the injuries were at PN14, and lasted up to 14 days when the injury was imposed at PN28. There was mechanical allodynia following injury at 1 day postinjury and at 14 days after injury at PN14. Measurements of mRNA from spinal cord at 1, 7, and 14 days postinjury at PN14, 21, and 28 showed that both the magnitude and duration of elevated immune markers and chemokines/cytokines were greater in the older animals, corresponding to the development of hyperalgesia. Thus, we confirm the late onset of neuropathic pain but found no evidence of emergent hyperalgesia if the injury was before PN21. This may be due to the use of a transient, and not sustained, compression ligation model.
Collapse
Affiliation(s)
- Gordon A Barr
- Division of Basic Science Research, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | - Shaoning Wang
- Division of Basic Science Research, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | - Christine L Weisshaar
- Spine Pain Research Laboratory, Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, PA , USA
| | - Beth A Winkelstein
- Spine Pain Research Laboratory, Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
71
|
Gomez-Varela D, Schmidt M. Exploring novel paths towards protein signatures of chronic pain. Mol Pain 2016; 12:12/0/1744806916679658. [PMID: 27920228 PMCID: PMC5153021 DOI: 10.1177/1744806916679658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022] Open
Abstract
Pain is a major symptom of many medical conditions and the worldwide number one reason for people to seek medical assistance. It affects the quality of life of patients and poses a heavy financial burden on society with high costs of treatment and lost productivity. Furthermore, the treatment of chronic pain presents a big challenge as pain therapeutics often lack efficacy and exhibit minimal safety profiles. The latter can be largely attributed to the fact that current therapies target molecules with key physiological functions throughout the body. In light of these difficulties, the identification of proteins specifically involved in chronic pain states is of paramount importance for designing selective interventions. Several profiling efforts have been employed with the aim to dissect the molecular underpinnings of chronic pain, both on the level of the transcriptome and proteome. However, generated results are often inconsistent and non-overlapping, which is largely due to inherent technical constraints. A potential solution may be offered by emerging strategies capable of performing standardized and reproducible proteome analysis, such as data-independent acquisition-mass spectrometry (DIA-MS). We have recently demonstrated the applicability of DIA-MS to interrogate chronic pain-related proteome alterations in mice. Based on our results, we aim to provide an overview on DIA-MS and its potential to contribute to the comprehensive characterization of molecular signatures underlying pain pathologies.
Collapse
Affiliation(s)
| | - Manuela Schmidt
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
72
|
Adenosine receptor targets for pain. Neuroscience 2016; 338:1-18. [DOI: 10.1016/j.neuroscience.2015.10.031] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022]
|
73
|
Melchior M, Poisbeau P, Gaumond I, Marchand S. Insights into the mechanisms and the emergence of sex-differences in pain. Neuroscience 2016; 338:63-80. [DOI: 10.1016/j.neuroscience.2016.05.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/01/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022]
|
74
|
Machelska H, Celik MÖ. Recent advances in understanding neuropathic pain: glia, sex differences, and epigenetics. F1000Res 2016; 5:2743. [PMID: 28105313 PMCID: PMC5224690 DOI: 10.12688/f1000research.9621.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 12/17/2022] Open
Abstract
Neuropathic pain results from diseases or trauma affecting the nervous system. This pain can be devastating and is poorly controlled. The pathophysiology is complex, and it is essential to understand the underlying mechanisms in order to identify the relevant targets for therapeutic intervention. In this article, we focus on the recent research investigating neuro-immune communication and epigenetic processes, which gain particular attention in the context of neuropathic pain. Specifically, we analyze the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the modulation of the central nervous system inflammation triggered by neuropathy. Considering epigenetics, we address DNA methylation, histone modifications, and the non-coding RNAs in the regulation of ion channels, G-protein-coupled receptors, and transmitters following neuronal damage. The goal was not only to highlight the emerging concepts but also to discuss controversies, methodological complications, and intriguing opinions.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Melih Ö Celik
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
75
|
Rau RH, Lin YC, Cheng JK. Sex Differences in Elderly Patients Using Patient Controlled Analgesia in the Postoperative Period: A Retrospective Database Analysis. INT J GERONTOL 2016. [DOI: 10.1016/j.ijge.2015.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
76
|
Shenoy PA, Kuo A, Vetter I, Smith MT. The Walker 256 Breast Cancer Cell- Induced Bone Pain Model in Rats. Front Pharmacol 2016; 7:286. [PMID: 27630567 PMCID: PMC5005431 DOI: 10.3389/fphar.2016.00286] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
The majority of patients with terminal breast cancer show signs of bone metastasis, the most common cause of pain in cancer. Clinically available drug treatment options for the relief of cancer-associated bone pain are limited due to either inadequate pain relief and/or dose-limiting side-effects. One of the major hurdles in understanding the mechanism by which breast cancer causes pain after metastasis to the bones is the lack of suitable preclinical models. Until the late twentieth century, all animal models of cancer induced bone pain involved systemic injection of cancer cells into animals, which caused severe deterioration of animal health due to widespread metastasis. In this mini-review we have discussed details of a recently developed and highly efficient preclinical model of breast cancer induced bone pain: Walker 256 cancer cell- induced bone pain in rats. The model involves direct localized injection of cancer cells into a single tibia in rats, which avoids widespread metastasis of cancer cells and hence animals maintain good health throughout the experimental period. This model closely mimics the human pathophysiology of breast cancer induced bone pain and has great potential to aid in the process of drug discovery for treating this intractable pain condition.
Collapse
Affiliation(s)
- Priyank A Shenoy
- School of Biomedical Sciences, The University of QueenslandBrisbane, QLD, Australia; Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
| | - Andy Kuo
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of QueenslandBrisbane, QLD, Australia; School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia; School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
77
|
Sorge RE, Totsch SK. Sex Differences in Pain. J Neurosci Res 2016; 95:1271-1281. [PMID: 27452349 DOI: 10.1002/jnr.23841] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/23/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022]
Abstract
Females greatly outnumber males as sufferers of chronic pain. Although social and psychological factors certainly play a role in the differences in prevalence and incidence, biological differences in the functioning of the immune system likely underlie these observed effects. This Review examines the current literature on biological sex differences in the functioning of the innate and adaptive immune systems as they relate to pain experience. With rodent models, we and others have observed that male mice utilize microglia in the spinal cord to mediate pain, whereas females preferentially use T cells in a similar manner. The difference can be traced to differences in cell populations, differences in suppression by hormones, and disparate cellular responses in males and females. These sex differences also translate into human cellular responses and may be the mechanism by which the disproportionate chronic pain experience is based. Recognition of the evidence underlying sex differences in pain will guide development of treatments and provide better options for patients that are tailored to their physiology. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert E Sorge
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stacie K Totsch
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
78
|
|
79
|
Rouwette T, Sondermann J, Avenali L, Gomez-Varela D, Schmidt M. Standardized Profiling of The Membrane-Enriched Proteome of Mouse Dorsal Root Ganglia (DRG) Provides Novel Insights Into Chronic Pain. Mol Cell Proteomics 2016; 15:2152-68. [PMID: 27103637 DOI: 10.1074/mcp.m116.058966] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 01/08/2023] Open
Abstract
Chronic pain is a complex disease with limited treatment options. Several profiling efforts have been employed with the aim to dissect its molecular underpinnings. However, generated results are often inconsistent and nonoverlapping, which is largely because of inherent technical constraints. Emerging data-independent acquisition (DIA)-mass spectrometry (MS) has the potential to provide unbiased, reproducible and quantitative proteome maps - a prerequisite for standardization among experiments. Here, we designed a DIA-based proteomics workflow to profile changes in the abundance of dorsal root ganglia (DRG) proteins in two mouse models of chronic pain, inflammatory and neuropathic. We generated a DRG-specific spectral library containing 3067 DRG proteins, which enables their standardized quantification by means of DIA-MS in any laboratory. Using this resource, we profiled 2526 DRG proteins in each biological replicate of both chronic pain models and respective controls with unprecedented reproducibility. We detected numerous differentially regulated proteins, the majority of which exhibited pain model-specificity. Our approach recapitulates known biology and discovers dozens of proteins that have not been characterized in the somatosensory system before. Functional validation experiments and analysis of mouse pain behaviors demonstrate that indeed meaningful protein alterations were discovered. These results illustrate how the application of DIA-MS can open new avenues to achieve the long-awaited standardization in the molecular dissection of pathologies of the somatosensory system. Therefore, our findings provide a valuable framework to qualitatively extend our understanding of chronic pain and somatosensation.
Collapse
Affiliation(s)
- Tom Rouwette
- From the ‡Somatosensory Signaling and Systems Biology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Goettingen, Germany
| | - Julia Sondermann
- From the ‡Somatosensory Signaling and Systems Biology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Goettingen, Germany
| | - Luca Avenali
- From the ‡Somatosensory Signaling and Systems Biology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Goettingen, Germany
| | - David Gomez-Varela
- From the ‡Somatosensory Signaling and Systems Biology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Goettingen, Germany
| | - Manuela Schmidt
- From the ‡Somatosensory Signaling and Systems Biology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Goettingen, Germany
| |
Collapse
|
80
|
Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. 17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Sci Rep 2016; 6:18980. [PMID: 26742647 PMCID: PMC4705539 DOI: 10.1038/srep18980] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 09/02/2015] [Indexed: 01/31/2023] Open
Abstract
Sex differences play a role in pain sensitivity, efficacy of analgesic drugs and prevalence of neuropathic pain, even if the underlying mechanisms are far from being understood. We demonstrate that male and female mice react differently to structural and functional changes induced by sciatic nerve ligature, used as model of neuropathic pain. Male mice show a gradual decrease of allodynia and a complete recovery while, in females, allodynia and gliosis are still present four months after neuropathy induction. Administration of 17β-estradiol is able to significantly attenuate this difference, reducing allodynia and inducing a complete recovery also in female mice. Parallel to pain attenuation, 17β-estradiol treated-mice show a functional improvement of the injured limb, a faster regenerative process of the peripheral nerve and a decreased neuropathy-induced gliosis. These results indicate beneficial effects of 17β-estradiol on neuropathic pain and neuronal regeneration and focuses on the importance of considering gonadal hormones also in clinical studies.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Sara Marinelli
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Luisa Pieroni
- IRCCS Fondazione Santa Lucia, 00143 Roma, Italy.,Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", 00133 Roma, Italy
| | - Andrea Urbani
- IRCCS Fondazione Santa Lucia, 00143 Roma, Italy.,Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", 00133 Roma, Italy
| | - Siro Luvisetto
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Flaminia Pavone
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| |
Collapse
|
81
|
Brown SG, Shirachi S, Zandbergen D. HEALTH SELECTION THEORY: AN EXPLANATION FOR THE PARADOX BETWEEN PERCEIVED MALE WELL-BEING AND MORTALITY. QUARTERLY REVIEW OF BIOLOGY 2015; 90:3-21. [PMID: 26434163 DOI: 10.1086/679761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Paradoxically, men report better health and quality of life than women, but men experience higher mortality rates than women at most ages. One conclusion from these findings is that men have been selected to disregard signs of ill health, or even to deceive themselves about their health, to their detriment because presenting themselves as healthy has fitness benefits. We hypothesize that men have been sexually selected to present themselves to women as healthy but that the cost of not attending to their minor health problems results in earlier mortality than women. We present a review of the human and primate literature that supports health selection theory, the hypothesis that females have preferentially selected males who present themselves as healthy.
Collapse
|
82
|
Delayed activation of spinal microglia contributes to the maintenance of bone cancer pain in female Wistar rats via P2X7 receptor and IL-18. J Neurosci 2015; 35:7950-63. [PMID: 25995479 DOI: 10.1523/jneurosci.5250-14.2015] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence suggests that activation of spinal microglia contributes to the development of inflammatory and neuropathic pain. However, the role of spinal microglia in the maintenance of chronic pain remains controversial. Bone cancer pain shares features of inflammatory and neuropathic pain, but the temporal activation of microglia and astrocytes in this model is not well defined. Here, we report an unconventional role of spinal microglia in the maintenance of advanced-phase bone cancer pain in a female rat model. Bone cancer elicited delayed and persistent microglial activation in the spinal dorsal horn on days 14 and 21, but not on day 7. In contrast, bone cancer induced rapid and persistent astrocytic activation on days 7-21. Spinal inhibition of microglia by minocycline at 14 d effectively reduced bone cancer-induced allodynia and hyperalgesia. However, pretreatment of minocycline in the first week did not affect the development of cancer pain. Bone cancer increased ATP levels in CSF, and upregulated P2X7 receptor, phosphorylated p38, and IL-18 in spinal microglia. Spinal inhibition of P2X7/p-38/IL-18 pathway reduced advanced-phase bone cancer pain and suppressed hyperactivity of spinal wide dynamic range (WDR) neurons. IL-18 induced allodynia and hyperalgesia after intrathecal injection, elicited mechanical hyperactivity of WDR neurons in vivo, and increased the frequency of mEPSCs in spinal lamina IIo nociceptive synapses in spinal cord slices. Together, our findings demonstrate a novel role of microglia in maintaining advanced phase cancer pain in females via producing the proinflammatory cytokine IL-18 to enhance synaptic transmission of spinal cord nociceptive neurons.
Collapse
|
83
|
Sex differences in a Murine Model of Complex Regional Pain Syndrome. Neurobiol Learn Mem 2015; 123:100-9. [PMID: 26070658 DOI: 10.1016/j.nlm.2015.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/21/2015] [Accepted: 06/03/2015] [Indexed: 01/23/2023]
Abstract
Complex Regional Pain Syndrome (CRPS) is a major cause of chronic pain after surgery or trauma to the limbs. Despite evidence showing that the prevalence and severity of many forms of chronic pain, including CRPS, differ between males and females, laboratory studies on sex-related differences in animal models of CRPS are not available, and the impact of sex on the transition from acute to chronic CRPS pain and disability are unexplored. Here we make use of a tibia fracture/cast mouse model that recapitulates the nociceptive, functional, vascular, trophic, inflammatory and immune aspects of CRPS. Our aim is to describe the chronic time course of nociceptive, motor and memory changes associated with fracture/cast in male and female mice, in addition to exploring their underlying spinal mechanisms. Our behavioral data shows that, compared to males, female mice display lower nociceptive thresholds following fracture in the absence of any differences in ongoing or spontaneous pain. Furthermore, female mice show exaggerated signs of motor dysfunction, deficits in fear memory, and latent sensitization that manifests long after the normalization of nociceptive thresholds. Our biochemical data show differences in the spinal cord levels of the glutamate receptor NR2b, suggesting sex differences in mechanisms of central sensitization that could account for differences in duration and severity of CRPS symptoms between the two groups.
Collapse
|
84
|
Activation of GPR30 attenuates chronic pain-related anxiety in ovariectomized mice. Psychoneuroendocrinology 2015; 53:94-107. [PMID: 25614360 DOI: 10.1016/j.psyneuen.2014.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 11/21/2022]
Abstract
Estrogen regulates neuroendocrine and inflammatory processes that play critical roles in neuroinflammation, anxiety, and chronic pain. Patients suffering from chronic pain often complain of anxiety. However, limited information is available regarding the neural circuitry of chronic pain-related anxiety and the related function of estrogen. Hindpaw injection of complete Freund's adjuvant (CFA) and chronic constriction injury (CCI) of the sciatic nerve induced notable pain sensitization and anxiety-like behavior in ovariectomized (OVX) mice. We found that the level of G-protein-coupled receptor 30 (GPR30), a membrane estrogen receptor, was significantly increased in the basolateral amygdala (BLA) of ovariectomized (OVX) mice suffering from chronic inflammatory and neuropathic pain. Subcutaneous injection or BLA local infusion of the GPR30 agonist G1 significantly reduced anxiety-like behavior in CFA-injected and CCI-OVX mice; however, this treatment did not alter the nociceptive threshold. GPR30 knock down by shRNA in the BLA of OVX mice inhibited the anxiolytic effects of GPR30 activation. G1 administration reversed the upregulation of GluR1 subunit in AMPA and NR2A-containing NMDA receptors and the downregulation of GABAA receptors in the BLA of CFA-injected and CCI-OVX mice. Electrophysiological recording revealed that GPR30 activation could prevent imbalance between excitatory and inhibitory transmissions in the BLA synapses of CFA-injected OVX mice. In conclusion, GPR30 activation induced anxiolytic effects but did not affect the nociceptive threshold of mice under chronic pain. The anxiolytic effects of GPR30 were partially due to maintaining the balance between excitatory and inhibitory transmissions in the BLA.
Collapse
|
85
|
D-aspartate modulates nociceptive-specific neuron activity and pain threshold in inflammatory and neuropathic pain condition in mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:905906. [PMID: 25629055 PMCID: PMC4299315 DOI: 10.1155/2015/905906] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/24/2014] [Indexed: 11/17/2022]
Abstract
D-Aspartate (D-Asp) is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO). D-Asp acts as an agonist on NMDA receptors (NMDARs). Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo (-/-)) or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo (-/-) mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo (-/-) mice show an increased evoked activity of the nociceptive specific (NS) neurons of the dorsal horn of the spinal cord (L4-L6) and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions.
Collapse
|
86
|
Smith PA. BDNF: No gain without pain? Neuroscience 2014; 283:107-23. [DOI: 10.1016/j.neuroscience.2014.05.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 12/22/2022]
|