51
|
Peek AL, Rebbeck T, Puts NAJ, Watson J, Aguila MER, Leaver AM. Brain GABA and glutamate levels across pain conditions: A systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool. Neuroimage 2020; 210:116532. [DOI: 10.1016/j.neuroimage.2020.116532] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
|
52
|
An exploratory proton MRS examination of gamma-aminobutyric acid, glutamate, and glutamine and their relationship to affective aspects of chronic pain. Neurosci Res 2020; 163:10-17. [PMID: 32171782 DOI: 10.1016/j.neures.2020.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/24/2023]
Abstract
Veterans experience chronic pain more frequently than civilians. Identification of neurobiological mechanisms underlying the pathophysiology of chronic pain in a veteran population may aid in the development of novel treatment targets. In this pilot proof-of-concept study, veterans with chronic pain (N = 61) and no chronic pain (N = 19) completed clinical interviews, self-report questionnaires inquiring about pain history, interference of pain with daily life, and pain catastrophizing, as well as measures of depressive and anxious symptoms. Veterans also underwent single-voxel proton (1H) magnetic resonance spectroscopy (MRS) at 3 T in the anterior cingulate cortex (ACC) using a two-dimensional (2D) J-resolved point spectroscopy sequence. We found no group difference in neurometabolites between veterans with and without chronic pain; however, pain intensity, negative thinking about pain, and description of pain in affective terms were associated with lower GABA/Cre in the ACC. In addition, the Glu/GABA ratio in the ACC was positively associated with anxiety and depressive symptoms in veterans with chronic pain. Reductions in GABA in the ACC may contribute to increased pain intensity and greater pain catastrophizing in veterans with chronic pain. Furthermore, a disturbance in the excitatory-inhibitory balance may contribute to the anxious and depressive symptoms related to chronic pain. Given the pilot nature of the study, these findings must be considered preliminary.
Collapse
|
53
|
Niddam DM, Lai KL, Tsai SY, Lin YR, Chen WT, Fuh JL, Wang SJ. Brain metabolites in chronic migraine patients with medication overuse headache. Cephalalgia 2020; 40:851-862. [PMID: 32098478 DOI: 10.1177/0333102420908579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Medication overuse headache may be associated with widespread alterations along the thalamocortical pathway, a pathway involved in pain perception and disease progression. This study addressed whether brain metabolites in key regions of the thalamocortical pathway differed between chronic migraine patients with medication overuse headache and without medication overuse headache. METHODS Magnetic resonance spectroscopic imaging was used to map metabolites in the bilateral anterior cingulate cortices, mid cingulate cortices, posterior cingulate cortices, and the thalami. Sixteen patients with medication overuse headache were compared with 16 matched patients without medication overuse headache and 16 matched healthy controls. RESULTS Glutamate and glutamine in the right mid cingulate cortex and myo-inositol in the left anterior cingulate cortex were significantly higher in patients with medication overuse headache than patients without medication overuse headache, but similar to healthy controls. Both patient groups exhibited reduced N-acetyl-aspartate and creatine in the thalamus, reduced myo-inositol in the right anterior cingulate cortex, and elevated choline in the right mid cingulate cortex. Finally, a negative association between myo-inositol laterality index in the anterior cingulate cortices and number of days per month with acute medication use was found across all patients. CONCLUSIONS Patients with medication overuse headache were characterized by a distinct concentration profile of myo-inositol, a glial marker, in the anterior cingulate cortices that may have arisen from medication overuse and could contribute to the development of medication overuse headache.
Collapse
Affiliation(s)
- David M Niddam
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan.,Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Yi-Ru Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jong-Ling Fuh
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
54
|
Huynh V, Rosner J, Curt A, Kollias S, Hubli M, Michels L. Disentangling the Effects of Spinal Cord Injury and Related Neuropathic Pain on Supraspinal Neuroplasticity: A Systematic Review on Neuroimaging. Front Neurol 2020; 10:1413. [PMID: 32116986 PMCID: PMC7013003 DOI: 10.3389/fneur.2019.01413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Spinal cord injury (SCI) and its accompanying changes of brain structure and function have been widely studied and reviewed. Debilitating chronic neuropathic pain (NP) is reported in 53% of SCI patients, and brain changes have been shown to be involved with the presence of this secondary complication. However, there is yet a synthesis of current studies that investigated brain structure, resting connectivity, and metabolite changes that accompanies this condition. Methods: In this review, a systematic search was performed using Medical Subject Headings heading search terms in PubMed and SCOPUS to gather the appropriate published studies. Neuroimaging studies that investigated supraspinal structural, resting-state connectivity, and metabolite changes in SCI subjects with NP were included. To this end, voxel-based morphometry, diffusion tensor imaging, resting-state functional MRI, magnetic resonance spectroscopy, and PET studies were summarized and reviewed. Further inclusion and exclusion criteria allowed delineation of appropriate studies that included SCI subgroups with and without NP. Results: A total of 12 studies were eligible for qualitative synthesis. Overall, current studies that investigated NP-associated changes within the SCI cohort show primarily metabolite concentration alterations in sensory-pain processing regions, alongside bidirectional changes of brain structure. Moreover, in comparison to healthy controls, there remains limited evidence of structural and connectivity changes but a range of alterations in metabolite concentrations in SCI subjects with NP. Conclusions: There is some evidence suggesting that the magnitude and presence of NP following SCI results in both adaptive and maladaptive structural plasticity of sensorimotor regions, alongside altered metabolism of brain areas involved with descending pain modulation, pain perception (i.e., anterior cingulate cortex) and sensory integration (i.e., thalamus). However, based on the fact that only a few studies investigated structural and glucose metabolic changes in chronic SCI subjects with NP, the underlying mechanisms that accompany this condition remains to be further elucidated. Future cross-sectional or longitudinal studies that aim to disentangle NP related to SCI may benefit from stricter constraints in subject cohorts, controlled subgroups, improved pain phenotyping, and implementation of multimodal approaches to discover sensitive biomarkers that profile pain and optimize treatment in SCI subjects with NP.
Collapse
Affiliation(s)
- Vincent Huynh
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, Bern University Hospital (Inselspital), University of Bern, Bern, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
- MR-Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
55
|
Karunakaran KD, Yuan R, He J, Zhao J, Cui JL, Zang YF, Zhang Z, Alvarez TL, Biswal BB. Resting-State Functional Connectivity of the Thalamus in Complete Spinal Cord Injury. Neurorehabil Neural Repair 2020; 34:122-133. [PMID: 31904298 DOI: 10.1177/1545968319893299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background. Neuroimaging studies of spinal cord injury (SCI) have mostly examined the functional organization of the cortex, with only limited focus on the subcortical substrates of the injury. However, thalamus is an important modulator and sensory relay that requires investigation at a subnuclei level to gain insight into the neuroplasticity following SCI. Objective. To use resting-state functional magnetic resonance imaging to examine the functional connectivity (FC) of thalamic subnuclei in complete SCI patients. Methods. A seed-based connectivity analysis was applied for 3 thalamic subnuclei: pulvinar, mediodorsal, and ventrolateral nucleus in each hemisphere. A nonparametric 2-sample t test with permutations was applied for each of the 6 thalamic seeds to compute FC differences between 22 healthy controls and 19 complete SCI patients with paraplegia. Results. Connectivity analysis showed a decrease in the FC of the bilateral mediodorsal nucleus with right superior temporal gyrus and anterior cingulate cortex in the SCI group. Similarly, the left ventrolateral nucleus exhibited decreased FC with left superior temporal gyrus in SCI group. In contrast, left pulvinar nucleus demonstrated an increase in FC with left inferior frontal gyrus and left inferior parietal lobule in SCI group. Our findings also indicate a negative relationship between postinjury durations and thalamic FC to regions of sensorimotor and visual cortices, where longer postinjury durations (~12 months) is associated with higher negative connectivity between these regions. Conclusion. This study provides evidence for reorganization in the thalamocortical connections known to be involved in multisensory integration and affective processing, with possible implications in the generation of sensory abnormalities after SCI.
Collapse
Affiliation(s)
| | - Rui Yuan
- Stanford School of Medicine, Stanford, CA, USA
| | - Jie He
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | - Jian Zhao
- Armed Police Force Hospital of Sichuan, Leshan, Sichuan, China
| | - Jian-Ling Cui
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | - Yu-Feng Zang
- Hangzhou Normal University Affiliated Hospital, Hangzhou, Zheijang, China
| | - Zhong Zhang
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | | | | |
Collapse
|
56
|
Vierck C. Mechanisms of Below-Level Pain Following Spinal Cord Injury (SCI). THE JOURNAL OF PAIN 2019; 21:262-280. [PMID: 31493490 DOI: 10.1016/j.jpain.2019.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/05/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Mechanisms of below-level pain are discoverable as neural adaptations rostral to spinal injury. Accordingly, the strategy of investigations summarized here has been to characterize behavioral and neural responses to below-level stimulation over time following selective lesions of spinal gray and/or white matter. Assessments of human pain and the pain sensitivity of humans and laboratory animals following spinal injury have revealed common disruptions of pain processing. Interruption of the spinothalamic pathway partially deafferents nocireceptive cerebral neurons, rendering them spontaneously active and hypersensitive to remaining inputs. The spontaneous activity among these neurons is disorganized and unlikely to generate pain. However, activation of these neurons by their remaining inputs can result in pain. Also, injury to spinal gray matter results in a cascade of secondary events, including excitotoxicity, with rostral propagation of excitatory influences that contribute to chronic pain. Establishment and maintenance of below-level pain results from combined influences of injured and spared axons in the spinal white matter and injured neurons in spinal gray matter on processing of nociception by hyperexcitable cerebral neurons that are partially deafferented. A model of spinal stenosis suggests that ischemic injury to the core spinal region can generate below-level pain. Additional questions are raised about demyelination, epileptic discharge, autonomic activation, prolonged activity of C nocireceptive neurons, and thalamocortical plasticity in the generation of below-level pain. PERSPECTIVE: An understanding of mechanisms can direct therapeutic approaches to prevent development of below-level pain or arrest it following spinal cord injury. Among the possibilities covered here are surgical and other means of attenuating gray matter excitotoxicity and ascending propagation of excitatory influences from spinal lesions to thalamocortical systems involved in pain encoding and arousal.
Collapse
Affiliation(s)
- Chuck Vierck
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, Florida.
| |
Collapse
|
57
|
Mao CP, Chen FR, Sun HH, Shi MJ, Yang HJ, Li XH, Ding D. Larger regional volume of the thalamus in diarrhea-predominant irritable bowel syndrome: a cross-sectional study. Brain Imaging Behav 2019; 14:2302-2310. [PMID: 31468373 DOI: 10.1007/s11682-019-00181-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As a relay center between the cerebral cortex and various subcortical brain areas, the thalamus is repeatedly associated with the dysfunction of brain-gut interaction in patients with irritable bowel syndrome (IBS). However, the regional morphological alterations of the thalamus in IBS are not well defined. We acquired structural magnetic resonance data from 34 patients with IBS and 34 demographically similar healthy subjects. Data processing was performed using FMRIB's Integrated Registration and Segmentation Tool (FIRST). Volumetric analysis and surface-based vertex analysis were both carried out to characterize the morphology of the thalamus and other subcortical structures. Our results suggested that the majority (31 cases) of the patients with IBS had diarrhea-predominant symptoms. Volumetric analysis revealed a larger normalized volume of the right thalamus and left caudate nucleus in patients with IBS than in healthy controls. Surface analysis indicated that the difference arose mainly from the laterodorsal nucleus of the right thalamus, and the body of the left caudate nucleus. In addition, patients with IBS had different hemispheric asymmetries of the thalamus (rightward) and caudate nucleus (leftward) from controls (leftward for the thalamus and rightward for the caudate nucleus). In general, our results indicated that patients with diarrhea-predominant IBS had enlarged thalamus and caudate nucleus volumes, as well as altered hemispheric asymmetries of these two structures, compared with healthy controls. The neuroimaging evidence of these structural alterations helps clarify the underlying pathophysiology of diarrhea-predominant IBS.
Collapse
Affiliation(s)
- Cui Ping Mao
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China.
| | - Fen Rong Chen
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, Xi'an, Shaanxi, People's Republic of China
| | - Hong Hong Sun
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China.
| | - Mei Juan Shi
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| | - Hua Juan Yang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| | - Xiao Hui Li
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| | - Dun Ding
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
58
|
Prefrontal neural dynamics in consciousness. Neuropsychologia 2019; 131:25-41. [DOI: 10.1016/j.neuropsychologia.2019.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
|
59
|
Youssef AM, Azqueta-Gavaldon M, Silva KE, Barakat N, Lopez N, Mahmud F, Lebel A, Sethna NF, Zurakowski D, Simons LE, Kraft E, Borsook D. Shifting brain circuits in pain chronicity. Hum Brain Mapp 2019; 40:4381-4396. [PMID: 31298464 DOI: 10.1002/hbm.24709] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 11/10/2022] Open
Abstract
The evaluation of brain changes to a specific pain condition in pediatric and adult patients allows for insights into potential mechanisms of pain chronicity and possibly long-term brain changes. Here we focused on the primary somatosensory system (SS) involved in pain processing, namely the ventroposterolateral thalamus (VPL) and the primary somatosensory cortex (SI). We evaluated, using MRI, three specific processes: (a) somatotopy of changes in the SS for different pain origins (viz., foot vs. arm); (b) differences in acute (ankle sprain versus complex regional pain syndrome-CRPS); and (c) differences of the effects of CRPS on SS in pediatric versus adult patients. In all cases, age- and sex-matched individuals were used as controls. Our results suggest a shift in concurrent gray matter density (GMD) and resting functional connectivity strengths (rFC) across pediatric and adult CRPS with (a) differential patterns of GMD (VPL) and rFC (SI) on SS in pediatric vs. adult patterns that are consistent with upper and lower limb somatotopical organization; and (b) widespread GMD alterations in pediatric CRPS from sensory, emotional and descending modulatory processes to more confined sensory-emotional changes in adult CRPS and rFC patterns from sensory-sensory alterations in pediatric populations to a sensory-emotional change in adult populations. These results support the idea that pediatric and adult CRPS are differentially represented and may reflect underlying differences in pain chronification across age groups that may contribute to the well-known differences between child and adult pain vulnerability and resilience.
Collapse
Affiliation(s)
- Andrew M Youssef
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - Monica Azqueta-Gavaldon
- Department of Orthopedics, Physical Medicine and Rehabilitation, Medical Centre of University of Munich, Munich, Germany.,Interdisciplinary Pain Unit, Medical Centre of University of Munich, Munich, Germany
| | - Katie E Silva
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - Nadia Barakat
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - Natalia Lopez
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - Farah Mahmud
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - Alyssa Lebel
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - Navil F Sethna
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - David Zurakowski
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - Laura E Simons
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Eduard Kraft
- Department of Orthopedics, Physical Medicine and Rehabilitation, Medical Centre of University of Munich, Munich, Germany.,Interdisciplinary Pain Unit, Medical Centre of University of Munich, Munich, Germany
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
60
|
Peyron R, Fauchon C. The posterior insular-opercular cortex: An access to the brain networks of thermosensory and nociceptive processes? Neurosci Lett 2019; 702:34-39. [DOI: 10.1016/j.neulet.2018.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
61
|
Liu J, Gu L, Huang Q, Hong S, Zeng X, Zhang D, Zhou F, Jiang J. Altered gray matter volume in patients with herpes zoster and postherpetic neuralgia. J Pain Res 2019; 12:605-616. [PMID: 30799946 PMCID: PMC6369852 DOI: 10.2147/jpr.s183561] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose The aim of this study was to measure brain alterations in patients with herpes zoster (HZ) and postherpetic neuralgia (PHN) and compare their differences using a voxel-based morphometry (VBM) technique. Materials and methods Thirty-three patients with HZ, 22 patients with PHN, and 28 well-matched healthy controls (HCs) were recruited. Magnetic resonance imaging data were acquired for all subjects and analyzed using the VBM method. The changes in gray matter volume (GMV) in HZ and PHN groups were compared with those in HC group, and the GMV differences were also compared between the PHN and HZ groups. Further correlation analysis and receiver operating characteristic curves were used to confirm the significance of GMV changes in various brain regions. Results Compared with HCs, decreased GMV was found in the bilateral insular lobes and increased GMV was found in the bilateral thalamus in the HZ group. In the PHN group, GMV decreased in the bilateral insula lobes, right middle frontal gyrus, bilateral precentral gyrus, and left postcentral gyrus and increased in the left cerebellar posterior lobe, right parahippocampal gyrus, and right lentiform nucleus. In addition, the PHN group exhibited increased GMV in the left cerebellar tonsil, culmen, and left lentiform nucleus and decreased GMV in the right precentral gyrus compared with the HZ group. Further correlation analysis and receiver operating characteristic curves revalidate the significance of most of these abnormal brain regions. Conclusion The VBM method revealed widespread GMV abnormalities in HZ and PHN patients. The brains of PHN patients have broader abnormalities in nonpain-related regions, suggesting the complexity of a central mechanism. When PHN patients were compared with HZ patients, the left cerebellar tonsil, culmen, and left lentiform nucleus corresponded to greater area under the curve, suggesting that abnormalities in these regions are risk factors for HZ patients’ transformation to PHN.
Collapse
Affiliation(s)
| | - Lili Gu
- Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | | | | | | | - Daying Zhang
- Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | | | | |
Collapse
|
62
|
Reorganization of the somatosensory pathway after subacute incomplete cervical cord injury. NEUROIMAGE-CLINICAL 2019; 21:101674. [PMID: 30642754 PMCID: PMC6412100 DOI: 10.1016/j.nicl.2019.101674] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Objective The main purpose of the present study was to investigate the possible somatosensory-related brain functional reorganization after traumatic spinal cord injury (SCI). Methods Thirteen patients with subacute incomplete cervical cord injury (ICCI) and thirteen age- and sex-matched healthy controls (HCs) were recruited. Eleven patients and all the HCs underwent both sensory task-related brain functional scanning and whole brain structural scanning on a 3.0 Tesla MRI system, and two patients underwent only structural scanning; the process of structural scanning was completed on thirteen patients, while functional scanning was only applied to eleven patients. We performed sensory task-related functional MRI (fMRI) to investigate the functional changes in the brain. In addition, voxel-based morphometry (VBM) was applied to explore whether any sensory-related brain structural changes occur in the whole brain after SCI. Results Compared with HCs, ICCI patients exhibited decreased activation in the left postcentral gyrus (postCG), the brainstem (midbrain and right pons) and the right cerebellar lobules IV-VI. Moreover, a significant positive association was found between the activation in the left PostCG and the activation in both the brainstem and the right cerebellar lobules IV-VI. Additionally, the decrease in gray matter volume (GMV) was detected in the left superior parietal lobule (SPL). The decrease of white matter volume (WMV) was observed in the right temporal lobe, the right occipital lobe, and the right calcarine gyrus. No structural change in the primary sensory cortex (S1), the secondary somatosensory cortex (S2) or the thalamus was detected. Conclusion These functional and structural findings may demonstrate the existence of an alternative pathway in the impairment of somatosensory function after SCI, which consists of the ipsilateral cerebellum, the brainstem and the contralateral postCG. It provides a new theoretical basis for the mechanism of sensory-related brain alteration in SCI patients and the rehabilitation therapy based on this pathway in the future. We found that sensory-related brain reorganization may not occur in the thalamus in patients with ICCI. We found that brain structural reorganization did not occur in the S1 or the S2 in patients with ICCI. We observed that SCI can cause brain structural reorganization in non-sensory-related areas. We observed that an alternative pathway may exist in the impairment of somatosensory function after SCI.
Collapse
|
63
|
Borsook D, Youssef AM, Simons L, Elman I, Eccleston C. When pain gets stuck: the evolution of pain chronification and treatment resistance. Pain 2018; 159:2421-2436. [PMID: 30234696 PMCID: PMC6240430 DOI: 10.1097/j.pain.0000000000001401] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is well-recognized that, despite similar pain characteristics, some people with chronic pain recover, whereas others do not. In this review, we discuss possible contributions and interactions of biological, social, and psychological perturbations that underlie the evolution of treatment-resistant chronic pain. Behavior and brain are intimately implicated in the production and maintenance of perception. Our understandings of potential mechanisms that produce or exacerbate persistent pain remain relatively unclear. We provide an overview of these interactions and how differences in relative contribution of dimensions such as stress, age, genetics, environment, and immune responsivity may produce different risk profiles for disease development, pain severity, and chronicity. We propose the concept of "stickiness" as a soubriquet for capturing the multiple influences on the persistence of pain and pain behavior, and their stubborn resistance to therapeutic intervention. We then focus on the neurobiology of reward and aversion to address how alterations in synaptic complexity, neural networks, and systems (eg, opioidergic and dopaminergic) may contribute to pain stickiness. Finally, we propose an integration of the neurobiological with what is known about environmental and social demands on pain behavior and explore treatment approaches based on the nature of the individual's vulnerability to or protection from allostatic load.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, Boston Children’s (BCH), McLean and Massachusetts Hospitals (MGH), Boston MA
- Departments of Anesthesia (BCH), Psychiatry (MGH, McLean) and Radiology (MGH)
| | - Andrew M Youssef
- Center for Pain and the Brain, Boston Children’s (BCH), McLean and Massachusetts Hospitals (MGH), Boston MA
| | - Laura Simons
- Department of Anesthesia, Stanford University, Palo Alto, CA
| | | | - Christopher Eccleston
- Centre for Pain Research, University of Bath, UK
- Department of Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|
64
|
Auvichayapat P, Keeratitanont K, Janyachareon T, Auvichayapat N. The effects of transcranial direct current stimulation on metabolite changes at the anterior cingulate cortex in neuropathic pain: a pilot study. J Pain Res 2018; 11:2301-2309. [PMID: 30349356 PMCID: PMC6188066 DOI: 10.2147/jpr.s172920] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Neuropathic pain (NP) in individuals with spinal cord injury (SCI) is both common and highly refractory to treatment. Primary motor cortex stimulation can relieve pain by interrupting the transmission of noxious information of descending pain modulatory systems including the anterior cingulate cortex (ACC). Previous research has shown that transcranial direct current stimulation (tDCS) can produce pain relief in individuals with NP. However, the underlying mechanisms for these effects are not yet understood. Research findings suggest the possibility that changes in brain metabolite concentrations produced by tDCS might explain some of these effects. For example, previous research has shown that SCI-related NP is associated with elevated levels of glutamine combined glutamate (Glx) per creatine (Glx/Cr). In addition, decreased N-acetylaspartate (NAA) has been observed in the ACC in individuals with chronic pain. Methods We used magnetic resonance spectroscopy (MRS) to study changes in NAA and Glx levels in the ACC after tDCS treatment. Ten patients with SCI with NP were given five daily anodal tDCS sessions, and an MRS evaluation was performed before and after treatment. Results The results showed treatment-related reductions in pain, and increases in both Glx/Cr and NAA/Cr in the ACC. The observed increase in NAA/Cr is consistent with the possibility that tDCS improves the descending pain modulation system by increasing the neuronal activity in the ACC. Conclusion The findings suggest the possibility that tDCS’s beneficial effects on neuropathic pain may be due, at least in part, to the changes it produces in Glx/Cr and NAA/Cr levels in the ACC. Additional research with larger samples sizes and a control group to evaluate this possibility is warranted.
Collapse
Affiliation(s)
| | | | | | - Narong Auvichayapat
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,
| |
Collapse
|
65
|
Peyron R, Fauchon C. Functional imaging of pain. Rev Neurol (Paris) 2018; 175:38-45. [PMID: 30318262 DOI: 10.1016/j.neurol.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
Brain functional imaging has been applied to the study of pain since 1991. Then, a plethora of studies around the world looking at pain sensations and their brain correlates was published. Four kinds of studies can be distinguished: i) A first set investigated brain responses to noxious heat stimulations (above the pain threshold) relative to an equivalent warm innocuous stimulation (below the pain threshold). The aim of these studies was to identify the pattern of brain regions involved in the nociceptive processes and they may be considered as descriptive studies rather than explanative studies. Their value was to list for the first time every brain structure that might be playing a role. ii) Secondly, several experimental investigations have explored brain activations when subjects are confronted with unpleasant situations such as seeing or imagining other people in pain (e.g. empathy for pain). Obviously, feeling pain and representing others suffering share a common brain network, indicating that a large part of the regions showing intensity changes are not specific to nociception. iii) The third set of imaging studies is aimed at investigating the functional and structural brain abnormalities that may account for clinical pain states. Unfortunately, a relatively small number of studies provide clear findings that do not allow drawing convincing and generalized conclusions. iv) The last set of studies focused on the modulation of pain experience in humans. Several research groups conducted projects on different factors known to alter pain perception and their associated brain processes with the objective of identifying one or more key regions capable of controlling the pain sensation. In the same vein, investigations have been performed around pain therapies. From the clinician's point of view, it may be seen as complementary to assess pain and analgesic processes. All these aspects of pain research with functional imaging are considered below, including attempts to understand the functional significance of each of the observed activations. v) A special focus will be dedicated to new sophisticated approaches, vi) applied to neuroimaging (e.g. graph theory). These promising techniques and recent electrophysiological investigations bring additional information to our understanding of pain/analgesic processes, particularly for temporal dynamics and connectivity between brain regions.
Collapse
Affiliation(s)
- R Peyron
- Centre stéphanois de la douleur, CHU de Saint-Etienne & INSERM U1028, Université Jean Monnet, CRNL-Lyon, 10, rue de la Marandière, 42270 Saint-Priest en Jarez, France.
| | - C Fauchon
- Centre stéphanois de la douleur, CHU de Saint-Etienne & INSERM U1028, Université Jean Monnet, CRNL-Lyon, 10, rue de la Marandière, 42270 Saint-Priest en Jarez, France
| |
Collapse
|
66
|
Ayoub LJ, Seminowicz DA, Moayedi M. A meta-analytic study of experimental and chronic orofacial pain excluding headache disorders. NEUROIMAGE-CLINICAL 2018; 20:901-912. [PMID: 30292089 PMCID: PMC6176551 DOI: 10.1016/j.nicl.2018.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
Chronic orofacial pain (COFP) disorders are prevalent and debilitating pain conditions affecting the head, neck and face areas. Neuroimaging studies have reported functional and grey matter abnormalities, but not all the studies have reported consistent findings. Identifying convergent abnormalities across COFPs provides a basis for future hypothesis-driven research aimed at elucidating common CNS mechanisms. Here, we perform three coordinate-based meta-analyses according to PRISMA guidelines to elucidate the central mechanisms of orofacial pain disorders. Specifically, we investigated consistent patterns of: (1) brain function to experimental orofacial pain in healthy subjects, (2) structural and (3) functional brain abnormalities in COFP. We computed our coordinate-based meta-analyses using GingerALE. The experimental pain meta-analysis revealed increased brain activity in bilateral thalami, posterior mid-cingulate cortices, and secondary somatosensory cortices, the right posterior parietal cortex extending to the orofacial region of the right primary somatosensory cortex and the right insula, and decreased activity in the right somatomotor regions. The structural COFP meta-analysis identified consistent higher grey matter volume/concentration in the right ventral thalamus and posterior putamen of COFP patients compared to healthy controls. The functional COFP meta-analysis identified a consistent increase in brain activity in the left medial and posterior thalamus and lesser activity in the left posterior insula in COFP, compared to healthy controls. Overall, these findings provide evidence of brain abnormalities in pain-related regions, namely the thalamus and insula, across different COFP disorders. The convergence of thalamic abnormalities in both structure and function suggest a key role for this region in COFP pathophysiology. Identifying convergent abnormalities in COFP can elucidate novel therapeutic targets. Experimental orofacial pain is associated with activity in nociceptive processing brain areas. Chronic orofacial pain (COFP) is associated with abnormal thalamic activity and grey matter. Our review highlights the need for more high quality COFP brain imaging studies.
Collapse
Affiliation(s)
- Lizbeth J Ayoub
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| | - Massieh Moayedi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada; Department of Dentistry, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
67
|
Kang D, McAuley JH, Kassem MS, Gatt JM, Gustin SM. What does the grey matter decrease in the medial prefrontal cortex reflect in people with chronic pain? Eur J Pain 2018; 23:203-219. [PMID: 30101509 DOI: 10.1002/ejp.1304] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Alterations in the grey matter volume of several brain regions have been reported in people with chronic pain. The most consistent observation is a decrease in grey matter volume in the medial prefrontal cortex. These findings are important as the medial prefrontal cortex plays a critical role in emotional and cognitive processing in chronic pain. Although a logical cause of grey matter volume decrease may be neurodegeneration, this is not supported by the current evidence. Therefore, the purpose of this review was to evaluate the existing literature to unravel what the decrease in medial prefrontal cortex grey matter volume in people with chronic pain may represent on a biochemical and cellular level. DATABASES AND DATA TREATMENT A literature search for this topical review was conducted using PubMed and SCOPUS library. Search terms included chronic pain, pain, medial prefrontal cortex, anterior cingulate cortex, grey matter, neurochemistry, spectroscopy, magnetic resonance imaging, positron emission tomography, dendrite, neurodegeneration, glia, astrocyte, microglia, neurotransmitter, glutamate, GABA and different combinations of these terms. RESULTS Adopting a stress model of chronic pain, two major pathways are proposed that contribute to grey matter volume decrease in the medial prefrontal cortex: (a) changes in dendritic morphology as a result of hypothalamic-pituitary axis dysfunction and (b) neurotransmitter dysregulation, specifically glutamate and γ-Aminobutyric acid, which affects local microvasculature. CONCLUSION Our model proposes new mechanisms in chronic pain pathophysiology responsible for mPFC grey matter loss as alternatives to neurodegeneration. SIGNIFICANCE It is unclear what the decrease in medial prefrontal cortex grey matter volume represents in chronic pain. The most attractive reason is neurodegeneration. However, there is no evidence to support this. Our review reveals nondegenerative causes of decreased medial prefrontal grey matter to guide future research into chronic pain pathophysiology.
Collapse
Affiliation(s)
- David Kang
- Neuroscience Research Australia, Sydney, NSW, Australia.,UNSW Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James H McAuley
- Neuroscience Research Australia, Sydney, NSW, Australia.,UNSW Medicine, UNSW Sydney, Sydney, NSW, Australia
| | | | - Justine M Gatt
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | - Sylvia M Gustin
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
68
|
Acute and Chronic Pain Processing in the Thalamocortical System of Humans and Animal Models. Neuroscience 2018; 387:58-71. [DOI: 10.1016/j.neuroscience.2017.09.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/24/2017] [Accepted: 09/24/2017] [Indexed: 02/07/2023]
|
69
|
Seif M, Curt A, Thompson AJ, Grabher P, Weiskopf N, Freund P. Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury. Neuroimage Clin 2018; 20:556-563. [PMID: 30175042 PMCID: PMC6115607 DOI: 10.1016/j.nicl.2018.08.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/11/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Objective To reveal the immediate extent of trauma-induced neurodegenerative changes rostral to the level of lesion and determine the predictive clinical value of quantitative MRI (qMRI) following acute spinal cord injury (SCI). Methods Twenty-four acute SCI patients and 23 healthy controls underwent a high-resolution T1-weighted protocol. Eighteen of those patients and 20 of controls additionally underwent a multi-parameter mapping (MPM) MRI protocol sensitive to the content of tissue structure, including myelin and iron. Patients were examined clinically at baseline, 2, 6, 12, and 24 months post-SCI. We assessed volume and microstructural changes in the spinal cord and brain using T1-weighted MRI, magnetization transfer (MT), longitudinal relaxation rate (R1), and effective transverse relaxation rate (R2*) maps. Regression analysis determined associations between acute qMRI parameters and recovery. Results At baseline, cord area and its anterior-posterior width were decreased in patients, whereas MT, R1, and R2* parameters remained unchanged in the cord. Within the cerebellum, volume decrease was paralleled by increases of MT and R2* parameters. Early grey matter changes were observed within the primary motor cortex and limbic system. Importantly, early volume and microstructural changes of the cord and cerebellum predicted functional recovery following injury. Conclusions Neurodegenerative changes rostral to the level of lesion occur early in SCI, with varying temporal and spatial dynamics. Early qMRI markers of spinal cord and cerebellum are predictive of functional recovery. These neuroimaging biomarkers may supplement clinical assessments and provide insights into the potential of therapeutic interventions to enhance neural plasticity.
Collapse
Key Words
- APW, anterior posterior width
- Acute micro-structural changes
- Brain and spinal cord atrophy
- ISNCSCI, international standards for the neurological classification of spinal cord injury
- LRW, left right width
- MPM, multi-parameter mapping
- MT, magnetization transfer
- PD*, effective proton density
- Quantitative neuroimaging
- R1, longitudinal relaxation rate
- R2*, effective transverse relaxation rate
- ROI, region of interest
- SCA, spinal cord area
- SCI, spinal cord injury
- SCIM, spinal cord independence measure
- Spinal cord injury
- VBCT, voxel based cortical thickness
- VBM, voxel based morphometry
- VBQ, voxel based quantification
- Voxel-based morphometry and quantification
Collapse
Affiliation(s)
- Maryam Seif
- Spinal Cord Injury Center Balgrist, University of Zurich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin Curt
- Spinal Cord Injury Center Balgrist, University of Zurich, Switzerland
| | - Alan J Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Patrick Grabher
- Spinal Cord Injury Center Balgrist, University of Zurich, Switzerland
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University of Zurich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK.
| |
Collapse
|
70
|
Henderson LA. Trigeminal neuropathic pain: Evidence of central changes from human brain imaging investigations. AUST ENDOD J 2018. [DOI: 10.1111/aej.12250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luke A. Henderson
- Department of Anatomy and Histology; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
71
|
Bathel A, Schweizer L, Stude P, Glaubitz B, Wulms N, Delice S, Schmidt-Wilcke T. Increased thalamic glutamate/glutamine levels in migraineurs. J Headache Pain 2018; 19:55. [PMID: 30019230 PMCID: PMC6049847 DOI: 10.1186/s10194-018-0885-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Increased cortical excitability has been hypothesized to play a critical role in various neurological disorders, such as restless legs syndrome, epilepsy and migraine. Particularly for migraine, local hyperexcitability has been reported. Levels of regional excitatory and inhibitory neurotransmitters are related to cortical excitability and hence may play a role in the origin of the disease. Consequently, a mismatch of the excitatory-inhibitory neurotransmitter network might contribute to local hyperexcitability and the onset of migraine attacks. In this study we sought to assess local levels of glutamate / glutamine (GLX) and gamma-aminobutyric acid (GABA) in the occipital cortex and right thalamus of migraineurs and healthy subjects. METHODS We measured interictally local biochemical concentrations in the occipital lobe and the right thalamus in patients with migraine (without aura) and healthy controls (HCs) using proton magnetic resonance spectroscopy at 3 T. GLX levels were acquired using PRESS and GABA levels using the GABA-sensitive editing sequence MEGA-PRESS. Regional GLX and GABA levels were compared between groups. RESULTS Statistical analyses revealed significantly increased GLX levels in both the primary occipital cortex and thalamus. However, we found no group differences in GABA levels for these two regions. Correlation analyses within the migraine group revealed no significant correlations between pain intensity and levels of GLX or GABA in either of the two brain regions. CONCLUSIONS Further research is needed to investigate the role of GABA/GLX ratios in greater depth and to measure changes in neurotransmitter levels over time, i.e. during migraine attacks and interictally.
Collapse
Affiliation(s)
- Adina Bathel
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University-Bochum, Bochum, Germany
- Department of Anesthesiology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Lauren Schweizer
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University-Bochum, Bochum, Germany
| | - Philipp Stude
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University-Bochum, Bochum, Germany
| | - Benjamin Glaubitz
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University-Bochum, Bochum, Germany
| | - Niklas Wulms
- Department of Neurology, St. Mauritius Therapieklinik, Meerbusch, Germany
| | - Sibel Delice
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University-Bochum, Bochum, Germany
| | - Tobias Schmidt-Wilcke
- Department of Neurology, St. Mauritius Therapieklinik, Meerbusch, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
72
|
Shiao R, Lee-Kubli CA. Neuropathic Pain After Spinal Cord Injury: Challenges and Research Perspectives. Neurotherapeutics 2018; 15:635-653. [PMID: 29736857 PMCID: PMC6095789 DOI: 10.1007/s13311-018-0633-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that remains difficult to treat because underlying mechanisms are not yet fully understood. In part, this is due to limitations of evaluating neuropathic pain in animal models in general, and SCI rodents in particular. Though pain in patients is primarily spontaneous, with relatively few patients experiencing evoked pains, animal models of SCI pain have primarily relied upon evoked withdrawals. Greater use of operant tasks for evaluation of the affective dimension of pain in rodents is needed, but these tests have their own limitations such that additional studies of the relationship between evoked withdrawals and operant outcomes are recommended. In preclinical SCI models, enhanced reflex withdrawal or pain responses can arise from pathological changes that occur at any point along the sensory neuraxis. Use of quantitative sensory testing for identification of optimal treatment approach may yield improved identification of treatment options and clinical trial design. Additionally, a better understanding of the differences between mechanisms contributing to at- versus below-level neuropathic pain and neuropathic pain versus spasticity may shed insights into novel treatment options. Finally, the role of patient characteristics such as age and sex in pathogenesis of neuropathic SCI pain remains to be addressed.
Collapse
Affiliation(s)
- Rani Shiao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA
| | - Corinne A Lee-Kubli
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA.
| |
Collapse
|
73
|
Solstrand Dahlberg L, Becerra L, Borsook D, Linnman C. Brain changes after spinal cord injury, a quantitative meta-analysis and review. Neurosci Biobehav Rev 2018; 90:272-293. [DOI: 10.1016/j.neubiorev.2018.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/21/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
|
74
|
Palmisano M, Caputi FF, Mercatelli D, Romualdi P, Candeletti S. Dynorphinergic system alterations in the corticostriatal circuitry of neuropathic mice support its role in the negative affective component of pain. GENES BRAIN AND BEHAVIOR 2018; 18:e12467. [PMID: 29430855 PMCID: PMC7379183 DOI: 10.1111/gbb.12467] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 01/01/2023]
Abstract
The dynorphinergic system is involved in pain transmission at spinal level, where dynorphin exerts antinociceptive or pronociceptive effects, based on its opioid or non‐opioid actions. Surprisingly, little evidence is currently available concerning the supraspinal role of the dynorphinergic system in pain conditions. The present study aimed to investigate whether neuropathic pain is accompanied by prodynorphin (Pdyn) and κ‐opioid receptor (Oprk1) gene expression alterations in selected mouse brain areas. To this end, mice were subjected to chronic constriction injury of the right sciatic nerve and neuropathic pain behavioral signs were ascertained after 14 days. At this interval, a marked increase in Pdyn mRNA in the anterior cingulate cortex (ACC) and prefrontal cortex (PFC) was observed. Oprk1 gene expression was increased in the PFC, and decreased in the ACC and nucleus accumbens (NAc). No changes were observed in the other investigated regions. Because of the relationship between dynorphin and the brain‐derived neurotrophic factor, and the role of this neurotrophin in chronic pain‐related neuroplasticity, we investigated brain‐derived neurotrophic factor gene (Bdnf) expression in the areas showing Pdyn or Oprk1 mRNAs changes. Bdnf mRNA levels were increased in both the ACC and PFC, whereas no changes were assessed in the NAc. Present data indicate that the dynorphinergic system undergoes quite selective alterations involving the corticostriatal circuitry during neuropathic pain, suggesting a contribution to the negative affective component of pain. Moreover, parallel increases in Pdyn and Bdnf mRNA at cortical level suggest the occurrence of likely interactions between these systems in neuropathic pain maladaptive neuroplasticity.
Collapse
Affiliation(s)
- M Palmisano
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - F F Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - D Mercatelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - P Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - S Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
75
|
Di Pietro F, Macey PM, Rae CD, Alshelh Z, Macefield VG, Vickers ER, Henderson LA. The relationship between thalamic GABA content and resting cortical rhythm in neuropathic pain. Hum Brain Mapp 2018; 39:1945-1956. [PMID: 29341331 DOI: 10.1002/hbm.23973] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/14/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Recurrent thalamocortical connections are integral to the generation of brain rhythms and it is thought that the inhibitory action of the thalamic reticular nucleus is critical in setting these rhythms. Our work and others' has suggested that chronic pain that develops following nerve injury, that is, neuropathic pain, results from altered thalamocortical rhythm, although whether this dysrhythmia is associated with thalamic inhibitory function remains unknown. In this investigation, we used electroencephalography and magnetic resonance spectroscopy to investigate cortical power and thalamic GABAergic concentration in 20 patients with neuropathic pain and 20 pain-free controls. First, we found thalamocortical dysrhythmia in chronic orofacial neuropathic pain; patients displayed greater power than controls over the 4-25 Hz frequency range, most marked in the theta and low alpha bands. Furthermore, sensorimotor cortex displayed a strong positive correlation between cortical power and pain intensity. Interestingly, we found no difference in thalamic GABA concentration between pain subjects and control subjects. However, we demonstrated significant linear relationships between thalamic GABA concentration and enhanced cortical power in pain subjects but not controls. Whilst the difference in relationship between thalamic GABA concentration and resting brain rhythm between chronic pain and control subjects does not prove a cause and effect link, it is consistent with a role for thalamic inhibitory neurotransmitter release, possibly from the thalamic reticular nucleus, in altered brain rhythms in individuals with chronic neuropathic pain.
Collapse
Affiliation(s)
- Flavia Di Pietro
- Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Paul M Macey
- UCLA School of Nursing and Brain Research Institute, University of California, Los Angeles, California
| | | | - Zeynab Alshelh
- Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Vaughan G Macefield
- Neuroscience Research Australia, Sydney, Australia.,College of Medicine, Mohammed Bin Rashid University of Medicine & Health Sciences, Dubai, United Arab Emirates
| | - E Russell Vickers
- Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Luke A Henderson
- Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
76
|
Niddam DM, Lai KL, Tsai SY, Lin YR, Chen WT, Fuh JL, Wang SJ. Neurochemical changes in the medial wall of the brain in chronic migraine. Brain 2017; 141:377-390. [DOI: 10.1093/brain/awx331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- David M Niddam
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Municipal Gandau Hospital. Taipei, Taiwan
| | - Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Yi-Ru Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jong-Ling Fuh
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
77
|
Widerström-Noga E, Loeser JD, Jensen TS, Finnerup NB. AAPT Diagnostic Criteria for Central Neuropathic Pain. THE JOURNAL OF PAIN 2017; 18:1417-1426. [DOI: 10.1016/j.jpain.2017.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/30/2017] [Accepted: 06/15/2017] [Indexed: 01/21/2023]
|
78
|
Schmidt-Wilcke T, Fuchs E, Funke K, Vlachos A, Müller-Dahlhaus F, Puts NAJ, Harris RE, Edden RAE. GABA-from Inhibition to Cognition: Emerging Concepts. Neuroscientist 2017; 24:501-515. [PMID: 29283020 DOI: 10.1177/1073858417734530] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neural functioning and plasticity can be studied on different levels of organization and complexity ranging from the molecular and synaptic level to neural circuitry of whole brain networks. Across neuroscience different methods are being applied to better understand the role of various neurotransmitter systems in the evolution of perception and cognition. GABA is the main inhibitory neurotransmitter in the adult mammalian brain and, depending on the brain region, up to 25% of the total number of cortical neurons are GABAergic interneurons. At the one end of the spectrum, GABAergic neurons have been accurately described with regard to cell morphological, molecular, and electrophysiological properties; at the other end researchers try to link GABA concentrations in specific brain regions to human behavior using magnetic resonance spectroscopy. One of the main challenges of modern neuroscience currently is to integrate knowledge from highly specialized subfields at distinct biological scales into a coherent picture that bridges the gap between molecules and behavior. In the current review, recent findings from different fields of GABA research are summarized delineating a potential strategy to develop a more holistic picture of the function and role of GABA.
Collapse
Affiliation(s)
- T Schmidt-Wilcke
- 1 Institute of Clinical Neuroscience and Medical Psychology, University of Düsseldorf, Düsseldorf, Germany.,2 Mauritius Therapieklinik Meerbusch, Meerbusch, Germany
| | - E Fuchs
- 3 Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - K Funke
- 4 Department of Neurophysiology, Medical Faculty of Ruhr-University Bochum, Bochum, Germany
| | - A Vlachos
- 5 Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Müller-Dahlhaus
- 6 Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,7 Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - N A J Puts
- 8 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,9 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - R E Harris
- 10 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - R A E Edden
- 8 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,9 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
79
|
Neuronal-Glial Interactions Maintain Chronic Neuropathic Pain after Spinal Cord Injury. Neural Plast 2017; 2017:2480689. [PMID: 28951789 PMCID: PMC5603132 DOI: 10.1155/2017/2480689] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 02/01/2023] Open
Abstract
The hyperactive state of sensory neurons in the spinal cord enhances pain transmission. Spinal glial cells have also been implicated in enhanced excitability of spinal dorsal horn neurons, resulting in pain amplification and distortions. Traumatic injuries of the neural system such as spinal cord injury (SCI) induce neuronal hyperactivity and glial activation, causing maladaptive synaptic plasticity in the spinal cord. Recent studies demonstrate that SCI causes persistent glial activation with concomitant neuronal hyperactivity, thus providing the substrate for central neuropathic pain. Hyperactive sensory neurons and activated glial cells increase intracellular and extracellular glutamate, neuropeptides, adenosine triphosphates, proinflammatory cytokines, and reactive oxygen species concentrations, all of which enhance pain transmission. In addition, hyperactive sensory neurons and glial cells overexpress receptors and ion channels that maintain this enhanced pain transmission. Therefore, post-SCI neuronal-glial interactions create maladaptive synaptic circuits and activate intracellular signaling events that permanently contribute to enhanced neuropathic pain. In this review, we describe how hyperactivity of sensory neurons contributes to the maintenance of chronic neuropathic pain via neuronal-glial interactions following SCI.
Collapse
|
80
|
Palmisano M, Mercatelli D, Caputi FF, Carretta D, Romualdi P, Candeletti S. N/OFQ system in brain areas of nerve-injured mice: its role in different aspects of neuropathic pain. GENES, BRAIN, AND BEHAVIOR 2017; 16:537-545. [PMID: 28000999 DOI: 10.1111/gbb.12365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/15/2016] [Accepted: 12/18/2016] [Indexed: 12/28/2022]
Abstract
Several studies showed that chronic pain causes reorganization and functional alterations of supraspinal brain regions. The nociceptin-NOP receptor system is one of the major systems involved in pain control and much evidence also suggested its implication in stress, anxiety and depression. Therefore, we investigated the nociceptin-NOP system alterations in selected brain regions in a neuropathic pain murine model. Fourteen days after the common sciatic nerve ligature, polymerase chain reaction (PCR) analysis indicated a significant decrease of pronociceptin and NOP receptor mRNA levels in the thalamus; these alterations could contribute to the decrease of the thalamic inhibitory function reported in neuropathic pain condition. Nociceptin peptide and NOP mRNA increased in the anterior cingulate cortex (ACC) and not in the somatosensory cortex, suggesting a peculiar involvement of this system in pain regulating circuitry. Similarly to the ACC, an increase of nociceptin peptide levels was observed in the amygdala. Finally, the pronociceptin and NOP mRNAs decrease observed in the hypothalamus reflects the lack of hypothalamus-pituitary-adrenal axis activation, already reported in neuropathic pain models. Our data indicate that neuropathic pain conditions affect the supraspinal nociceptin-NOP system which is also altered in regions known to play a role in emotional aspects of pain.
Collapse
Affiliation(s)
- M Palmisano
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - D Mercatelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - F F Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - D Carretta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - P Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - S Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
81
|
Widerström-Noga E. Neuropathic Pain and Spinal Cord Injury: Phenotypes and Pharmacological Management. Drugs 2017; 77:967-984. [PMID: 28451808 DOI: 10.1007/s40265-017-0747-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic neuropathic pain is a complicated condition after a spinal cord injury (SCI) that often has a lifelong and significant negative impact on life after the injury; therefore, improved pain management is considered a significant and unmet need. Neuropathic pain mechanisms are heterogeneous and the difficulty in determining their individual contribution to specific pain types may contribute to poor treatment outcomes in this population. Thus, identifying human neuropathic pain phenotypes based on pain symptoms, somatosensory changes, or cognitive and psychosocial factors that reflect specific spinal cord or brain mechanisms of neuropathic pain is an important goal. Once a pain phenotype can be reliably replicated, its relationship with biomarkers and clinical treatment outcomes can be analyzed, and thereby facilitate translational research and further the mechanistic understanding of individual differences in the pain experience and in clinical trial outcomes. The present article will discuss clinical aspects of SCI-related neuropathic pain, neuropathic pain phenotypes, pain mechanisms, potential biomarkers and pharmacological interventions, and progress regarding how defining neuropathic pain phenotypes may lead to more targeted treatments for these difficult pain conditions.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- The Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA. .,Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
82
|
Boadas-Vaello P, Homs J, Reina F, Carrera A, Verdú E. Neuroplasticity of Supraspinal Structures Associated with Pathological Pain. Anat Rec (Hoboken) 2017; 300:1481-1501. [PMID: 28263454 DOI: 10.1002/ar.23587] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/27/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
Peripheral nerve and spinal cord injuries, along with other painful syndromes such as fibromyalgia, diabetic neuropathy, chemotherapeutic neuropathy, trigeminal neuralgia, complex regional pain syndrome, and/or irritable bowel syndrome, cause several neuroplasticity changes in the nervous system along its entire axis affecting the different neuronal nuclei. This paper reviews these changes, focusing on the supraspinal structures that are involved in the modulation and processing of pain, including the periaqueductal gray matter, red nucleus, locus coeruleus, rostral ventromedial medulla, thalamus, hypothalamus, basal ganglia, cerebellum, habenula, primary, and secondary somatosensory cortex, motor cortex, mammillary bodies, hippocampus, septum, amygdala, cingulated, and prefrontal cortex. Hyperexcitability caused by the modification of postsynaptic receptor expression, central sensitization, and potentiation of presynaptic delivery of neurotransmitters, as well as the reduction of inhibitory inputs, changes in dendritic spine, neural circuit remodeling, alteration of gray matter, and upregulation of proinflammatory mediators (e.g., cytokines) by reactivation of astrocytes and microglial cells are the main functional, structural, and molecular neuroplasticity changes observed in the above supraspinal structures, associated with pathological pain. Studying these changes in greater depth may lead to the implementation and improvement of new therapeutic strategies against pathological pain. Anat Rec, 300:1481-1501, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain.,Department of Physical Therapy EUSES-Universitat of Girona, Salt (Girona), Catalonia, 17190, Spain
| | - Francisco Reina
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| | - Ana Carrera
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| |
Collapse
|
83
|
Craciunas SC, Gorgan MR, Ianosi B, Lee P, Burris J, Cirstea CM. Remote motor system metabolic profile and surgery outcome in cervical spondylotic myelopathy. J Neurosurg Spine 2017; 26:668-678. [PMID: 28304238 DOI: 10.3171/2016.10.spine16479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE In patients with cervical spondylotic myelopathy (CSM), the motor system may undergo progressive functional/structural changes rostral to the lesion, and these changes may be associated with clinical disability. The extent to which these changes have a prognostic value in the clinical recovery after surgical treatment is not yet known. In this study, magnetic resonance spectroscopy (MRS) was used to test 2 primary hypotheses. 1) Based on evidence of corticospinal and spinocerebellar, rubro-, or reticulospinal tract degeneration/dysfunction during chronic spinal cord compression, the authors hypothesized that the metabolic profile of the primary motor cortices (M1s) and cerebellum, respectively, would be altered in patients with CSM, and these alterations would be associated with the extent of the neurological disabilities. 2) Considering that damage and/or plasticity in the remote motor system may contribute to clinical recovery, they hypothesized that M1 and cerebellar metabolic profiles would predict, at least in part, surgical outcome. METHODS The metabolic profile, consisting of N-acetylaspartate (NAA; marker of neuronal integrity), myoinositol (glial marker), choline (cell membrane synthesis and turnover), and glutamate-glutamine (glutamatergic system), of the M1 hand/arm territory in each hemisphere and the cerebellum vermis was investigated prior to surgery in 21 patients exhibiting weakness of the upper extremities and/or gait abnormalities. Age- and sex-matched controls (n = 16) were also evaluated to estimate the pre-CSM metabolic profile of these areas. Correlation and regression analyses were performed between preoperative metabolite levels and clinical status 6 months after surgery. RESULTS Relative to controls, patients exhibited significantly higher levels of choline but no difference in the levels of other metabolites across M1s. Cerebellar metabolite levels were indistinguishable from control levels. Certain metabolites-myo-inositol and choline across M1s, NAA and glutamate-glutamine in the left M1, and myo-inositol and glutamate-glutamine in the cerebellum-were significantly associated with postoperative clinical status. These associations were greatly improved by including preoperative clinical metrics into the models. Likewise, these models improved the predictive value of preoperative clinical metrics alone. CONCLUSIONS These preliminary findings demonstrate relationships between the preoperative metabolic profiles of two remote motor areas and surgical outcome in CSM patients. Including preoperative clinical metrics in the models significantly strengthened the predictive value. Although further studies are needed, this investigation provides an important starting point to understand how the changes upstream from the injury may influence the effect of spinal cord decompression.
Collapse
Affiliation(s)
- Sorin C Craciunas
- Department of Neurosurgery, Bagdasar-Arseni Hospital, Bucharest, Romania
| | - Mircea R Gorgan
- Department of Neurosurgery, Bagdasar-Arseni Hospital, Bucharest, Romania
| | - Bogdan Ianosi
- Department of Neurology, Elbe Kliniken Hospital, University Medical Center Hamburg-Eppendorf, Germany.,Romanian National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania
| | - Phil Lee
- Departments of 4 Molecular and Integrative Physiology and
| | - Joseph Burris
- Department of Physical Medicine & Rehabilitation, University of Missouri, Columbia, Missouri
| | - Carmen M Cirstea
- Neurology, Kansas University Medical Center, Kansas City, Kansas; and.,Department of Physical Medicine & Rehabilitation, University of Missouri, Columbia, Missouri
| |
Collapse
|
84
|
Zhang C, Chen RX, Zhang Y, Wang J, Liu FY, Cai J, Liao FF, Xu FQ, Yi M, Wan Y. Reduced GABAergic transmission in the ventrobasal thalamus contributes to thermal hyperalgesia in chronic inflammatory pain. Sci Rep 2017; 7:41439. [PMID: 28150719 PMCID: PMC5288727 DOI: 10.1038/srep41439] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/20/2016] [Indexed: 12/26/2022] Open
Abstract
The ventrobasal (VB) thalamus is innervated by GABAergic afferents from the thalamic reticular nucleus (TRN) and participates in nociception. But how the TRN-VB pathway regulates pain is not fully understood. In the present study, we reported decreased extracellular GABA levels in the VB of rats with CFA-induced chronic inflammatory pain, measured by microdialysis with HPLC analysis. In vitro whole-cell patch-clamp recording showed decreased amplitudes of tonic currents, increased frequencies of mIPSCs, and increased paired-pulse ratios in thalamic slices from chronic inflammatory rats (7 days). Microinjection of the GABAAR agonist muscimol and optogenetic activation of the TRN-VB pathway relieved thermal hyperalgesia in chronic inflammatory pain. By contrast, microinjecting the extrasynaptic GABAAR agonist THIP or selective knockout of synaptic GABAAR γ2 subunits aggravated thermal hyperalgesia in the chronic stage of inflammatory pain. Our findings indicate that reduced GABAergic transmission in the VB contributes to thermal hyperalgesia in chronic inflammatory pain, which could be a synaptic target for pharmacotherapy.
Collapse
Affiliation(s)
- Chan Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China.,Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Rong-Xiang Chen
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, 563000, P.R. China
| | - Yu Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Jie Cai
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Fei-Fei Liao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Fu-Qiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China. .,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Beijing, 100191, P.R. China.
| |
Collapse
|
85
|
Saab CY, Barrett LF. Thalamic Bursts and the Epic Pain Model. Front Comput Neurosci 2017; 10:147. [PMID: 28127285 PMCID: PMC5226949 DOI: 10.3389/fncom.2016.00147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Carl Y Saab
- Department of Neurosurgery, Rhode Island HospitalProvidence, RI, USA; Department of Neuroscience, Brown UniversityProvidence, RI, USA
| | | |
Collapse
|
86
|
Functional brain imaging: what has it brought to our understanding of neuropathic pain? A special focus on allodynic pain mechanisms. Pain 2016; 157 Suppl 1:S67-S71. [PMID: 26785157 DOI: 10.1097/j.pain.0000000000000387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Brain responses to nociception are well identified. The same is not true for allodynic pain, a strong painful sensation in response to touch or innocuous cold stimuli that may be experienced by patients with neuropathic pain. Brain (or spinal cord) reorganization that may explain this paradoxical perception still remains largely unknown. Allodynic pain is associated with abnormally increased activity in SII and in the anterior insular cortex, contralateral and/or ipsilateral to allodynia. Because a bilateral increase in activity has been repeatedly reported in these areas in nociceptive conditions, the observed activation during allodynia can explain that a physiologically nonpainful stimulus could be perceived by the damaged nervous system as a painful one. Both secondary somatosensory and insular cortices receive input from the thalamus, which is a major relay of sensory and spinothalamic pathways, the involvement of which is known to be crucial for the development of neuropathic pain. Both thalamic function and structure have been reported to be abnormal or impaired in neuropathic pain conditions including in the basal state, possibly explaining the spontaneous component of neuropathic pain. A further indication as to how the brain can create neuropathic pain response in SII and insular cortices stems from examples of diseases, including single-case reports in whom a focal brain lesion leads to central pain disappearance. Additional studies are required to certify the contribution of these areas to the disease processes, to disentangle abnormalities respectively related to pain and to deafferentation, and, in the future, to guide targeting of stimulation studies.
Collapse
|
87
|
Kramer JLK, Minhas NK, Jutzeler CR, Erskine ELKS, Liu LJW, Ramer MS. Neuropathic pain following traumatic spinal cord injury: Models, measurement, and mechanisms. J Neurosci Res 2016; 95:1295-1306. [PMID: 27617844 DOI: 10.1002/jnr.23881] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Neuropathic pain following spinal cord injury (SCI) is notoriously difficult to treat and is a high priority for many in the SCI population. Resolving this issue requires animal models fidelic to the clinical situation in terms of injury mechanism and pain phenotype. This Review discusses the means by which neuropathic pain has been induced and measured in experimental SCI and compares these with human outcomes, showing that there is a substantial disconnection between experimental investigations and clinical findings in a number of features. Clinical injury level is predominantly cervical, whereas injury in the laboratory is modeled mainly at the thoracic cord. Neuropathic pain is primarily spontaneous or tonic in people with SCI (with a relatively smaller incidence of allodynia), but measures of evoked responses (to thermal and mechanical stimuli) are almost exclusively used in animals. There is even the question of whether pain per se has been under investigation in most experimental SCI studies rather than simply enhanced reflex activity with no affective component. This Review also summarizes some of the problems related to clinical assessment of neuropathic pain and how advanced imaging techniques may circumvent a lack of patient/clinician objectivity and discusses possible etiologies of neuropathic pain following SCI based on evidence from both clinical studies and animal models, with examples of cellular and molecular changes drawn from the entire neuraxis from primary afferent terminals to cortical sensory and affective centers. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John L K Kramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nikita K Minhas
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine R Jutzeler
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin L K S Erskine
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa J W Liu
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
88
|
Aguila MER, Rebbeck T, Leaver AM, Lagopoulos J, Brennan PC, Hübscher M, Refshauge KM. The Association Between Clinical Characteristics of Migraine and Brain GABA Levels: An Exploratory Study. THE JOURNAL OF PAIN 2016; 17:1058-1067. [PMID: 27369186 DOI: 10.1016/j.jpain.2016.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/07/2016] [Accepted: 06/18/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Migraine is prevalent and disabling yet is poorly understood. One way to better understand migraine is to examine its clinical characteristics and potential biomarkers such as gamma-aminobutyric acid (GABA). The primary objective of this study was to explore whether relevant disease characteristics of migraine are associated with brain GABA levels. Twenty adults fulfilling the established diagnostic criteria for migraine and 20 age- and gender-matched controls completed this cross-sectional study. Pain, central sensitization, negative emotional state, and perceived disability were measured using Short-form McGill Pain Questionnaire-2, Central Sensitization Inventory, Depression Anxiety Stress Scales-21, and Headache Impact Test-6, respectively. Secondary analysis of brain GABA levels of the same cohort measured using proton magnetic resonance spectroscopy was conducted. The migraine group had significantly higher scores than the control group on pain, central sensitization, and disability. Correlation analyses showed fair positive association between GABA levels and pain and central sensitization scores. No association was found between GABA levels and emotional state and disability. These findings are preliminary evidence supporting the use of questionnaires and GABA levels in characterizing migraine better and broadening the diagnostic process. These findings also strengthen the rationale for the role of GABA in migraine pathophysiology and corroborate the potential of GABA as a migraine biomarker. PERSPECTIVE Higher pain and central sensitization scores were associated with increased brain GABA levels in individuals with migraine. These findings offer preliminary evidence for the usefulness of measuring pain and central sensitization in migraine and provide some support for the possible role of GABA in migraine pathophysiology and its potential as a diagnostic marker.
Collapse
Affiliation(s)
- Maria-Eliza R Aguila
- The University of Sydney Faculty of Health Sciences, Lidcombe, New South Wales, Australia; University of the Philippines College of Allied Medical Professions, Manila, Philippines.
| | - Trudy Rebbeck
- The University of Sydney Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - Andrew M Leaver
- The University of Sydney Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - Jim Lagopoulos
- Brain and Mind Centre, Sydney Medical School, Camperdown, New South Wales, Australia; Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Patrick C Brennan
- The University of Sydney Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - Markus Hübscher
- The University of Sydney Faculty of Health Sciences, Lidcombe, New South Wales, Australia; Neuroscience Research Australia and The University of New South Wales, Randwick, New South Wales, Australia
| | - Kathryn M Refshauge
- The University of Sydney Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| |
Collapse
|
89
|
Abstract
The neural mechanisms underlying the development and maintenance of chronic neuropathic pain remain unclear. Evidence from human investigations suggests that neuropathic pain is associated with altered thalamic burst firing and thalamocortical dysrhythmia. Additionally, experimental animal investigations show that neuropathic pain is associated with altered infra-slow (<0.1 Hz) frequency oscillations within the dorsal horn and somatosensory thalamus. The aim of this investigation was to determine whether, in humans, neuropathic pain was also associated with altered infra-slow oscillations within the ascending "pain" pathway. Using resting-state functional magnetic resonance imaging, we found that individuals with orofacial neuropathic pain have increased infra-slow oscillatory activity throughout the ascending pain pathway, including within the spinal trigeminal nucleus, somatosensory thalamus, thalamic reticular nucleus, and primary somatosensory cortex. Furthermore, these infra-slow oscillations were temporally coupled across these multiple sites and occurred at frequencies similar to calcium waves in activated astrocytes. The region encompassing the spinal trigeminal nucleus also displayed increased regional homogeneity, consistent with a local spread of neural activity by astrocyte activation. In contrast, no increase in oscillatory behavior within the ascending pain pathway occurred during acute noxious stimuli in healthy individuals. These data reveal increased oscillatory activity within the ascending pain pathway that likely underpins increased thalamocortical oscillatory activity, a self-sustaining thalamocortical dysrhythmia, and the constant perception of pain. Significance statement: Chronic neuropathic pain is associated with altered thalamic firing and thalamocortical dysrhythmia. The mechanisms responsible for these changes remain unknown. In this study, we report in individuals with neuropathic pain increased oscillatory neural activity within the ascending pain pathway with evidence that these changes result from altered neural-astrocyte coupling. We propose a series of neural and glial events after nerve injury that result in the generation of altered thalamocortical activity and a persistent neuropathic pain state. Defining the underlying mechanisms responsible for neuropathic pain is critical if we are to develop more effective treatment regimens.
Collapse
|
90
|
Henderson LA, Di Pietro F. How do neuroanatomical changes in individuals with chronic pain result in the constant perception of pain? Pain Manag 2016; 6:147-59. [PMID: 26997246 DOI: 10.2217/pmt.15.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Since the advent of anatomical brain imaging analysis techniques, numerous reports have shown altered regional brain anatomy in individuals with various chronic pain conditions. While early reports of increased regional brain volumes in taxi drivers and pianists were simply interpreted as responses to excessive use, the mechanisms responsible for anatomical changes associated with chronic pain are not so straightforward. The main aim of this paper is to explore the potential underlying cellular changes responsible for change in gross brain anatomy in individuals with chronic pain, in particular pain following nervous system damage. Determining the basis of these changes may provide a platform for development of targeted, personalized and ultimately more effective treatment regimens.
Collapse
Affiliation(s)
- Luke A Henderson
- Department of Anatomy & Histology, F13, University of Sydney, Sydney, Australia
| | - Flavia Di Pietro
- Department of Anatomy & Histology, F13, University of Sydney, Sydney, Australia
| |
Collapse
|
91
|
Lim M, Kim JS, Kim DJ, Chung CK. Increased Low- and High-Frequency Oscillatory Activity in the Prefrontal Cortex of Fibromyalgia Patients. Front Hum Neurosci 2016; 10:111. [PMID: 27014041 PMCID: PMC4789463 DOI: 10.3389/fnhum.2016.00111] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/29/2016] [Indexed: 11/30/2022] Open
Abstract
Recent human neuroimaging studies have suggested that fibromyalgia (FM), a chronic widespread pain disorder, exhibits altered thalamic structure and function. Since the thalamus has extensive reciprocal connection with the cortex, structural and functional thalamic alterations in FM might be linked to aberrant thalamocortical oscillation. This study investigated the presence of abnormal brain rhythmicity in low- and high-frequency bands during resting state in patients with FM and their relationship to clinical pain symptom. Spontaneous magnetoencephalography (MEG) activity was recorded in 18 females with FM and 18 age- and sex-matched healthy control (HC) subjects. The most remarkable finding was that FM patients had general increases in theta, beta and gamma power along with a slowing of the dominant alpha peak. Increased spectral powers in the theta-band were primarily localized to the left dorsolateral prefrontal (DLPFC) and orbitofrontal cortex (OFC). Beta and gamma over-activation were localized to insular, primary motor and primary and secondary somatosensory (S2) cortices, as well as the DLPFC and OFC. Furthermore, enhanced high-frequency oscillatory activities in the DLPFC and OFC were associated with higher affective pain scores in patients with FM. Our results demonstrate that FM patients feature enhanced low- and high-frequency oscillatory activity in the brain areas related to cognitive and emotional modulation of pain. Increased low- and high-frequency activity of the prefrontal cortex may contribute to persistent perception of pain in FM. Therapeutic intervention based on manipulating neural oscillation to restore normal thalamocortical rhythmicity may be beneficial to pain relief in FM.
Collapse
Affiliation(s)
- Manyoel Lim
- Neuroscience Research Institute, Seoul National University College of Medicine Seoul, South Korea
| | - June Sic Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences Seoul, South Korea
| | - Dajung J Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences Seoul, South Korea
| | - Chun Kee Chung
- Neuroscience Research Institute, Seoul National University College of MedicineSeoul, South Korea; Department of Brain and Cognitive Sciences, Seoul National University College of Natural SciencesSeoul, South Korea; Department of Neurosurgery, Seoul National University HospitalSeoul, South Korea
| |
Collapse
|
92
|
Differential pain modulation properties in central neuropathic pain after spinal cord injury. Pain 2016; 157:1415-1424. [DOI: 10.1097/j.pain.0000000000000532] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
93
|
Pathophysiological implication of CaV3.1 T-type Ca2+ channels in trigeminal neuropathic pain. Proc Natl Acad Sci U S A 2016; 113:2270-5. [PMID: 26858455 DOI: 10.1073/pnas.1600418113] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A crucial pathophysiological issue concerning central neuropathic pain is the modification of sensory processing by abnormally increased low-frequency brain rhythms. Here we explore the molecular mechanisms responsible for such abnormal rhythmicity and its relation to neuropathic pain syndrome. Toward this aim, we investigated the behavioral and electrophysiological consequences of trigeminal neuropathic pain following infraorbital nerve ligations in CaV3.1 T-type Ca(2+) channel knockout and wild-type mice. CaV3.1 knockout mice had decreased mechanical hypersensitivity and reduced low-frequency rhythms in the primary somatosensory cortex and related thalamic nuclei than wild-type mice. Lateral inhibition of gamma rhythm in primary somatosensory cortex layer 4, reflecting intact sensory contrast, was present in knockout mice but severely impaired in wild-type mice. Moreover, cross-frequency coupling between low-frequency and gamma rhythms, which may serve in sensory processing, was pronounced in wild-type mice but not in CaV3.1 knockout mice. Our results suggest that the presence of CaV3.1 channels is a key element in the pathophysiology of trigeminal neuropathic pain.
Collapse
|
94
|
|
95
|
Widerström-Noga E, Govind V, Adcock JP, Levin BE, Maudsley AA. Subacute Pain after Traumatic Brain Injury Is Associated with Lower Insular N-Acetylaspartate Concentrations. J Neurotrauma 2016; 33:1380-9. [PMID: 26486760 DOI: 10.1089/neu.2015.4098] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Persistent pain is experienced by more than 50% of persons who sustain a traumatic brain injury (TBI), and more than 30% experience significant pain as early as 6 weeks after injury. Although neuropathic pain is a common consequence after CNS injuries, little attention has been given to neuropathic pain symptoms after TBI. Magnetic resonance spectroscopy (MRS) studies in subjects with TBI show decreased brain concentrations of N-acetylaspartate (NAA), a marker of neuronal density and viability. Although decreased brain NAA has been associated with neuropathic pain associated with spinal cord injury (SCI) and diabetes, this relationship has not been examined after TBI. The primary purpose of this study was to test the hypothesis that lower NAA concentrations in brain areas involved in pain perception and modulation would be associated with greater severity of neuropathic pain symptoms. Participants with TBI underwent volumetric MRS, pain and psychosocial interviews. Cluster analysis of the Neuropathic Pain Symptom Inventory subscores resulted in two TBI subgroups: The Moderate Neuropathic Pain (n = 17; 37.8%), with significantly (p = 0.038) lower insular NAA than the Low or no Neuropathic Pain group (n = 28; 62.2%), or age- and sex-matched controls (n = 45; p < 0.001). A hierarchical linear regression analysis controlling for age, sex, and time post-TBI showed that pain severity was significantly (F = 11.0; p < 0.001) predicted by a combination of lower insular NAA/Creatine (p < 0.001), lower right insular gray matter fractional volume (p < 0.001), female sex (p = 0.005), and older age (p = 0.039). These findings suggest that neuronal dysfunction in brain areas involved in pain processing is associated with pain after TBI.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,3 Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine , Miami, Florida
| | - Varan Govind
- 4 Department of Radiology, University of Miami Miller School of Medicine , Miami, Florida
| | - James P Adcock
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Bonnie E Levin
- 5 Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida
| | - Andrew A Maudsley
- 4 Department of Radiology, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
96
|
Inhibition of the primary sensorimotor cortex by topical anesthesia of the forearm in patients with complex regional pain syndrome. Pain 2015; 156:2556-2561. [DOI: 10.1097/j.pain.0000000000000324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
97
|
Widerström-Noga E, Cruz-Almeida Y, Felix ER, Pattany PM. Somatosensory phenotype is associated with thalamic metabolites and pain intensity after spinal cord injury. Pain 2015; 156:166-174. [PMID: 25599312 DOI: 10.1016/j.pain.0000000000000019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropathic pain is one of the most difficult consequences of spinal cord injury (SCI). The clinical correlates of the underlying mechanisms responsible for neuropathic pain are not well understood, although methods such as quantitative somatosensory testing (QST) or brain imaging have been used to further a mechanism-based understanding of pain. Our previous SCI study demonstrated a significantly lower glutamate-glutamine/myo-inositol ratio (Glx/Ins) in the anterior cingulate cortex in persons with severe neuropathic pain compared with those with less severe neuropathic pain or pain-free, able-bodied controls, suggesting that a combination of decreased glutamatergic metabolism and glial activation may contribute to the development of severe neuropathic pain after SCI. The present study aimed to determine the relationships between somatosensory function below the level of injury and low thalamic Glx/Ins in persons with intense neuropathic pain after SCI. Participants underwent QST and a 3 Tesla proton magnetic resonance spectroscopy. A cluster analysis including SCI participants resulted in 1 group (n = 19) with significantly (P < 0.001) greater pain intensity (6.43 ± 1.63; high neuropathic pain [HNP], and lower Glx/Ins [1.22 ± 0.16]) and another group (n = 35) with lower pain intensity ratings (1.59 ± 1.52, low neuropathic pain [LNP], and higher Glx/Ins [1.47 ± 0.26]). After correcting for age, QST indicated significantly greater somatosensory function in the HNP group compared with the LNP group. Our results are consistent with research suggesting that damage to, but not abolition of, the spinothalamic tract contributes to development of neuropathic pain after SCI and that secondary inflammatory processes may amplify residual spinothalamic tract signals by facilitation, disinhibition, or sensitization.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- Research Service, Department of Veterans Affairs Medical Center, Miami, FL, USA The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL, USA Neuroscience Graduate Program (R50), Miller School of Medicine, University of Miami, Miami, FL, USA Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA; Cruz-Almeida is now with Institute on Aging, Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
98
|
Siddall PJ, Middleton JW. Spinal cord injury-induced pain: mechanisms and treatments. Pain Manag 2015; 5:493-507. [PMID: 26402151 DOI: 10.2217/pmt.15.47] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pain is a common consequence of a spinal cord injury (SCI) and has a major impact on quality of life through its impact on physical function, mood and participation in work, recreational and social activities. Several types of pain typically present following SCI with central neuropathic pain being a frequent and difficult to manage occurrence. Despite advances in our understanding of the mechanisms contributing to this type of pain and an increasing number of trials examining treatment efficacy, our ability to relieve neuropathic SCI pain is still very limited. Optimal management relies upon an integrated approach that uses a combination of pharmacological and nonpharmacological options.
Collapse
Affiliation(s)
- Philip J Siddall
- Pain Management Service, HammondCare, Sydney, NSW 2000, Australia.,Pain Medicine, Sydney Medical School-Northern, The University of Sydney, Sydney, Australia.,Greenwich Hospital, Greenwich, NSW 2065, Australia
| | - James W Middleton
- State Spinal Cord Injury Service, NSW Agency for Clinical Innovation, Chatswood, NSW 2057, Australia.,John Walsh Centre for Rehabilitation Research, Sydney Medical School-Northern, The University of Sydney, Sydney, Australia
| |
Collapse
|
99
|
Grabher P, Callaghan MF, Ashburner J, Weiskopf N, Thompson AJ, Curt A, Freund P. Tracking sensory system atrophy and outcome prediction in spinal cord injury. Ann Neurol 2015; 78:751-61. [PMID: 26290444 PMCID: PMC4737098 DOI: 10.1002/ana.24508] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022]
Abstract
Objective In patients with subacute spinal cord injury (SCI), the motor system undergoes progressive structural changes rostral to the lesion, which are associated with motor outcome. The extent to which the sensory system is affected and how this relates to sensory outcome are uncertain. Methods Changes in the sensory system were prospectively followed by applying a comprehensive magnetic resonance imaging (MRI) protocol to 14 patients with subacute traumatic SCI at baseline, 2 months, 6 months, and 12 months after injury, combined with a full neurological examination and comprehensive pain assessment. Eighteen controls underwent the same MRI protocol. T1‐weighted volumes, myelin‐sensitive magnetization transfer saturation (MT), and longitudinal relaxation rate (R1) mapping provided data on spinal cord and brain morphometry and microstructure. Regression analysis assessed the relationship between MRI readouts and sensory outcomes. Results At 12 months from baseline, sensory scores were unchanged and below‐level neuropathic pain became prominent. Compared with controls, patients showed progressive degenerative changes in cervical cord and brain morphometry across the sensory system. At 12 months, MT and R1 were reduced in areas of structural decline. Sensory scores at 12 months correlated with rate of change in cord area and brain volume and decreased MT in the spinal cord at 12 months. Interpretation This study has demonstrated progressive atrophic and microstructural changes across the sensory system with a close relation to sensory outcome. Structural MRI protocols remote from the site of lesion provide new insights into neuronal degeneration underpinning sensory disturbance and have potential as responsive biomarkers of rehabilitation and treatment interventions. Ann Neurol 2015;78:Ann Neurol 2015;78:679–696
Collapse
Affiliation(s)
- Patrick Grabher
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martina F Callaghan
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom.,Department of Neurophysics, Max Planck Institute for Human Cognitive, and Brain Sciences, Leipzig, Germany
| | - Alan J Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Armin Curt
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom.,Department of Neurophysics, Max Planck Institute for Human Cognitive, and Brain Sciences, Leipzig, Germany.,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
100
|
Abstract
Chronic pain is an important public health problem, and there is a need to understand the mechanisms that lead to pain chronification. From a neurobiological perspective, the mechanisms contributing to the transition from acute to subacute and chronic pain are heterogeneous and are thought to take place at various levels of the peripheral and central nervous system. In the past decade, brain imaging studies have shed light on neural correlates of pain perception and pain modulation, but they have also begun to disentangle neural mechanisms that underlie chronic pain. This review summarizes important and recent findings in pain research using magnetic resonance tomography. Especially new developments in functional, structural and neurochemical imaging such as resting-state connectivity and γ-aminobutyric acid (GABA) spectroscopy, which have advanced our understanding of chronic pain and which can potentially be integrated in clinical practice, will be discussed.
Collapse
Affiliation(s)
- Tobias Schmidt-Wilcke
- Department of Neurology, Berufsgenossenschaftliche Universitätsklinik Bergmannsheil, Ruhr Universität Bochum, Bochum, Germany.
| |
Collapse
|