51
|
Ye Y, Liu P, Wang Y, Li H, Wei F, Cheng Y, Han L, Yu J. Neurotensin, a Novel Messenger to Cross-Link Inflammation and Tumor Invasion via Epithelial-Mesenchymal Transition Pathway. Int Rev Immunol 2014; 35:340-350. [PMID: 25215420 DOI: 10.3109/08830185.2014.952412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multiple cytokines and growth factors are critical for the prognosis of cancer which has been regarded as a worldwide health problem. Recently, neuropeptides, soluble factors regulating a series of functions in the central nervous system, have also been demonstrated to stimulate the proliferation and migration of tumor cells. Among these signaling peptides, the role of neurotensin (NTS) on malignancy procession has become a hot topic. The effects of NTS on tumor growth and its antiapoptosis role have already been identified. Subsequently, studies demonstrated the impact of NTS on the migration and invasion, but the molecular mechanisms involved are still unclear at present. Recently, some reports indicated that NTS could induce expression and secretion of interleukin-8 (IL-8) to promote local imflammatory response which might participate in epithelial-mesenchymal transition (EMT)-related tumor migration. In present review, we highlight the process of tumor EMT induced by NTS through stimulating IL-8 and the significance of NTS/IL-8 pathway in clinical application prospect.
Collapse
Affiliation(s)
- Yingnan Ye
- a Department of Immunology , Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China
| | - Pengpeng Liu
- b Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy , Tianjin , P. R. China
| | - Yue Wang
- a Department of Immunology , Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China
| | - Hui Li
- a Department of Immunology , Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China
| | - Feng Wei
- a Department of Immunology , Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China
| | - Yanan Cheng
- b Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy , Tianjin , P. R. China
| | - Lei Han
- b Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy , Tianjin , P. R. China
| | - Jinpu Yu
- a Department of Immunology , Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China.,b Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy , Tianjin , P. R. China.,c Biotherapy Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China
| |
Collapse
|
52
|
Thomas JB, Giddings AM, Wiethe RW, Olepu S, Warner KR, Sarret P, Gendron L, Longpre JM, Zhang Y, Runyon SP, Gilmour BP. Identification of N-[(5-{[(4-methylphenyl)sulfonyl]amino}-3-(trifluoroacetyl)-1H-indol-1-yl)acetyl]-l-leucine (NTRC-824), a neurotensin-like nonpeptide compound selective for the neurotensin receptor type 2. J Med Chem 2014; 57:7472-7. [PMID: 25157640 PMCID: PMC4161155 DOI: 10.1021/jm500857r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Compounds acting via the neurotensin
receptor type 2 (NTS2) are
known to be active in animal models of acute and chronic pain. To
identify novel NTS2 selective analgesics, we searched for NTS2 selective
nonpeptide compounds using a FLIPR assay and identified the title
compound (NTRC-824, 5) that, to our knowledge, is the
first nonpeptide that is selective for NTS2 versus NTS1 and behaves
like the endogenous ligand neurotensin in the functional assay.
Collapse
Affiliation(s)
- James B Thomas
- Center for Organic and Medicinal Chemistry, Research Triangle Institute , P.O. Box 12194, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 2014; 86:38-48. [PMID: 24998751 DOI: 10.1016/j.neuropharm.2014.06.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/22/2022]
Abstract
The intricate relationships that associate pain, stress responses and emotional behavior have been well established. Acute stressful situations can decrease nociceptive sensations and conversely, chronic pain can enhance other pain experiences and heighten the emotional and behavioral consequences of stress. Accordingly, chronic pain is comorbid with a number of behavioral disorders including depression, anxiety abnormalities and associated stress-related disorders including post traumatic stress disorder (PTSD). The central nucleus of the amygdala (CeA) represents a convergence of pathways for pain, stress and emotion, and we have identified pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in fiber elements in the lateral capsular division of the CeA (CeLC). The PACAP staining patterns colocalized in part with those for calcitonin gene related peptide (CGRP); anterograde fiber tracing and excitotoxic lesion studies demonstrated that the CeLC PACAP/CGRP immunoreactivities represented sensory fiber projections from the lateral parabrachial nucleus (LPBn) along the spino-parabrachioamygdaloid tract. The same PBn PACAP/CGRP fiber system also projected to the BNST. As in the BNST, CeA PACAP signaling increased anxiety-like behaviors accompanied by weight loss and decreased feeding. But in addition to heightened anxiety-like responses, CeA PACAP signaling also altered nociception as reflected by decreased latency and threshold responses in thermal and mechanical sensitivity tests, respectively. From PACAP expression in major pain pathways, the current observations are novel and suggest that CeA PACAP nociceptive signaling and resulting neuroplasticity via the spino-parabrachioamygdaloid tract may represent mechanisms that associate chronic pain with sensory hypersensitivity, fear memory consolidation and severe behavioral disorders.
Collapse
|
54
|
Guo Z, Du S, Chen B, Sha Y, Qiu B, Jiang X, Wang S, Li X. A sandwich-type label-free electrochemiluminescence immunosensor for neurotensin based on sombrero model with graphene-hyaluronate-luminol composite. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
55
|
Thomas JB, Giddings AM, Wiethe RW, Olepu S, Warner KR, Sarret P, Gendron L, Longpre JM, Zhang Y, Runyon SP, Gilmour BP. Identification of 1-({[1-(4-fluorophenyl)-5-(2-methoxyphenyl)-1H-pyrazol-3-yl]carbonyl}amino)cyclohexane carboxylic acid as a selective nonpeptide neurotensin receptor type 2 compound. J Med Chem 2014; 57:5318-32. [PMID: 24856674 PMCID: PMC4216214 DOI: 10.1021/jm5003843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Compounds
active at neurotensin receptors (NTS1 and NTS2) exert analgesic effects
on different types of nociceptive modalities, including thermal, mechanical,
and chemical stimuli. The NTS2 preferring peptide JMV-431 (2) and the NTS2 selective nonpeptide compound levocabastine (6) have been shown to be effective in relieving the pain associated
with peripheral neuropathies. With the aim of identifying novel nonpeptide
compounds selective for NTS2, we examined analogues of SR48692 (5a) using a FLIPR calcium assay in CHO cells stably expressing
rat NTS2. This led to the discovery of the NTS2 selective nonpeptide
compound 1-({[1-(4-fluorophenyl)-5-(2-methoxyphenyl)-1H-pyrazol-3-yl]carbonyl}amino)cyclohexane carboxylic acid (NTRC-739, 7b) starting from the nonselective compound 5a.
Collapse
Affiliation(s)
- James B Thomas
- Center for Organic and Medicinal Chemistry, Research Triangle Institute , P.O. Box 12194, Research Triangle Park, North Carolina 27709, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Su J, Sandor K, Sköld K, Hökfelt T, Svensson CI, Kultima K. Identification and quantification of neuropeptides in naïve mouse spinal cord using mass spectrometry reveals [des-Ser1]-cerebellin as a novel modulator of nociception. J Neurochem 2014; 130:199-214. [DOI: 10.1111/jnc.12730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/13/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - Karl Sköld
- Research and Development; Denator AB; Uppsala Sweden
- Department of Medical Sciences; Cancer Pharmacology and Computational Medicine; Uppsala University; Uppsala Sweden
| | - Tomas Hökfelt
- Department of Neuroscience; Karolinska Institutet; Stockholm Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - Kim Kultima
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
- Department of Medical Sciences; Cancer Pharmacology and Computational Medicine; Uppsala University; Uppsala Sweden
| |
Collapse
|
57
|
Changes in biochemical markers of pain perception and stress response after spinal manipulation. J Orthop Sports Phys Ther 2014; 44:231-9. [PMID: 24450367 DOI: 10.2519/jospt.2014.4996] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN Controlled, repeated-measures, single-blind randomized study. OBJECTIVES To determine the effect of cervical or thoracic manipulation on neurotensin, oxytocin, orexin A, and cortisol levels. BACKGROUND Previous studies have researched the effect of spinal manipulation on pain modulation and/or range of movement. However, there is little knowledge of the biochemical process that supports the antinociceptive effect of spinal manipulation. METHODS Thirty asymptomatic subjects were randomly divided into 3 groups: cervical manipulation (n = 10), thoracic manipulation (n = 10), and nonmanipulation (control) (n = 10). Blood samples were extracted before, immediately after, and 2 hours after each intervention. Neurotensin, oxytocin, and orexin A were determined in plasma using enzyme-linked immuno assay. Cortisol was measured by microparticulate enzyme immuno assay in serum samples. RESULTS Immediately after the intervention, significantly higher values of neurotensin (P<.05) and oxytocin (P<.001) levels were observed with both cervical and thoracic manipulation, whereas cortisol concentration was increased only in the cervical manipulation group (P<.05). No changes were detected for orexin A levels. Two hours after the intervention, no significant differences were observed in between-group analysis. CONCLUSION The mechanical stimulus provided by spinal manipulation triggers an increase in neurotensin, oxytocin, and cortisol blood levels. Data suggest that the initial capability of the tissues to tolerate mechanical deformation affects the capacity of these tissues to produce an induction of neuropeptide expression. J
Collapse
|
58
|
Demeule M, Beaudet N, Régina A, Besserer-Offroy É, Murza A, Tétreault P, Belleville K, Ché C, Larocque A, Thiot C, Béliveau R, Longpré JM, Marsault É, Leduc R, Lachowicz JE, Gonias SL, Castaigne JP, Sarret P. Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. J Clin Invest 2014; 124:1199-213. [PMID: 24531547 DOI: 10.1172/jci70647] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 12/05/2013] [Indexed: 12/23/2022] Open
Abstract
Neurotensin (NT) has emerged as an important modulator of nociceptive transmission and exerts its biological effects through interactions with 2 distinct GPCRs, NTS1 and NTS2. NT provides strong analgesia when administered directly into the brain; however, the blood-brain barrier (BBB) is a major obstacle for effective delivery of potential analgesics to the brain. To overcome this challenge, we synthesized chemical conjugates that are transported across the BBB via receptor-mediated transcytosis using the brain-penetrant peptide Angiopep-2 (An2), which targets LDL receptor-related protein-1 (LRP1). Using in situ brain perfusion in mice, we found that the compound ANG2002, a conjugate of An2 and NT, was transported at least 10 times more efficiently across the BBB than native NT. In vitro, ANG2002 bound NTS1 and NTS2 receptors and maintained NT-associated biological activity. In rats, i.v. ANG2002 induced a dose-dependent analgesia in the formalin model of persistent pain. At a dose of 0.05 mg/kg, ANG2002 effectively reversed pain behaviors induced by the development of neuropathic and bone cancer pain in animal models. The analgesic properties of ANG2002 demonstrated in this study suggest that this compound is effective for clinical management of persistent and chronic pain and establish the benefits of this technology for the development of neurotherapeutics.
Collapse
|
59
|
Driessen TM, Zhao C, Whittlinger A, Williams H, Gammie SC. Endogenous CNS expression of neurotensin and neurotensin receptors is altered during the postpartum period in outbred mice. PLoS One 2014; 9:e83098. [PMID: 24416154 PMCID: PMC3885409 DOI: 10.1371/journal.pone.0083098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 11/05/2013] [Indexed: 12/26/2022] Open
Abstract
Neurotensin (NT) is a neuropeptide identical in mice and humans that is produced and released in many CNS regions associated with maternal behavior. NT has been linked to aspects of maternal care and previous studies have indirectly suggested that endogenous NT signaling is altered in the postpartum period. In the present study, we directly examine whether NT and its receptors exhibit altered gene expression in maternal relative to virgin outbred mice using real time quantitative PCR (qPCR) across multiple brain regions. We also examine NT protein levels using anti-NT antibodies and immunohistochemistry in specific brain regions. In the medial preoptic area (MPOA), which is critical for maternal behaviors, mRNA of NT and NT receptor 3 (Sort1) were significantly up-regulated in postpartum mice compared to virgins. NT mRNA was also elevated in postpartum females in the bed nucleus of the stria terminalis dorsal. However, in the lateral septum, NT mRNA was down-regulated in postpartum females. In the paraventricular nucleus of the hypothalamus (PVN), Ntsr1 expression was down-regulated in postpartum females. Neurotensin receptor 2 (Ntsr2) expression was not altered in any brain region tested. In terms of protein expression, NT immunohistochemistry results indicated that NT labeling was elevated in the postpartum brain in the MPOA, lateral hypothalamus, and two subregions of PVN. Together, these findings indicate that endogenous changes occur in NT and its receptors across multiple brain regions, and these likely support the emergence of some maternal behaviors.
Collapse
Affiliation(s)
- Terri M. Driessen
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Whittlinger
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Horecia Williams
- Department of Animal Science, Fort Valley State University, Fort Valley, Georgia, United States of America
| | - Stephen C. Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
60
|
Tétreault P, Beaudet N, Perron A, Belleville K, René A, Cavelier F, Martinez J, Stroh T, Jacobi AM, Rose SD, Behlke MA, Sarret P. Spinal NTS2 receptor activation reverses signs of neuropathic pain. FASEB J 2013; 27:3741-52. [DOI: 10.1096/fj.12-225540] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pascal Tétreault
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Nicolas Beaudet
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Amélie Perron
- Institute for Integrated Cell‐Material SciencesKyoto UniversityKyotoJapan
| | - Karine Belleville
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Adeline René
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Florine Cavelier
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Jean Martinez
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Thomas Stroh
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontréalQuébecCanada
| | | | | | | | - Philippe Sarret
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| |
Collapse
|
61
|
Baxendale IR, Cheung S, Kitching MO, Ley SV, Shearman JW. The synthesis of neurotensin antagonist SR 48692 for prostate cancer research. Bioorg Med Chem 2013; 21:4378-87. [PMID: 23721919 DOI: 10.1016/j.bmc.2013.04.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 01/03/2023]
Abstract
An improved synthesis of the molecule SR 48692 is presented and its use as a neurotensin antagonist biological probe for use in cancer research is described. The preparation includes an number of enhanced chemical conversions and strategies to overcome some of the limiting synthetic transformations in the original chemical route.
Collapse
Affiliation(s)
- I R Baxendale
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | | | | | | | | |
Collapse
|
62
|
Massa F, Devader C, Béraud-Dufour S, Brau F, Coppola T, Mazella J. Focal adhesion kinase dependent activation of the PI3 kinase pathway by the functional soluble form of neurotensin receptor-3 in HT29 cells. Int J Biochem Cell Biol 2013; 45:952-9. [DOI: 10.1016/j.biocel.2013.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/21/2013] [Accepted: 01/31/2013] [Indexed: 01/22/2023]
|
63
|
Boules M, Li Z, Smith K, Fredrickson P, Richelson E. Diverse roles of neurotensin agonists in the central nervous system. Front Endocrinol (Lausanne) 2013; 4:36. [PMID: 23526754 PMCID: PMC3605594 DOI: 10.3389/fendo.2013.00036] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/06/2013] [Indexed: 01/10/2023] Open
Abstract
Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson's disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
- *Correspondence: Mona Boules, Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. e-mail:
| | - Zhimin Li
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Kristin Smith
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Paul Fredrickson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Elliott Richelson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| |
Collapse
|
64
|
Guillemette A, Dansereau MA, Beaudet N, Richelson E, Sarret P. Intrathecal administration of NTS1 agonists reverses nociceptive behaviors in a rat model of neuropathic pain. Eur J Pain 2012; 16:473-84. [PMID: 22396077 DOI: 10.1016/j.ejpain.2011.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic neuropathic pain arising from peripheral nerve damage is a severe clinical issue where there is a major unmet medical need. We previously demonstrated that both neurotensin (NT) receptor subtypes 1 (NTS1) and 2 (NTS2) are involved in mediating the naloxone-insensitive antinociceptive effects of neurotensin in different analgesic tests including hotplate, tail-flick, and tonic pain. However, the role of these receptors in neuropathic pain management has been poorly investigated. In the present study, we therefore examined whether intrathecal delivery of NTS1 agonists was effective in reducing neuropathic pain symptoms in rats. Neuropathy was induced by sciatic nerve constriction (CCI model), and the development of mechanical allodynia and thermal hyperalgesia on the ipsi- and contralateral hind paws was examined 3, 7, 14, 21, and 28 days post-surgery. CCI-operated rats exhibited significant increases in thermal and mechanical hypersensitivities over a 28-day testing period. Spinal injection of NT to CCI rats alleviated the behavioral responses to radiant heat and mechanical stimuli, with a maximal reversal of 91% of allodynia at 6 μg/kg. Intrathecal administration of the NTS1-selective agonist, PD149163 (30-90 μg/kg) also produced potent anti-allodynic and anti-hyperalgesic effects in nerve-injured rats. Likewise, heat hyperalgesia and tactile allodynia produced by CCI of the sciatic nerve were fully reversed by the NTS1 agonist, NT69L (5-25 μg/kg). Altogether, these results support the idea that the NTS1 receptor subtype is involved in pain modulation, and the potential use of NTS1 agonists for the treatment of painful neuropathies.
Collapse
Affiliation(s)
- A Guillemette
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
65
|
Delawary M, Tezuka T, Kiyama Y, Yokoyama K, Wada E, Wada K, Manabe T, Yamamoto T, Nakazawa T. NMDAR2B tyrosine phosphorylation is involved in thermal nociception. Neurosci Lett 2012; 516:270-3. [DOI: 10.1016/j.neulet.2012.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/24/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
66
|
Näreoja K, Näsman J. Selective targeting of G-protein-coupled receptor subtypes with venom peptides. Acta Physiol (Oxf) 2012; 204:186-201. [PMID: 21481193 DOI: 10.1111/j.1748-1716.2011.02305.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The G-protein-coupled receptor (GPCR) family is one of the largest gene superfamilies with approx. 370 members responding to endogenous ligands in humans and a roughly equal amount of receptors sensitive to external stimuli from the surrounding. A number of receptors from this superfamily are well recognized targets for medical treatment of various disease conditions, whereas for many others the potential medical benefit of interference is still obscure. A general problem associated with GPCR research and therapeutics is the insufficient specificity of available ligands to differentiate between closely homologous receptor subtypes. In this context, venom peptides could make a significant contribution to the development of more specific drugs. Venoms from certain animals specialized in biochemical hunting contain a mixture of molecules that are directed towards a variety of membrane proteins. Peptide toxins isolated from these mixtures usually exhibit high specificity for their targets. Muscarinic toxins found from mamba snakes attracted much attention during the 1990s. These are 65-66 amino acid long peptides with a structural three-finger folding similar to the α-neurotoxins and they target the muscarinic acetylcholine receptors in a subtype-selective manner. Recently, several members of the three-finger toxins from mamba snakes as well as conotoxins from marine cone snails have been shown to selectively interact with subtypes of adrenergic receptors. In this review, we will discuss the GPCR-directed peptide toxins found from different venoms and how some of these can be useful in exploring specific roles of receptor subtypes.
Collapse
Affiliation(s)
- K Näreoja
- Department of Biosciences, Biochemistry, Åbo Akademi University, Turku, Finland
| | | |
Collapse
|
67
|
Lisowski P, Stankiewicz AM, Goscik J, Wieczorek M, Zwierzchowski L, Swiergiel AH. Selection for stress-induced analgesia affects the mouse hippocampal transcriptome. J Mol Neurosci 2011; 47:101-12. [PMID: 22173874 DOI: 10.1007/s12031-011-9692-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/05/2011] [Indexed: 12/01/2022]
Abstract
Stress responsiveness, including pain sensitivity and stress-induced analgesia (SIA), depends on genotype and, partially, is mediated by hippocampus. The present study examined differences in constitutive gene expression in hippocampus in lines of mice bred for high (HA) and low (LA) swim SIA. Between the lines, we found 1.5-fold or greater differences in expression of 205 genes in the hippocampus in nonstressed animals. The identity of these genes indicates that selective breeding for swim SIA affected many aspects of hippocampal neurons physiology, including metabolism, structural changes, and cellular signaling. Genes involved in calcium signaling pathway, including Slc8a1, Slc8a2, Prkcc, and Ptk2b, were upregulated in LA mice. In HA mice, robust upregulation of genes coding some transcription factors (Klf5) or receptors for neurotensin (Ntsr2) and GABA (Gabard) suggests the genetic basis for a novel mechanism of the non-opioid type of SIA in HA animals. Additional groups of differentially expressed genes represented functional networks involved in carbohydrate metabolism, gene expression regulation, and molecular transport. Our data indicate that selection for a single and very specific stress response trait, swim SIA, alters hippocampal gene expression. The results suggest that individual stress responsiveness may be associated with characteristics of the constitutive hippocampal transcriptome.
Collapse
Affiliation(s)
- Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland.
| | | | | | | | | | | |
Collapse
|
68
|
Kadiri N, Rodeau JL, Schlichter R, Hugel S. Neurotensin inhibits background K+ channels and facilitates glutamatergic transmission in rat spinal cord dorsal horn. Eur J Neurosci 2011; 34:1230-40. [PMID: 21936876 DOI: 10.1111/j.1460-9568.2011.07846.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotensin (NT) is a neuropeptide involved in the modulation of nociception. We have investigated the actions of NT on cultured postnatal rat spinal cord dorsal horn (DH) neurons. NT induced an inward current associated with a decrease in membrane conductance in 46% of the neurons and increased the frequency of glutamatergic miniature excitatory synaptic currents in 37% of the neurons. Similar effects were observed in acute slices. Both effects of NT were reproduced by the selective NTS1 agonist JMV449 and blocked by the NTS1 antagonist SR48692 and the NTS1/NTS2 antagonist SR142948A. The NTS2 agonist levocabastine had no effect. The actions of NT persisted after inactivation of G(i/o) proteins by pertussis toxin but were absent after inactivation of protein kinase C (PKC) by chelerythrine or inhibition of the MAPK (ERK1/2) pathway by PD98059. Pre- and postsynaptic effects of NT were insensitive to classical voltage- and Ca(2+) -dependent K(+) channel blockers. The K(+) conductance inhibited by NT was blocked by Ba(2+) and displayed no or little inward rectification, despite the presence of strongly rectifying Ba(2+) -sensitive K(+) conductance in these neurons. This suggested that NT blocked two-pore domain (K2P) background K(+) -channels rather than inwardly rectifying K(+) channels. Zn(2+) ions, which inhibit TRESK and TASK-3 K2P channels, decreased NT-induced current. Our results indicate that in DH neurons NT activates NTS1 receptors which, via the PKC-dependent activation of the MAPK (ERK1/2) pathway, depolarize the postsynaptic neuron and increase the synaptic release of glutamate. These actions of NT might modulate the transfer and the integration of somatosensory information in the DH.
Collapse
Affiliation(s)
- Nabila Kadiri
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 21 rue René Descartes, Strasbourg, France
| | | | | | | |
Collapse
|
69
|
Robertson CR, Flynn SP, White HS, Bulaj G. Anticonvulsant neuropeptides as drug leads for neurological diseases. Nat Prod Rep 2011; 28:741-62. [PMID: 21340067 DOI: 10.1039/c0np00048e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anticonvulsant neuropeptides are best known for their ability to suppress seizures and modulate pain pathways. Galanin, neuropeptide Y, somatostatin, neurotensin, dynorphin, among others, have been validated as potential first-in-class anti-epileptic or/and analgesic compounds in animal models of epilepsy and pain, but their therapeutic potential extends to other neurological indications, including neurodegenerative and psychatric disorders. Disease-modifying properties of neuropeptides make them even more attractive templates for developing new-generation neurotherapeutics. Arguably, efforts to transform this class of neuropeptides into drugs have been limited compared to those for other bioactive peptides. Key challenges in developing neuropeptide-based anticonvulsants are: to engineer optimal receptor-subtype selectivity, to improve metabolic stability and to enhance their bioavailability, including penetration across the blood–brain barrier (BBB). Here, we summarize advances toward developing systemically active and CNS-penetrant neuropeptide analogs. Two main objectives of this review are: (1) to provide an overview of structural and pharmacological properties for selected anticonvulsant neuropeptides and their analogs and (2) to encourage broader efforts to convert these endogenous natural products into drug leads for pain, epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Charles R Robertson
- College of Pharmacy, Department of Medicinal Chemistry, 421 Wakara Way, STE. 360 Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
70
|
Mustain WC, Rychahou PG, Evers BM. The role of neurotensin in physiologic and pathologic processes. Curr Opin Endocrinol Diabetes Obes 2011; 18:75-82. [PMID: 21124211 DOI: 10.1097/med.0b013e3283419052] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW Neurotensin is a 13-amino acid peptide found in the central nervous system central nervous system and the gastrointestinal tract. Since its initial discovery in 1973, neurotensin has been shown to play a role in a wide range of physiologic and pathologic processes throughout the body. Ongoing research efforts continue to clarify the role of neurotensin in various central nervous system and gastrointestinal processes, as well as how disruption of these normal mechanisms may lead to diseases ranging from schizophrenia to colorectal cancer. The goal of this review is to provide an overview of the most recent advances in the field of neurotensin research, in the context of what has been previously published. RECENT FINDINGS Because of the seemingly unrelated functions of neurotensin in the central nervous system and the periphery, the scope of the articles reviewed is rather broad. Contributions continue to be made to our understanding of the downstream effects of neurotensin signaling and the complex feedback loops between neurotensin and other signaling molecules. By selective targeting or blockade of specific neurotensin receptors, investigators have identified potential drugs for use in the treatment of schizophrenia, alcoholism, chronic pain, or cancer. Neurotensin-based pharmacologic agents are being used successfully in animal models for a number of these conditions. SUMMARY The review highlights the wide array of biological processes in which neurotensin has a role, and summarizes the most recent advances in various fields of neurotensin research. The knowledge gained through this research has led to the development of first-in-class drugs for the treatment of various medical conditions, and it is clear that in the coming years some of these agents will be ready to move from the bench to the bedside in clinical trials.
Collapse
Affiliation(s)
- W Conan Mustain
- Department of Surgery, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
71
|
Pratsch G, Unfried JF, Einsiedel J, Plomer M, Hübner H, Gmeiner P, Heinrich MR. Radical arylation of tyrosine and its application in the synthesis of a highly selective neurotensin receptor 2 ligand. Org Biomol Chem 2011; 9:3746-52. [DOI: 10.1039/c1ob05292f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
72
|
Kleczkowska P, Kosson P, Ballet S, Van den Eynde I, Tsuda Y, Tourwé D, Lipkowski AW. PK20, a new opioid-neurotensin hybrid peptide that exhibits central and peripheral antinociceptive effects. Mol Pain 2010; 6:86. [PMID: 21134256 PMCID: PMC3017538 DOI: 10.1186/1744-8069-6-86] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/06/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The clinical treatment of various types of pain relies upon the use of opioid analgesics. However most of them produce, in addition to the analgesic effect, several side effects such as the development of dependence and addiction as well as sedation, dysphoria, and constipation. One solution to these problems are chimeric compounds in which the opioid pharmacophore is hybridized with another type of compound to incease antinociceptive effects. Neurotensin-induced antinociception is not mediated through the opioid system. Therefore, hybridizing neurotensin with opioid elements may result in a potent synergistic antinociceptor. RESULTS Using the known structure-activity relationships of neurotensin we have synthesized a new chimeric opioid-neurotensin compound PK20 which is characterized by a very strong antinociceptive potency. The observation that the opioid antagonist naltrexone did not completely reverse the antinociceptive effect, indicates the partial involvement of the nonopioid component in PK20 in the produced analgesia. CONCLUSIONS The opioid-neurotensin hybrid analogue PK20, in which opioid and neurotensin pharmacophores overlap partially, expresses high antinociceptive tail-flick effects after central as well as peripheral applications.
Collapse
Affiliation(s)
- Patrycja Kleczkowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego Street 5, 02106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
73
|
Roussy G, Beaudry H, Lafrance M, Belleville K, Beaudet N, Wada K, Gendron L, Sarret P. Altered morphine-induced analgesia in neurotensin type 1 receptor null mice. Neuroscience 2010; 170:1286-94. [PMID: 20727387 DOI: 10.1016/j.neuroscience.2010.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/02/2010] [Accepted: 08/10/2010] [Indexed: 01/09/2023]
Abstract
Both neurotensin (NT) and opioid agonists have been shown to induce antinociception in rodents after central administration. Besides, previous studies have revealed the existence of functional interactions between NT and opioid systems in the regulation of pain processing. We recently demonstrated that NTS1 receptors play a key role in the mediation of the analgesic effects of NT in long-lasting pain. In the present study, we therefore investigated whether NTS1 gene deletion affected the antinociceptive action of mu opioid drugs. To this end, pain behavioral responses to formalin were determined following systemic administration of morphine in both male and female NTS1 knockout mice. Acute injection of morphine (2 or 5 mg/kg) produced strong antinociceptive effects in both male and female wild-type littermates, with no significant sex differences. On the other hand, morphine analgesia was considerably reduced in NTS1-deficient mice of both sexes compared to their respective controls, indicating that the NTS1 receptor actively participates in mu opioid alleviating pain. By examining specifically the flinching, licking and biting nociceptive behaviors, we also showed that the functional crosstalk between NTS1 and mu opioid receptors influences the supraspinally-mediated behaviors. Interestingly, sexual dimorphic action of morphine-induced pain inhibition was found in NTS1 null mice in the formalin test, suggesting that the endogenous NT system interacts differently with the opioid network in male and female mice. Altogether, these results demonstrated that NTS1 receptor activation operates downstream to the opioidergic transmission and that NTS1-selective agonists combined with morphine may act synergistically to reduce persistent pain.
Collapse
Affiliation(s)
- G Roussy
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Green BR, White KL, McDougle DR, Zhang L, Klein B, Scholl EA, Pruess TH, White HS, Bulaj G. Introduction of lipidization-cationization motifs affords systemically bioavailable neuropeptide Y and neurotensin analogs with anticonvulsant activities. J Pept Sci 2010; 16:486-95. [DOI: 10.1002/psc.1266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
75
|
Hughes FM, Shaner BE, May LA, Zotian L, Brower JO, Woods RJ, Cash M, Morrow D, Massa F, Mazella J, Dix TA. Identification and functional characterization of a stable, centrally active derivative of the neurotensin (8-13) fragment as a potential first-in-class analgesic. J Med Chem 2010; 53:4623-32. [PMID: 20481538 DOI: 10.1021/jm100092s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The neurotensin hexapapetide fragment NT(8-13) is a potent analgesic when administered directly to the central nervous system but does not cross the blood-brain barrier. A total of 43 novel derivatives of NT(8-13) were evaluated, with one, ABS212 (1), being most active in four rat models of pain when administered peripherally. Compound 1 binds to human neurotensin receptors 1 and 2 with IC(50) of 10.6 and 54.2 nM, respectively, and tolerance to the compound in a rat pain model did not develop after 12 days of daily administration. When it was administered peripherally, serum levels and neurotensin receptor binding potency of 1 peaked within 5 min and returned to baseline within 90-120 min; however, analgesic activity remained near maximum for >240 min. This could be due to its metabolism into an active fragment; however, all 4- and 5-mer hydrolysis products were inactive. This pharmacokinetic/pharmacodynamic dichotomy is discussed. Compound 1 is a candidate for development as a first-in-class analgesic.
Collapse
Affiliation(s)
- Francis M Hughes
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina Campus, 280 Calhoun Street, Charleston, South Carolina 29425-2303, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Rossi GC, Matulonis JE, Richelson E, Barbut D, Pasternak GW. Systemically and topically active antinociceptive neurotensin compounds. J Pharmacol Exp Ther 2010; 334:1075-9. [PMID: 20576795 DOI: 10.1124/jpet.109.165282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurotensin is a neurotransmitter/modulator with a wide range of actions. Using a series of 10 stable analogs, we have examined neurotensin antinociception in mice. By incorporating (2S)-2-amino-3-(1H-4-indoyl)propanoic acid (l-neoTrp), a series of neurotensin analogs have been synthesized that are stable in serum and are systemically active in vivo. When administered in mice, they all were antinociceptive in the radiant heat tail-flick assay. Time-action curves revealed a peak effect at 30 min and a duration of action ranging from 2 to 4 h. Dose-response curves revealed that two compounds were partial agonists with maximal responses below 75%, whereas all of the remaining compounds displayed a full response. Overall, the compounds were quite potent, with ED(50) values similar to those of opioids. At peak effect, the ED(50) values ranged from 0.91 to 9.7 mg/kg s.c. Two of the analogs were active topically. Together, these studies support the potential of neurotensin analogs as analgesics. They are active systemically and by using them topically, it may be possible to avoid problematic side effects, such as hypothermia and hypotension.
Collapse
Affiliation(s)
- Grace C Rossi
- Department of Psychology, C.W. Post Campus of Long Island University, Brookville, New York, USA
| | | | | | | | | |
Collapse
|
77
|
Neurotensin and neuromedin N are differentially processed from a common precursor by prohormone convertases in tissues and cell lines. Results Probl Cell Differ 2010. [PMID: 19862492 DOI: 10.1007/400_2009_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Neurotensin (NT) is synthesized as part of a larger precursor that also contains neuromedin N (NN), a six amino acid NT-like peptide. NT and NN are located in the C-terminal region of the precursor (pro-NT/NN) where they are flanked and separated by three Lys-Arg sequences. A fourth dibasic sequence is present in the middle of the precursor. Dibasics are the consensus sites recognized and cleaved by specialized endoproteases that belong to the family of proprotein convertases (PCs). In tissues that express pro-NT/NN, the three C-terminal Lys-Arg sites are differentially processed, whereas the middle dibasic is poorly cleaved. Processing gives rise mainly to NT and NN in the brain, NT and a large peptide with a C-terminal NN moiety (large NN) in the gut, and NT, large NN, and a large peptide with a C-terminal NT moiety (large NT) in the adrenals. Recent evidence indicates that PC1, PC2, and PC5-A are the prohormone convertases responsible for the processing patterns observed in the gut, brain, and adrenals, respectively. As NT, NN, large NT, and large NN are all endowed with biological activity, the evidence reviewed here supports the idea that posttranslational processing of pro-NT/NN in tissues may generate biological diversity of pathophysiological relevance.
Collapse
|
78
|
Intermolecular cross-talk between NTR1 and NTR2 neurotensin receptor promotes intracellular sequestration and functional inhibition of NTR1 receptors. Biochem Biophys Res Commun 2010; 391:1007-13. [DOI: 10.1016/j.bbrc.2009.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 12/31/2022]
|
79
|
Involvement of NTS2 receptors in stress-induced analgesia. Neuroscience 2009; 166:639-52. [PMID: 20035838 DOI: 10.1016/j.neuroscience.2009.12.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/01/2009] [Accepted: 12/16/2009] [Indexed: 11/20/2022]
Abstract
Stress activates multiple neural systems that suppress pain sensation. This adaptive phenomenon referred as stress-induced analgesia (SIA) is mediated by the activation of endogenous pain inhibitory systems. Both opioid and non-opioid forms of SIA have been elicited in rodents according to stressor parameters and duration. There is accumulating evidence that the endogenous neurotensin (NT) system plays an important role in SIA. Especially, NT-deficient mice were shown to exhibit reduced SIA following water avoidance or restraint stress. Since central NT produces naloxone-insensitive analgesic effects by acting on spinal and supraspinal NTS2 receptors, we hypothesized that NT might mediate non-opioid SIA through NTS2 activation. Here, we evaluated the influence of an opioid-independent severe stress produced by a cold-water swim for 3 min at 15 degrees C on rodent offspring's pain perception. Our results demonstrated that mice lacking NTS2 exhibit significantly reduced SIA following cold-water swim stress. Indeed, NTS2 knockout mice submitted to both acute (plantar test) and tonic (formalin test) pain stimuli show a greater sensitivity to pain in comparison to wild-type littermates. Accordingly, pretreatment with the NT receptor antagonist SR142948A results in a hyperalgesic response to stress induced by cold-water swim. Endogenous NT regulates hypothalamic-pituitary-adrenal axis activity in stress condition by increasing corticosterone plasma levels. Accordingly, the plasma levels of corticosterone measured by radioimmunoassay are significantly reduced in non-stressed and stressed NTS2-deficient mice in comparison with wild-type mice. To further investigate the site of action of NT in mediating SIA, we microinjected NTS2 agonists in lumbar spinal cord and quantified post-stress sensitivity to pain in rats using the plantar test. Exogenously administered NTS2 analogs, JMV-431, beta-lactotensin and NT69L markedly enhance the magnitude and duration of stress antinociception in both 25- and 60-day-old rats. In sum, by using genetic and pharmacological approaches, we demonstrated here that NTS2 receptors mediate non-opioid SIA. Our results also revealed that the release of endogenous NT in response to stress requires the presence of NTS2 to stimulate corticotropin-releasing factor (CRF)-induced elevation of plasma corticosterone, and that NTS2 receptors localized at the lumbar spinal cord participate to the disinhibition of descending pain control pathways. Therefore, these data highlight the significance of NTS2 as a novel target for the treatment of pain and stress-related disorders.
Collapse
|
80
|
László K, Tóth K, Kertes E, Péczely L, Lénárd L. The role of neurotensin in positive reinforcement in the rat central nucleus of amygdala. Behav Brain Res 2009; 208:430-5. [PMID: 20035801 DOI: 10.1016/j.bbr.2009.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 10/20/2022]
Abstract
In the central nervous system neurotensin (NT) acts as a neurotransmitter and neuromodulator. It was shown that NT has positive reinforcing effects after its direct microinjection into the ventral tegmental area. The central nucleus of amygdala (CeA), part of the limbic system, plays an important role in learning, memory, regulation of feeding, anxiety and emotional behavior. By means of immunohistochemical and radioimmune methods it was shown that the amygdaloid body is relatively rich in NT immunoreactive elements and NT receptors. The aim of our study was to examine the possible effects of NT on reinforcement and anxiety in the CeA. In conditioned place preference test male Wistar rats were microinjected bilaterally with 100 or 250 ng NT in volume of 0.4 microl or 35 ng neurotensin receptor 1 (NTS1) antagonist SR 48692 alone, or NTS1 antagonist 15 min before 100 ng NT treatment. Hundred or 250 ng NT significantly increased the time rats spent in the treatment quadrant. Prior treatment with the non-peptide NTS1 antagonist blocked the effects of NT. Antagonist itself did not influence the reinforcing effect. In elevated plus maze test we did not find differences among the groups as far as the anxiety index (time spent on the open arms) was concerned. Our results suggest that in the rat ACE NT has positive reinforcing effects. We clarified that NTS1s are involved in this action. It was also shown that NT does not influence anxiety behavior.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | | | | | | | | |
Collapse
|
81
|
Abstract
Of all clinically marketed drugs, greater than thirty percent are modulators of G protein-coupled receptors (GPCRs). Nearly 400 GPCRs (i.e., excluding odorant and light receptors) are encoded within the human genome, but only a small fraction of these seven-transmembrane proteins have been identified as drug targets. Chronic pain affects more than one-third of the population, representing a substantial societal burden in use of health care resources and lost productivity. Furthermore, currently available treatments are often inadequate, underscoring the significant need for better therapeutic strategies. The expansion of the identified human GPCR repertoire, coupled with recent insights into the function and structure of GPCRs, offers new opportunities for the development of novel analgesic therapeutics.
Collapse
Affiliation(s)
- Laura S Stone
- Faculty of Dentistry, Alan Edwards Centre for Research on Pain, Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
82
|
Porzionato A, Macchi V, Amagliani A, Castagliuolo I, Parenti A, De Caro R. Neurotensin receptor 1 immunoreactivity in the peripheral ganglia and carotid body. Eur J Histochem 2009; 53:e16. [PMID: 19864207 PMCID: PMC3168236 DOI: 10.4081/ejh.2009.e16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 06/16/2009] [Indexed: 12/16/2022] Open
Abstract
In the present study we investigated, through immunohistochemistry, the presence and location of neurotensin receptor 1 (NTR1) in the peripheral ganglia and carotid body of 16 humans and 5 rats. In both humans and rats, NTR1 immunostained ganglion cells were found in superior cervical ganglia (57.4+/-11.6% and 72.4+/-11.4%, respectively, p0.05), enteric ganglia (51.9+/-10.4% and 64.6+/-6.1, p<0.05), sensory ganglia (69.2+/-10.7% and 73.0+/-13.1%, p>0.05) and parasympathetic ganglia (52.1+/-14.1% and 59.4+/-14.0%, p>0.05), supporting a modulatory role for NT in these ganglia. Positivity was also detected in 45.6+/-9.2% and 50.8+/-6.8% of human and rat type I glomic cells, respectively, whereas type II cells were negative. Our findings suggest that NT produced by type I cells acts in an autocrine or paracrine way on the same cell type, playing a modulatory role on chemoception.
Collapse
Affiliation(s)
- A Porzionato
- Section of Anatomy, Department of Human Anatomy and Physiology, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
83
|
Myers RM, Shearman JW, Kitching MO, Ramos-Montoya A, Neal DE, Ley SV. Cancer, chemistry, and the cell: molecules that interact with the neurotensin receptors. ACS Chem Biol 2009; 4:503-25. [PMID: 19462983 DOI: 10.1021/cb900038e] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The literature covering neurotensin (NT) and its signalling pathways, receptors, and biological profile is complicated by the fact that the discovery of three NT receptor subtypes has come to light only in recent years. Moreover, a lot of this literature explores NT in the context of the central nervous system and behavioral studies. However, there is now good evidence that the up-regulation of NT is intimately involved in cancer development and progression. This Review aims to summarize the isolation, cloning, localization, and binding properties of the accepted receptor subtypes (NTR1, NTR2, and NTR3) and the molecules known to bind at these receptors. The growing role these targets are playing in cancer research is also discussed. We hope this Review will provide a useful overview and a one-stop resource for new researchers engaged in this field at the chemistry-biology interface.
Collapse
Affiliation(s)
- Rebecca M. Myers
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - James W. Shearman
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew O. Kitching
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Antonio Ramos-Montoya
- CRUK-Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - David E. Neal
- CRUK-Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Steven V. Ley
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
84
|
Roussy G, Dansereau MA, Baudisson S, Ezzoubaa F, Belleville K, Beaudet N, Martinez J, Richelson E, Sarret P. Evidence for a role of NTS2 receptors in the modulation of tonic pain sensitivity. Mol Pain 2009; 5:38. [PMID: 19580660 PMCID: PMC2714839 DOI: 10.1186/1744-8069-5-38] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 07/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Central neurotensin (NT) administration results in a naloxone-insensitive antinociceptive response in animal models of acute and persistent pain. Both NTS1 and NTS2 receptors were shown to be required for different aspects of NT-induced analgesia. We recently demonstrated that NTS2 receptors were extensively associated with ascending nociceptive pathways, both at the level of the dorsal root ganglia and of the spinal dorsal horn. Then, we found that spinally administered NTS2-selective agonists induced dose-dependent antinociceptive responses in the acute tail-flick test. In the present study, we therefore investigated whether activation of spinal NTS2 receptors suppressed the persistent inflammatory pain symptoms observed after intraplantar injection of formalin. RESULTS We first demonstrated that spinally administered NT and NT69L agonists, which bind to both NTS1 and NTS2 receptors, significantly reduced pain-evoked responses during the inflammatory phase of the formalin test. Accordingly, pretreatment with the NTS2-selective analogs JMV-431 and levocabastine was effective in inhibiting the aversive behaviors induced by formalin. With resolution at the single-cell level, we also found that activation of spinal NTS2 receptors reduced formalin-induced c-fos expression in dorsal horn neurons. However, our results also suggest that NTS2-selective agonists and NTS1/NTS2 mixed compounds differently modulated the early (21-39 min) and late (40-60 min) tonic phase 2 and recruited endogenous pain inhibitory mechanisms integrated at different levels of the central nervous system. Indeed, while non-selective drugs suppressed pain-related behaviors activity in both part of phase 2, intrathecal injection of NTS2-selective agonists was only efficient in reducing pain during the late phase 2. Furthermore, assessment of the stereotypic pain behaviors of lifting, shaking, licking and biting to formalin also revealed that unlike non-discriminative NTS1/NTS2 analogs reversing all nociceptive endpoint behaviors, pure NTS2 agonists specifically inhibited paw lifting, supporting a role of NTS2 in spinal modulation of persistent nociception. CONCLUSION The present study provides the first demonstration that activation of NTS2 receptors produces analgesia in the persistent inflammatory pain model of formalin. The dichotomy between these two classes of compounds also indicates that both NTS1 and NTS2 receptors are involved in tonic pain inhibition and implies that these two NT receptors modulate the pain-induced behavioral responses by acting on distinct spinal and/or supraspinal neural circuits. In conclusion, development of NT agonists targeting both NTS1 and NTS2 receptors could be useful for chronic pain management.
Collapse
Affiliation(s)
- Geneviève Roussy
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Drago A, Serretti A. Focus on HTR2C: A possible suggestion for genetic studies of complex disorders. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:601-37. [PMID: 18802918 DOI: 10.1002/ajmg.b.30864] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HTR2C is one of the most relevant and investigated serotonin receptors. Its role in important brain structures such as the midbrain, the lateral septal complex, the hypothalamus, the olfactory bulb, the pons, the choroid plexus, the nucleus pallidus, the striatum and the amygdala, the nucleus accumbens and the anterior cingulated gyrus candidate it as a promising target for genetic association studies. The biological relevance of these brain structures is reviewed by way of the focus on HTR2C activity, with a special attention paid to psychiatric disorders. Evidence from the genetic association studies that dealt with HTR2C is reviewed and discussed alongside the findings derived from the neuronatmic investigations. The reasons for the discrepancies between these two sets of reports are discussed. As a result, HTR2C is shown to play a pivotal role in many different psychiatric behaviors or psychiatric related disrupted molecular balances, nevertheless, genetic association studies brought inconsistent results so far. The most replicated association involve the feeding behavior and antipsychotic induced side effects, both weight gain and motor related: Cys23Ser (rs6318) and -759C/T (rs3813929) report the most consistent results. The lack of association found in other independent studies dampens the clinical impact of these reports. Here, we report a possible explanation for discrepant findings that is poorly or not at all usually considered, that is that HTR2C may exert different or even opposite activities in the brain depending on the structure analyzed and that mRNA editing activity may compensate possible genetically controlled functional effects. The incomplete coverage of the HTR2C variants is proposed as the best cost-benefit ratio bias to fix. The evidence of brain area specific HTR2C mRNA editing opens a debate about how the brain can differently modulate stress events, and process antidepressant treatments, in different brain areas. The mRNA editing activity on HTR2C may play a major role for the negative association results.
Collapse
Affiliation(s)
- Antonio Drago
- Institute of Psychiatry, University of Bologna, Italy
| | | |
Collapse
|
86
|
Lee HK, Zhang L, Smith MD, White HS, Bulaj G. Glycosylated neurotensin analogues exhibit sub-picomolar anticonvulsant potency in a pharmacoresistant model of epilepsy. ChemMedChem 2009; 4:400-5. [PMID: 19173215 DOI: 10.1002/cmdc.200800421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurotensin (NT) is an endogenous neuropeptide involved in a variety of central and peripheral neuromodulatory effects. Herein we show the effects of site-specific glycosylation on the in vitro and in vivo pharmacological properties of this neuropeptide. NT analogues containing O-linked disaccharides (beta-melibiose and alpha-TF antigen) or beta-lactose units linked by a PEG(3) spacer were designed and chemically synthesized using Fmoc chemistry. For the latter analogue, Fmoc-Glu-(beta-Lac-PEG(3)-amide) was prepared. Our results indicate that the addition of the disaccharides does not negatively affect the sub-nanomolar affinity or the low-nanomolar agonist potency for the neurotensin receptor subtype 1 (NTS1). Interestingly, three glycosylated analogues exhibited sub-picomolar potency in the 6 Hz limbic seizure mouse model of pharmacoresistant epilepsy following intracerebroventricular administration. Our results suggest for the first time that chemically modified NT analogues may lead to novel antiepileptic therapies.
Collapse
Affiliation(s)
- Hee-Kyoung Lee
- Department of Medicinal Chemistry, University of Utah, 421 Wakara Way, Suite 360, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
87
|
Zhang L, Lee HK, Pruess TH, White HS, Bulaj G. Synthesis and applications of polyamine amino acid residues: improving the bioactivity of an analgesic neuropeptide, neurotensin. J Med Chem 2009; 52:1514-7. [PMID: 19236044 DOI: 10.1021/jm801481y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugated polyamines are potential carriers for biotherapeutics targeting the central nervous system. We describe an efficient synthesis of a polyamine-based amino acid, lysine-trimethylene(diNosyl)-spermine(triBoc) with Dde or Fmoc orthogonal protecting groups. This nonnatural amino acid was incorporated into a neurotensin analogue using standard Fmoc-based protocols. The analogue maintained high affinity and agonist potency for neurotensin receptors and exhibited dramatically improved analgesia in mice. Our work provides a basis for use of polyamine amino acids in polypeptides.
Collapse
Affiliation(s)
- Liuyin Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | | | |
Collapse
|
88
|
Mitchell VA, Kawahara H, Vaughan CW. Neurotensin inhibition of GABAergic transmission via mGluR-induced endocannabinoid signalling in rat periaqueductal grey. J Physiol 2009; 587:2511-20. [PMID: 19359367 DOI: 10.1113/jphysiol.2008.167429] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neurotensin modulates pain via its actions within descending analgesic pathways which include brain regions such as the midbrain periaqueductal grey (PAG). The aim of this study was to examine the cellular actions of neurotensin on PAG neurons. Whole cell patch clamp recordings were made from rat midbrain PAG slices in vitro to examine the postsynaptic effects of neurotensin and its effects on GABA(A) mediated inhibitory postsynaptic currents (IPSCs). Neurotensin (100-300 nM) produced an inward current in subpopulations of opioid sensitive and insensitive PAG neurons which did not reverse over membrane potentials between -50 and -130 mV. The neurotensin induced current was abolished by the NTS1 and NTS1/2 antagonists SR48692 (300 nM) and SR142948A (300 nM). Neurotensin also produced a reduction in the amplitude of evoked IPSCs, but had no effect on the rate and amplitude of TTX-resistant miniature IPSCs. The neurotensin induced inhibition of evoked IPSCs was reduced by the mGluR5 antagonist MPEP (5microM) and abolished by the cannabinoid CB(1) receptor antagonist AM251 (3 microM). These results suggest that neurotensin produces direct neuronal depolarisation via NTS1 receptors and inhibits GABAergic synaptic transmission within the PAG. The inhibition of synaptic transmission is mediated by neuronal excitation and action potential dependent release of glutamate, leading to mGluR5 mediated production of endocannabinoids which activate presynaptic CB(1) receptors. Thus, neurotensin has cellular actions within the PAG which are consistent with both algesic and analgesic activity, some of which are mediated via the endocannabinoid system.
Collapse
Affiliation(s)
- V A Mitchell
- Pain Management Research Institute, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | | | | |
Collapse
|
89
|
Orwig KS, Lassetter MR, Hadden MK, Dix TA. Comparison of N-Terminal Modifications on Neurotensin(8−13) Analogues Correlates Peptide Stability but Not Binding Affinity with in Vivo Efficacy. J Med Chem 2009; 52:1803-13. [DOI: 10.1021/jm801072v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kevin S. Orwig
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street, P.O. Box 250140, Charleston, South Carolina 29425, Argolyn Bioscience Inc., 530 Meridian Parkway, Suite 200, Durham, North Carolina 27713
| | - McKensie R. Lassetter
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street, P.O. Box 250140, Charleston, South Carolina 29425, Argolyn Bioscience Inc., 530 Meridian Parkway, Suite 200, Durham, North Carolina 27713
| | - M. Kyle Hadden
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street, P.O. Box 250140, Charleston, South Carolina 29425, Argolyn Bioscience Inc., 530 Meridian Parkway, Suite 200, Durham, North Carolina 27713
| | - Thomas A. Dix
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street, P.O. Box 250140, Charleston, South Carolina 29425, Argolyn Bioscience Inc., 530 Meridian Parkway, Suite 200, Durham, North Carolina 27713
| |
Collapse
|
90
|
Ford GK, Finn DP. Clinical correlates of stress-induced analgesia: Evidence from pharmacological studies. Pain 2008; 140:3-7. [DOI: 10.1016/j.pain.2008.09.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 11/26/2022]
|
91
|
Wilder-Smith CH, Song G, Yeoh KG, Ho KY. Activating endogenous visceral pain modulation: a comparison of heterotopic stimulation methods in healthy controls. Eur J Pain 2008; 13:836-42. [PMID: 19004650 DOI: 10.1016/j.ejpain.2008.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/20/2008] [Accepted: 09/26/2008] [Indexed: 11/24/2022]
Abstract
All sensory input underlies modulation by endogenous central nervous system pathways. Dysfunctional endogenous pain modulation has been demonstrated in central sensitization and in several pain syndromes, including Irritable Bowel Syndrome (IBS) Activation of endogenous visceral pain modulation by heterotopic stimulation was compared using different methods. Rectal electrical or distension pain alone or with simultaneous (i.e. heterotopic) noxious hand or foot cold stimulation were investigated in randomized sequence in 14 male and 1 female healthy subjects. Mean pain intensities on a visual analogue scale of 0-100 (95% CI) during tonic rectal electrical and distension stimulation alone were 64 (52-76) and 55 (39-71), respectively. Rectal distension pain decreased by 36% (18-55) with simultaneous hand and by 45% (24-66) with simultaneous foot cold pain. Rectal electrical pain decreased by 45% (29-61) during hand and by 46% (28-64) during foot cold pain. Facilitation, i.e. increased rectal pain during heterotopic stimulation was observed in only 1 of 60 stimulation runs. Potent and consistent activation of endogenous visceral pain inhibition was achieved with heterotopic cold pain limb stimulation. Somato-visceral convergence did not affect the effectiveness of induction of endogenous visceral pain inhibition in healthy subjects, as hand and foot heterotopic stimulation resulted in similar pain inhibition. Pain facilitation, as shown earlier in IBS patients, was not evident in healthy controls.
Collapse
|
92
|
Central delivery of Dicer-substrate siRNA: a direct application for pain research. Mol Ther 2008; 16:1331-9. [PMID: 18523447 DOI: 10.1038/mt.2008.98] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RNA interference (RNAi) is gaining acceptance as a potential therapeutic strategy against peripheral disease, and several clinical trials are already underway with 21-mer small-interfering RNA (siRNA) as the active pharmaceutical agent. However, for central affliction like pain, such innovating therapies are limited but nevertheless crucial to improve pain research and management. We demonstrate here the proof-of-concept of the use of 27-mer Dicer-substrate siRNA (DsiRNA) for silencing targets related to CNS disorders such as pain states. Indeed, low dose DsiRNA (0.005 mg/kg) was highly efficient in reducing the expression of the neurotensin receptor-2 (NTS2, a G-protein-coupled receptor (GPCR) involved in ascending nociception) in rat spinal cord through intrathecal (IT) administration formulated with the cationic lipid i-Fect. Along with specific decrease in NTS2 mRNA and protein, our results show a significant alteration in the analgesic effect of a selective-NTS2 agonist, reaching 93% inhibition up to 3-4 days after administration of DsiRNA. In order to ensure that these findings were not biased by unsuspected off-target effects (OTEs), we also demonstrated that treatment with a second NTS2-specific DsiRNA also reversed NTS2-induced antinociception, and that NTS2-specific 27-mer duplexes did not alter signaling through NTS1, a closely related receptor. Altogether, DsiRNAi represents a potent tool for dissecting nociceptive pathways and could further lead to a new class of central active drugs.
Collapse
|
93
|
Roussy G, Dansereau MA, Doré-Savard L, Belleville K, Beaudet N, Richelson E, Sarret P. Spinal NTS1 receptors regulate nociceptive signaling in a rat formalin tonic pain model. J Neurochem 2008; 105:1100-14. [DOI: 10.1111/j.1471-4159.2007.05205.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
94
|
Chronic Facial Pain in the Female Patient: Treatment Updates. Oral Maxillofac Surg Clin North Am 2007; 19:245-58, vii. [DOI: 10.1016/j.coms.2007.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|