51
|
Genestine M, Lin L, Durens M, Yan Y, Jiang Y, Prem S, Bailoor K, Kelly B, Sonsalla PK, Matteson PG, Silverman J, Crawley JN, Millonig JH, DiCicco-Bloom E. Engrailed-2 (En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior. Hum Mol Genet 2015. [PMID: 26220976 DOI: 10.1093/hmg/ddv301] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2-knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ∼35% in forebrain, they were increased 40 -: 75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5 -: 15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Matthieu Genestine
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Lulu Lin
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers
| | - Madel Durens
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers
| | - Yan Yan
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers
| | - Yiqin Jiang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Kunal Bailoor
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brian Kelly
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Patricia K Sonsalla
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Paul G Matteson
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jill Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacqueline N Crawley
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA and
| |
Collapse
|
52
|
Gu H, Lazarenko RM, Koktysh D, Iacovitti L, Zhang Q. A Stem Cell-Derived Platform for Studying Single Synaptic Vesicles in Dopaminergic Synapses. Stem Cells Transl Med 2015; 4:887-93. [PMID: 26025981 DOI: 10.5966/sctm.2015-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022] Open
Abstract
The exocytotic release of dopamine is one of the most characteristic but also one of the least appreciated processes in dopaminergic neurotransmission. Fluorescence imaging has yielded rich information about the properties of synaptic vesicles and the release of neurotransmitters in excitatory and inhibitory neurons. In contrast, imaging-based studies for in-depth understanding of synaptic vesicle behavior in dopamine neurons are lagging largely because of a lack of suitable preparations. Midbrain culture has been one of the most valuable preparations for the subcellular investigation of dopaminergic transmission; however, the paucity and fragility of cultured dopaminergic neurons limits their use for live cell imaging. Recent developments in stem cell technology have led to the successful production of dopamine neurons from embryonic or induced pluripotent stem cells. Although the dopaminergic identity of these stem cell-derived neurons has been characterized in different ways, vesicle-mediated dopamine release from their axonal terminals has been barely assessed. We report a more efficient procedure to reliably generate dopamine neurons from embryonic stem cells, and it yields more dopamine neurons with more dopaminergic axon projections than midbrain culture does. Using a collection of functional measurements, we show that stem cell-derived dopamine neurons are indistinguishable from those in midbrain culture. Taking advantage of this new preparation, we simultaneously tracked the turnover of hundreds of synaptic vesicles individually using pH-sensitive quantum dots. By doing so, we revealed distinct fusion kinetics of the dopamine-secreting vesicles, which is consistent within both preparations.
Collapse
Affiliation(s)
- Haigang Gu
- Department of Pharmacology and Vanderbilt Institute of Nanoscale Science and Engineering, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Roman M Lazarenko
- Department of Pharmacology and Vanderbilt Institute of Nanoscale Science and Engineering, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dmitry Koktysh
- Department of Pharmacology and Vanderbilt Institute of Nanoscale Science and Engineering, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Pharmacology and Vanderbilt Institute of Nanoscale Science and Engineering, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qi Zhang
- Department of Pharmacology and Vanderbilt Institute of Nanoscale Science and Engineering, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
53
|
Werlen E, Jones MW. Modulating the map: dopaminergic tuning of hippocampal spatial coding and interactions. PROGRESS IN BRAIN RESEARCH 2015; 219:187-216. [PMID: 26072240 DOI: 10.1016/bs.pbr.2015.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Salient events activate the midbrain dopaminergic system and have important impacts on various aspects of mnemonic function, including the stability of hippocampus-dependent memories. Dopamine is also central to modulation of neocortical memory processing, particularly during prefrontal cortex-dependent working memory. Here, we review the current state of the circuitry and physiology underlying dopamine's actions, suggesting that--alongside local effects within hippocampus and prefrontal cortex--dopamine released from the midbrain ventral tegmental area is well positioned to dynamically tune interactions between limbic-cortical circuits through modulation of rhythmic network activity.
Collapse
Affiliation(s)
- Emilie Werlen
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK.
| | - Matthew W Jones
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK
| |
Collapse
|
54
|
Nyberg EM, Tanabe J, Honce JM, Krmpotich T, Shelton E, Hedeman J, Berman BD. Morphologic changes in the mesolimbic pathway in Parkinson's disease motor subtypes. Parkinsonism Relat Disord 2015; 21:536-40. [PMID: 25817514 DOI: 10.1016/j.parkreldis.2015.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder associated with gray matter atrophy. Cortical atrophy patterns may further help distinguish between PD motor subtypes. Comparable differences in subcortical volumes have not been found. METHODS Twenty-one cognitively intact and treated PD patients, including 12 tremor dominant (TD) subtype, Nine postural instability gait dominant (PIGD) subtype, and 20 matched healthy control subjects underwent 3.0 T high-resolution structural MRI scanning. Subcortical volumetric analysis was performed using FreeSurfer and shape analysis was performed with FIRST to assess for differences between PD patients and controls and between PD subtypes. RESULTS No significant differences in subcortical volumes were found between motor PD subtypes, but comparing grouped PD patients with controls revealed a significant increase in hippocampal volume in PD patients (p = 0.03). A significant shape difference was detected in the right nucleus accumbens (NAcc) between PD and controls and between motor subtypes. Shape differences were driven by positive deviations in the TD subtype. Correlation analysis revealed a trend between hippocampal volume and decreasing MDS-UPDRS (p = 0.06). CONCLUSION While no significant differences in subcortical volumes between PD motor subtypes were found, increased hippocampal volumes were observed in PD patients compared to controls. Right NAcc shape differences in PD patients were driven by changes in the TD subtype. These unexpected findings may be related to the effects of chronic dopaminergic replacement on the mesolimbic pathway. Further studies are needed to replicate and determine the clinical significance of such morphologic changes.
Collapse
Affiliation(s)
- Eric M Nyberg
- Department of Radiology, University of Colorado Denver, Aurora, CO, United States
| | - Jody Tanabe
- Department of Radiology, University of Colorado Denver, Aurora, CO, United States
| | - Justin M Honce
- Department of Radiology, University of Colorado Denver, Aurora, CO, United States
| | - Theodore Krmpotich
- Department of Radiology, University of Colorado Denver, Aurora, CO, United States
| | - Erika Shelton
- Department of Neurology, University of Colorado Denver, Aurora, CO, United States
| | - Jessica Hedeman
- Department of Neurology, University of Colorado Denver, Aurora, CO, United States
| | - Brian D Berman
- Department of Neurology, University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
55
|
Adult neurogenesis: a substrate for experience-dependent change. Trends Cogn Sci 2015; 19:151-61. [DOI: 10.1016/j.tics.2015.01.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/18/2014] [Accepted: 01/07/2015] [Indexed: 01/08/2023]
|
56
|
Costa V, Lugert S, Jagasia R. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers. Handb Exp Pharmacol 2015; 228:99-155. [PMID: 25977081 DOI: 10.1007/978-3-319-16522-6_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.
Collapse
Affiliation(s)
- Veronica Costa
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases (NORD), Roche Innovation Center Basel, 124 Grenzacherstrasse, 4070, Basel, Switzerland
| | | | | |
Collapse
|
57
|
Ishola IO, Agbaje EO, Akinleye MO, Ibeh CO, Adeyemi OO. Antidepressant-like effect of the hydroethanolic leaf extract of Alchornea cordifolia (Schumach. & Thonn.) Mull. Arg. (Euphorbiaceae) in mice: involvement of monoaminergic system. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:364-372. [PMID: 25448506 DOI: 10.1016/j.jep.2014.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/12/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaf of Alchornea cordifolia (Euphorbiaceae) is used in traditional African medicine in the treatment of various neurological and psychiatric disorders including depression. Previous studies have shown its potent antidepressant-like effect in the forced swimming test (FST). Hence, this study sought to investigate the involvement of monoaminergic systems in the antidepressant-like effect elicited by hydroethanolic leaf extract of Alchornea cordifolia (HeAC) in the FST. MATERIALS AND METHODS HeAC (25-400mg/kg, p.o.) was administered 1h before the FST. To investigate the contribution of monoaminergic systems to antidepressant-like effect, receptors antagonists were injected 15min before oral administration of HeAC (200mg/kg) to mice and 1h thereafter, subjected to FST. RESULTS HeAC (200 and 400mg/kg, p.o.) produced dose dependent and significant (P<0.001) antidepressant-like effect, in the FST, without accompanying changes in spontaneous locomotor activities in the open-field test. The anti-immobility effect of HeAC (200mg/kg) in the FST was prevented by pretreatment of mice with SCH 23390 (0.05mg/kg, s.c., a dopamine D1 receptor antagonist), sulpiride (50mg/kg, i.p., a dopamine D2 receptor antagonist), prazosin (1mg/kg, i.p., an α1-adrenoceptor antagonist), yohimbine (1mg/kg, i.p., an α2-adrenoceptor antagonist), and GR 127993 (5-HT1B receptor antagonist). Similarly, 3 days intraperitoneal injection of p-chlorophenylalanine (pCPA, 150mg/kg, i.p., an inhibitor of serotonin synthesis) prevented the antidepressant-like effect elicited by HeAC. The combination of subeffective doses of imipramine (5mg/kg, p.o.) or fluoxetine (5mg/kg, p.o.), with HeAC (25mg/kg, p.o., subeffective dose) produced a synergistic antidepressant-like effect in the FST. CONCLUSION The hydroethanolic extract of Alchornea cordifolia possesses antidepressant-like effect mediated through interaction with dopamine (D1 and D2), noradrenergic (α1 and α2 adrenoceptors), and serotonergic (5HT1B receptors) systems. Also, the potentiation of the anti-immobility effect of conventional antidepressants (fluoxetine and imipramine) by Alchornea cordifolia suggest potential therapeutic effect in depression.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics, and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003 Surulere, Lagos, Nigeria
| | - Esther O Agbaje
- Department of Pharmacology, Therapeutics, and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003 Surulere, Lagos, Nigeria.
| | - Moshood O Akinleye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Chris O Ibeh
- Department of Pharmacology, Therapeutics, and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003 Surulere, Lagos, Nigeria
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics, and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003 Surulere, Lagos, Nigeria
| |
Collapse
|
58
|
Brandt MD, Ellwardt E, Storch A. Short- and long-term treatment with modafinil differentially affects adult hippocampal neurogenesis. Neuroscience 2014; 278:267-75. [PMID: 25158676 DOI: 10.1016/j.neuroscience.2014.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 07/27/2014] [Accepted: 08/15/2014] [Indexed: 01/15/2023]
Abstract
The generation of new neurons in the dentate gyrus of the adult brain has been demonstrated in many species including humans and is suggested to have functional relevance for learning and memory. The wake promoting drug modafinil has popularly been categorized as a so-called neuroenhancer due to its positive effects on cognition. We here show that short- and long-term treatment with modafinil differentially effects hippocampal neurogenesis. We used different thymidine analogs (5-bromo-2-deoxyuridine (BrdU), chlorodeoxyuridine (CldU), iododeoxyuridine (IdU)) and labeling protocols to investigate distinct regulative events during hippocampal neurogenesis, namely cell proliferation and survival. Eight-week-old mice that were treated with modafinil (64mg/kg, i.p.) every 24h for 4days show increased proliferation in the dentate gyrus indicated by BrdU-labeling and more newborn granule cells 3weeks after treatment. Short-term treatment for 4days also enhanced the number of postmitotic calretinin-expressing progenitor cells that were labeled with BrdU 1week prior to treatment indicating an increased survival of new born immature granule cells. Interestingly, long-term treatment for 14days resulted in an increased number of newborn Prox1(+) granule cells, but we could not detect an additive effect of the prolonged treatment on proliferation and survival of newborn cells. Moreover, daily administration for 14days did not influence the number of proliferating cells in the dentate gyrus. Together, modafinil has an acute impact on precursor cell proliferation as well as survival but loses this ability during longer treatment durations.
Collapse
Affiliation(s)
- M D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Dresden University of Technology, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE), Research Site Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Dresden University of Technology, 01307 Dresden, Germany.
| | - E Ellwardt
- Division of Neurodegenerative Diseases, Department of Neurology, Dresden University of Technology, 01307 Dresden, Germany; Department of Neurology, University Hospital Mainz, Mainz, Germany
| | - A Storch
- Division of Neurodegenerative Diseases, Department of Neurology, Dresden University of Technology, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE), Research Site Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Dresden University of Technology, 01307 Dresden, Germany
| |
Collapse
|