51
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
52
|
miR-484/MAP2/c-Myc-positive regulatory loop in glioma promotes tumor-initiating properties through ERK1/2 signaling. J Mol Histol 2018; 49:209-218. [PMID: 29480405 DOI: 10.1007/s10735-018-9760-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/05/2018] [Indexed: 01/17/2023]
Abstract
Glioma is the most common intracranial malignant tumor. Cancer stem cells (CSCs) are resistant to chemotherapy and radiotherapy, and are closely related to cancer metastasis and recurrence. In this study, we aimed to explore the effect of miR-484 on glioma stemness and the underlying mechanism involved. miR-484 enhanced glioma tumor-initiating properties in vitro and in vivo. Moreover, miR-484 was shown to directly target MAP2, resulting in activation of ERK1/2 signaling and promotion of stemness in glioma. The ERK1/2 signaling facilitated the formation of a miR-484/MAP2/c-Myc positive feedback loop in glioma. High miR-484 expression predicted a poor prognosis for glioma patients, and high MAP2 expression predicted a good prognosis for glioma patients. Low miR-484 expression and high MAP2 expression was associated with the best prognosis in glioma. Our study suggests that miR-484 and MAP2 can be utilized as predictors for the clinical diagnosis and prognosis of glioma, and miR-484 and MAP2 are potential targets for the treatment of glioma.
Collapse
|
53
|
Chaudhari N, Ravanan P. Bardoxolone methyl induces neuritogenesis in Neuro2a cells. Pharmacol Rep 2018; 70:730-736. [PMID: 29935399 DOI: 10.1016/j.pharep.2018.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Bardoxolone methyl (RTA 402, CDDOMe) has been long known for its anti-inflammatory and exceptional cytotoxic activity. The biological responses to CDDOMe are truly dose dependent. And owing to the structural modifications introduced in its parent molecule oleanolic acid, CDDOMe is able to form reversible adducts with cellular proteins containing redox sensitive cysteine residues. This nature of CDDOMe makes it a multifunctional molecule targeting multiple signaling pathways. This study was initiated to study the response of Neuro2a, a mouse neuroblastoma cell line to CDDOMe. METHODS Neuro2a cells were treated with CDDOMe and all trans retinoic acid (ATRA) for 4days and observed for neurite outgrowth. The neurite length was estimated using ImageJ software (Neuron growth plugin). Cell viability was investigated using MTT dye reduction and trypan blue dye exclusion method. Gene expression of differentiation markers was analyzed using quantitative PCR. Cellular localization of Tuj1 and synaptophysin in differentiated Neuro2a cells was observed using immunofluorescence. RESULTS CDDOMe ceased proliferation and induced dramatic neurite outgrowth in Neuro2a cells. These morphological changes were accompanied by time dependent increase in the mRNA levels of tyrosine hydroxylase, neurofilament 200 and synaptophysin. Besides, cytoskeleton protein Tuj1 and the synaptic vesicle protein synaptophysin were also observed to be localized in the neurites induced by CDDOMe. CONCLUSIONS These early shreds of evidence suggest that CDDOMe induces differentiation in Neuro2a cells at concentrations ranging from 0.2 to 0.4μM and indeed contributes the existing knowledge on CDDOMe induced activities in cells.
Collapse
Affiliation(s)
- Namrata Chaudhari
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
54
|
Halicka HD, Garcia J, Li J, Zhao H, Darzynkiewicz Z. Synergy of 2-deoxy-D-glucose combined with berberine in inducing the lysosome/autophagy and transglutaminase activation-facilitated apoptosis. Apoptosis 2018; 22:229-238. [PMID: 27796611 DOI: 10.1007/s10495-016-1315-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Utilizing a variety of flow cytometric methods evidence was obtained indicating that a combination of the glucose analog 2-deoxy-D-glucose (2-dG) and the plant alkaloid berberine (BRB) produces synergistic effect in the induction of apoptosis in human lymphoblastoid TK6 cells. The synergistic effect is seen at concentrations of the drugs at which each of them alone shows no cytotoxicity at all. The data suggest that the combination of these drugs, which are known in terms of their overall toxicity, side effects and pharmacokinetics may be considered for further studies as chemopreventive and cancer treatment modalities. Of interest are results indicating that rapamycin, which similarly to BRB, suppresses mTOR signaling, when combined with 2-dG shows no synergistic properties. Metformin, on other hand, requires much higher concentration to show the synergy with 2-dG. Also of interest are the findings pertaining to the methodology of the present study. Specifically, dynamic assessment of cellular viability was performed by using the DRAQ7 cell exclusion fluorochrome present in cultures from 0 to 72 h. Concurrent measurement of lysosomal proton pump using acridine orange as the probe shows activation of lysosomes in the cells treated with 2-dG or BRB alone as well as with the drugs combined. Apoptosis was assessed by measuring DNA fragmentation, cell cycle, activation of caspase-3 and tissue transglutaminase (Tgase). A novel cytometric method was developed based on analysis of lysosomal (acidic vesicles) proton pump in live cells followed by cell lysis with detergent and fluorochrome labeling of proteins and DNA to analyze Tgase activation concurrently with cell cycle, in same population of cells. The data show that the cell subpopulation undergoing apoptosis has increased side (right-angle) light scatter likely due to the presence of the crosslinked (solid state) proteins, the consequence Tgase activation.
Collapse
Affiliation(s)
- H Dorota Halicka
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Jorge Garcia
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Jiangwei Li
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Hong Zhao
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Zbigniew Darzynkiewicz
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA.
| |
Collapse
|
55
|
Polo-like kinase 4 mediates epithelial-mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis 2018; 9:54. [PMID: 29352113 PMCID: PMC5833556 DOI: 10.1038/s41419-017-0088-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/03/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
Neuroblastoma (NB) is the most common malignant tumor in infancy and most common extracranial solid tumor in childhood. With the improvement of diagnosis and treatment, the survival rate of patients with low-risk and intermediate-risk NB can reach up to 90%. In contrast, for high-risk NBs, the long-term survival rate is still <40% because of heterogeneity of this tumor. The pathogenesis of NB is still not explicit, therefore it is of great significance to explore the mechanism of NB tumorigenesis and discover new therapeutic targets for NB. Polo-like kinase 4 (PLK4), one of the polo-like kinase family members, is an important regulator of centriole replication. The aberrant expression of PLK4 was found in several cancers and a recent study has unraveled a novel function of PLK4 as a mediator of invasion and metastasis in Hela and U2OS cells. However, the function of PLK4 in NB development and progression remains to be elucidated. The study showed the expression level of PLK4 in NB tissues was remarkably upregulated and high expression of PLK4 was negatively correlated with clinical features and survival, which suggested that PLK4 could be a potential tumor-promoting factor of NB. Functional studies indicated downregulation of PLK4 suppressed migration and invasion and promoted apoptosis in NB cells. Further experiments showed that downregulation of PLK4 in NB cells inhibited EMT through the PI3K/Akt signaling pathway. Animal experiments demonstrated that the downregulation of PLK4 in SK-N-BE(2) cells dramatically suppressed tumorigenesis and metastasis. PLK4 may be a promising therapeutic target for NB.
Collapse
|
56
|
Nie LR, Song H, Yohannes A, Liang S, Yao S. Extraction in cholinium-based magnetic ionic liquid aqueous two-phase system for the determination of berberine hydrochloride in Rhizoma coptidis. RSC Adv 2018; 8:25201-25209. [PMID: 35542128 PMCID: PMC9082560 DOI: 10.1039/c8ra01745j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
A magnetic ionic liquids (MILs)-based aqueous two-phase system (MIL-ATPs) obtained by mixing with a series of inorganic salts, which involves five cholinium MILs with the piperidinyloxy radical anion is reported for the first time. Phase diagrams for the new ATPs were experimentally determined at different temperatures (298.15–318.15 K) and the liquid–liquid equilibrium data for two-phase systems were correlated according to the empirical nonlinear expression. The effects of the types of MILs, temperature and inorganic salts on the binodal curve are discussed in detail. The MIL-ATPs coupled with HPLC-UV analysis was developed in the quantitation of berberine hydrochloride in Rhizoma coptidis. Under optimal conditions, the partition coefficient of berberine hydrochloride was 127.68 with the precision values (RSD%) of 1.40% and 2.83% for intra-day (n = 6) and inter-day (n = 3), respectively. The limit of detection (LOD) and limit of quantification (LOQ) for berberine hydrochloride were 0.023 mg L−1 and 0.077 mg L−1, respectively. The recoveries were obtained in the acceptable range of 97.4–101.2%. Moreover, the content of berberine hydrochloride in the raw material of Rhizoma coptidis was measured as 123.95 mg g−1 with this method. Finally, 99.8% MIL was recovered for cycle application after the removal of berberine hydrochloride by using D101 resin. This study provides a meaningful reference for the application of MIL-ATPs with great prospects. Five cholinium type organic magnetic ionic liquids have been applied in ionic liquid-based aqueous two-phase systems by mixing with a series of inorganic salts, which is reported to extract berberine in quantitative analysis for the first time.![]()
Collapse
Affiliation(s)
- Li-rong Nie
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
- School of Medical Instrument and Food Engineering
| | - Hang Song
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Alula Yohannes
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Siwei Liang
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Shun Yao
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|
57
|
Yao W, Wang X, Xiao K. Protective effect of berberine against cardiac ischemia/reperfusion injury by inhibiting apoptosis through the activation of Smad7. Mol Cell Probes 2017; 38:38-44. [PMID: 29278748 DOI: 10.1016/j.mcp.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/03/2017] [Accepted: 12/17/2017] [Indexed: 01/24/2023]
Abstract
Berberine (BBR) is an isoquinnoline derivative alkaloid extracted from Rhizoma Coptidis that has the potential to protect myocardial tissues from ischemia/reperfusion (I/R) injuries. We attempted to evaluate the effect of BBR on the proliferation and apoptosis of a hypoxia/reoxygenation (H/R) cell model and to reveal the mechanism driving the improving function of BBR myocardial tissues. The H/R cell model was established using H9c2 rat cardiac myoblasts. The cell viability, apoptotic rates, and cell cycle distribution were measured with CCK-8 assay and flow cytometry. The expression of Smad7 and caspase-3 were determined both at mRNA and protein levels. In addition, expression of Smad7 was knocked down with specific siRNA and the effect of the interference was assessed. The proliferation ability of H/R cells was enhanced after the administration of BBR, and the apoptosis and cell cycle arrest due to H/R injury were also alleviated by BBR treatment. Moreover, the treatment of BBR on H/R injury functioned through the Smad7-activation-induced attenuating of apoptosis by activating Smad7 pathway which resulted suppression of caspase 3 expression and activity. The knockdown of Smad7 confirmed our conclusion about the key role of Smad7 in the function of BBR administration. However, our results as well as some previous studies also demonstrated that the effect of BBR was tissue and protocol specific, and the underlying mechanism related to the BBR treatment was so complicated that practical application should be carefully investigated based on certain diseases and patients.
Collapse
Affiliation(s)
- Weidong Yao
- Department of Cardiology, The Fourth People's Hospital of Jinan, Jinan 250031, Shandong, PR China
| | - Xin Wang
- Department of Cardiology, The Fourth People's Hospital of Jinan, Jinan 250031, Shandong, PR China
| | - Kun Xiao
- Department of Cardiology, The Fourth People's Hospital of Jinan, Jinan 250031, Shandong, PR China.
| |
Collapse
|
58
|
Patel D, Gaikwad S, Challagundla N, Nivsarkar M, Agrawal-Rajput R. Spleen tyrosine kinase inhibition ameliorates airway inflammation through modulation of NLRP3 inflammosome and Th17/Treg axis. Int Immunopharmacol 2017; 54:375-384. [PMID: 29202301 DOI: 10.1016/j.intimp.2017.11.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 11/19/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Repeated exposure to the fungal pathogen Aspergillus fumigates triggers spleen tyrosine kinase (SYK) signalling through dectin-1 activation, which is associated with deleterious airway inflammation. β-Glucan-induced dectin-1 signalling activates the NLRP3 inflammasome, which in turn rapidly produces IL-1β, a master regulator of inflammation. IL-1β expression results in Th17/Treg imbalance, pulmonary inflammation, and bystander tissue injury. This study reports that 3,4 methylenedioxy-β-nitrostyrene (MNS), a potent SYK inhibitor, markedly decreased the expression of pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokines in vitro. Furthermore, SYK inhibition markedly decreased β-glucan-induced IL-1β expression, suggesting that SYK is indispensable for NLRP3 inflammasome activation. Decreased IL-1β expression correlated with reduced Th17 response and enhanced immunosuppressive Treg response. Notably, SYK inhibition ameliorated inflammation caused by repeated intranasal β-glucan challenge in BALB/C mice. SYK inhibition also restored the Th17/Treg balance via decreased Th17 and increased Treg responses, as evidenced by decreased IL-17 and ror-γ levels. Additionally, inhibition of SYK increased IL-10 secreting CD4+FOXP3+ T cells that accompanied reduced T cell proliferation. Decreased IgA in the Bronchoalveolar lavage (BAL) fluid and serum also indicated the immunosuppressive potential of SYK inhibition. Histopathology data revealed that repeated β-glucan challenge caused substantial pulmonary damage, as indicated by septal thickening and interstitial lymphocytic, neutrophil and granulocyte recruitment. These processes were effectively prevented by SYK inhibition, resulting in lung protection. Collectively, our findings suggest that SYK inhibition ameliorates dectin-1- mediated detrimental pulmonary inflammation and subsequent tissue damage. Therefore, SYK can be a new target gene in the therapeutic approach against fungal induced airway inflammation.
Collapse
Affiliation(s)
- Divyesh Patel
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Sagar Gaikwad
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Naveen Challagundla
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| | - Reena Agrawal-Rajput
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India.
| |
Collapse
|
59
|
Gallik KL, Treffy RW, Nacke LM, Ahsan K, Rocha M, Green-Saxena A, Saxena A. Neural crest and cancer: Divergent travelers on similar paths. Mech Dev 2017; 148:89-99. [PMID: 28888421 PMCID: PMC5811199 DOI: 10.1016/j.mod.2017.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
Neural crest cells are multipotent progenitors that dynamically interpret diverse microenvironments to migrate significant distances as a loosely associated collective and contribute to many tissues in the developing vertebrate embryo. Uncovering details of neural crest migration has helped to inform a general understanding of collective cell migration, including that which occurs during cancer metastasis. Here, we discuss several commonalities and differences of neural crest and cancer cell migration and behavior. First, we focus on some of the molecular pathways required for the initial specification and potency of neural crest cells and the roles of many of these pathways in cancer progression. We also describe epithelial-to-mesenchymal transition, which plays a critical role in initiating both neural crest migration and cancer metastasis. Finally, we evaluate studies that demonstrate myriad forms of cell-cell and cell-environment communication during neural crest and cancer collective migration to highlight the remarkable similarities in their molecular and cell biological regulation.
Collapse
Affiliation(s)
- Kristin L Gallik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Randall W Treffy
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Lynne M Nacke
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kamil Ahsan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Manuel Rocha
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Abigail Green-Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
60
|
Li L, Wang X, Sharvan R, Gao J, Qu S. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomed Pharmacother 2017; 95:1225-1231. [DOI: 10.1016/j.biopha.2017.09.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
|
61
|
Sedaghat R, Taab Y, Kiasalari Z, Afshin-Majd S, Baluchnejadmojarad T, Roghani M. Berberine ameliorates intrahippocampal kainate-induced status epilepticus and consequent epileptogenic process in the rat: Underlying mechanisms. Biomed Pharmacother 2017; 87:200-208. [DOI: 10.1016/j.biopha.2016.12.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
|
62
|
Ren K, Zhang W, Wu G, Ren J, Lu H, Li Z, Han X. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells. Biomed Pharmacother 2016; 84:1748-1759. [DOI: 10.1016/j.biopha.2016.10.111] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/30/2016] [Accepted: 10/30/2016] [Indexed: 02/06/2023] Open
|
63
|
Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells. Biochem Biophys Res Commun 2016; 479:290-296. [DOI: 10.1016/j.bbrc.2016.09.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022]
|
64
|
Huang M, Wu S, Hu Q, Wu H, Wei S, Xie H, Sun K, Li X, Fang L. Agkihpin, a novel SVAE may inhibit the migration and invasion of liver cancer cells associated with the inversion of EMT induced by Wnt/β-catenin signaling inhibition. Biochem Biophys Res Commun 2016; 479:283-289. [PMID: 27644877 DOI: 10.1016/j.bbrc.2016.09.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/27/2022]
Abstract
In our previous work, agkihpin, a snake venom arginine esterase (SVAE), was isolated from the Gloydius halys Pallas, which could attenuate the migration of liver cancer cells. However, the mechanism of the effect of agkihpin on attenuating migration of liver cancer cell is unknown yet. Here, to learn more about agkihpin and explore the possibility of agkihpin as an anti-metastatic drug in the future, a series of experiments about the migration and invasion of liver cancer cells with agkihpin, HepG 2 and SMMC-7721, was conducted. Epithelial-mesenchymal transition (EMT) is an initial step and a major phenotype of cancer metastasis and invasion, while a number of EMT opposite phenomenons were observed, for example, epithelial marker E-cadherin was up-regulated, mesenchymal markers N-cadherin and Vimentin, and transcription regulators Snail and twist were down-regulated after treating with agkihpin in liver cancer cells; canonical Wnt/β-catenin pathway, one of the signals initiated EMT, was inhibited by decreased expressions of FZD7 and β-catenin, phosphorylation of GSK3β (Ser9), and nuclear β-catenin accumulation in agkihpin treated cancer cells. By using bioinformatics analysis and protease activity analysis in vitro we also found that agkihpin might bind and degrade FZD7. As a result, we hypothesized that agkihpin could inhibit the Wnt/β-catenin signaling pathway by cleaving FZD7, leading to the inactivation of the TCF/LEF transcription factor, which contributed to the inversion of EMT, and finally attenuated the migration and invasion of liver cancer cells. Therefore, our findings provided novel mechanistic insights into the role of SVAEs in liver cancer controlling, and raised the possibility that agkihpin may be used therapeutically in liver cancer.
Collapse
Affiliation(s)
- Miao Huang
- Radiology Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Shengming Wu
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China.
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| | - Shu Wei
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| | - Huiqiong Xie
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| | - Kejian Sun
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| | - Xiaolong Li
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| | - Ling Fang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi medical university, Nanning, 530021, PR China
| |
Collapse
|
65
|
Abstract
Berberine, an important protoberberine isoquinoline alkaloid, has several pharmacological activities, including antimicrobial, glucose- and cholesterol-lowering, antitumoral, and immunomodulatory properties. Substantial studies suggest that berberine may be beneficial to Alzheimer's disease (AD) by limiting the pathogenesis of extracellular amyloid plaques and intracellular neurofibrillary tangles. Increasing evidence has indicated that berberine exerts a protective role in atherosclerosis related to lipid- and glucose-lowering properties, implicating that berberine has the potential to inhibit these risk factors for AD. This review also attempts to discuss the pharmacological basis through which berberine may retard oxidative stress and neuroinflammation to exhibit its protective role in AD. Accordingly, berberine might be considered a potential therapeutic approach to prevent or delay the process of AD. However, more detailed investigations along with a safety assessment of berberine are warranted to clarify the role of berberine in limiting these risk factors and AD-related pathologies.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province
| | - Chuanling Wang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|