51
|
Zhang C, Rompani SB, Roska B, McCall MA. Adeno-associated virus-RNAi of GlyRα1 and characterization of its synapse-specific inhibition in OFF alpha transient retinal ganglion cells. J Neurophysiol 2014; 112:3125-37. [PMID: 25231618 DOI: 10.1152/jn.00505.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the central nervous system, inhibition shapes neuronal excitation. In spinal cord glycinergic inhibition predominates, whereas GABAergic inhibition predominates in the brain. The retina uses GABA and glycine in approximately equal proportions. Glycinergic crossover inhibition, initiated in the On retinal pathway, controls glutamate release from presynaptic OFF cone bipolar cells (CBCs) and directly shapes temporal response properties of OFF retinal ganglion cells (RGCs). In the retina, four glycine receptor (GlyR) α-subunit isoforms are expressed in different sublaminae and their synaptic currents differ in decay kinetics. GlyRα1, expressed in both On and Off sublaminae of the inner plexiform layer, could be the glycinergic isoform that mediates On-to-Off crossover inhibition. However, subunit-selective glycine contributions remain unknown because we lack selective antagonists or cell class-specific subunit knockouts. To examine the role of GlyRα1 in direct inhibition in mature RGCs, we used retrogradely transported adeno-associated virus (AAV) that performed RNAi and eliminated almost all glycinergic spontaneous and visually evoked responses in PV5 (OFFα(Transient)) RGCs. Comparisons of responses in PV5 RGCs infected with AAV-scrambled-short hairpin RNA (shRNA) or AAV-Glra1-shRNA confirm a role for GlyRα1 in crossover inhibition in cone-driven circuits. Our results also define a role for direct GlyRα1 inhibition in setting the resting membrane potential of PV5 RGCs. The absence of GlyRα1 input unmasked a serial and a direct feedforward GABA(A)ergic modulation in PV5 RGCs, reflecting a complex interaction between glycinergic and GABA(A)ergic inhibition.
Collapse
Affiliation(s)
- C Zhang
- Department of Ophthalmology and Visual Science, University of Louisville, Louisville, Kentucky; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and
| | - S B Rompani
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - B Roska
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - M A McCall
- Department of Ophthalmology and Visual Science, University of Louisville, Louisville, Kentucky; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and
| |
Collapse
|
52
|
DeBello WM, McBride TJ, Nichols GS, Pannoni KE, Sanculi D, Totten DJ. Input clustering and the microscale structure of local circuits. Front Neural Circuits 2014; 8:112. [PMID: 25309336 PMCID: PMC4162353 DOI: 10.3389/fncir.2014.00112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 08/28/2014] [Indexed: 11/13/2022] Open
Abstract
The recent development of powerful tools for high-throughput mapping of synaptic networks promises major advances in understanding brain function. One open question is how circuits integrate and store information. Competing models based on random vs. structured connectivity make distinct predictions regarding the dendritic addressing of synaptic inputs. In this article we review recent experimental tests of one of these models, the input clustering hypothesis. Across circuits, brain regions and species, there is growing evidence of a link between synaptic co-activation and dendritic location, although this finding is not universal. The functional implications of input clustering and future challenges are discussed.
Collapse
Affiliation(s)
- William M DeBello
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA
| | - Thomas J McBride
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA ; PLOS Medicine San Francisco, CA, USA
| | - Grant S Nichols
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA
| | - Katy E Pannoni
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA
| | - Daniel Sanculi
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA
| | - Douglas J Totten
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA
| |
Collapse
|
53
|
Ryskamp DA, Redmon S, Jo AO, Križaj D. TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision. Cells 2014; 3:914-38. [PMID: 25222270 PMCID: PMC4197638 DOI: 10.3390/cells3030914] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 01/18/2023] Open
Abstract
Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. In addition to its central role in nociception, evidence is accumulating that TRPV1 contributes to stimulus transduction and/or processing in other sensory modalities, including thermosensation, mechanotransduction and vision. For example, TRPV1, in conjunction with intrinsic cannabinoid signaling, might contribute to retinal ganglion cell (RGC) axonal transport and excitability, cytokine release from microglial cells and regulation of retinal vasculature. While excessive TRPV1 activity was proposed to induce RGC excitotoxicity, physiological TRPV1 activity might serve a neuroprotective function within the complex context of retinal endocannabinoid signaling. In this review we evaluate the current evidence for localization and function of TRPV1 channels within the mammalian retina and explore the potential interaction of this intriguing nociceptor with endogenous agonists and modulators.
Collapse
Affiliation(s)
- Daniel A Ryskamp
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Sarah Redmon
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Andrew O Jo
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
54
|
Marc RE, Anderson JR, Jones BW, Sigulinsky CL, Lauritzen JS. The AII amacrine cell connectome: a dense network hub. Front Neural Circuits 2014; 8:104. [PMID: 25237297 PMCID: PMC4154443 DOI: 10.3389/fncir.2014.00104] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/08/2014] [Indexed: 11/26/2022] Open
Abstract
The mammalian AII retinal amacrine cell is a narrow-field, multistratified glycinergic neuron best known for its role in collecting scotopic signals from rod bipolar cells and distributing them to ON and OFF cone pathways in a crossover network via a combination of inhibitory synapses and heterocellular AII::ON cone bipolar cell gap junctions. Long considered a simple cell, a full connectomics analysis shows that AII cells possess the most complex interaction repertoire of any known vertebrate neuron, contacting at least 28 different cell classes, including every class of retinal bipolar cell. Beyond its basic role in distributing rod signals to cone pathways, the AII cell may also mediate narrow-field feedback and feedforward inhibition for the photopic OFF channel, photopic ON-OFF inhibitory crossover signaling, and serves as a nexus for a collection of inhibitory networks arising from cone pathways that likely negotiate fast switching between cone and rod vision. Further analysis of the complete synaptic counts for five AII cells shows that (1) synaptic sampling is normalized for anatomic target encounter rates; (2) qualitative targeting is specific and apparently errorless; and (3) that AII cells strongly differentiate partner cohorts by synaptic and/or coupling weights. The AII network is a dense hub connecting all primary retinal excitatory channels via precisely weighted drive and specific polarities. Homologs of AII amacrine cells have yet to be identified in non-mammalians, but we propose that such homologs should be narrow-field glycinergic amacrine cells driving photopic ON-OFF crossover via heterocellular coupling with ON cone bipolar cells and glycinergic synapses on OFF cone bipolar cells. The specific evolutionary event creating the mammalian AII scotopic-photopic hub would then simply be the emergence of large numbers of pure rod bipolar cells.
Collapse
Affiliation(s)
- Robert E Marc
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine Salt Lake City, UT, USA
| | - James R Anderson
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine Salt Lake City, UT, USA
| | - Bryan W Jones
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine Salt Lake City, UT, USA
| | - Crystal L Sigulinsky
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine Salt Lake City, UT, USA
| | - James S Lauritzen
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine Salt Lake City, UT, USA
| |
Collapse
|
55
|
Anjum R, Ayoubian H, Schmitz F. Differential synaptic distribution of the scaffold proteins Cask and Caskin1 in the bovine retina. Mol Cell Neurosci 2014; 62:19-29. [DOI: 10.1016/j.mcn.2014.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/24/2014] [Accepted: 08/10/2014] [Indexed: 11/26/2022] Open
|
56
|
Yee CW, Toychiev AH, Ivanova E, Sagdullaev BT. Aberrant synaptic input to retinal ganglion cells varies with morphology in a mouse model of retinal degeneration. J Comp Neurol 2014; 522:4085-99. [PMID: 25099614 DOI: 10.1002/cne.23660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 11/10/2022]
Abstract
Retinal degeneration describes a group of disorders which lead to progressive photoreceptor cell death, resulting in blindness. As this occurs, retinal ganglion cells (RGCs) begin to develop oscillatory physiological activity. Here we studied the morphological and physiological properties of RGCs in rd1 mice, aged 30-60 days, to determine how this aberrant activity correlates with morphology. Patch-clamp recordings of excitatory and inhibitory currents were performed, then dendritic structures were visualized by infusion of fluorescent dye. Only RGCs with oscillatory activity were selected for further analysis. Oscillatory frequency and power were calculated using power spectral density analysis of recorded currents. Dendritic arbor stratification, total length, and area were measured from confocal microscope image stacks. These measurements were used to sort RGCs by cluster analysis using Ward's Method. This resulted in a total of 10 clusters, with monostratified and bistratified cells having five clusters each. Both populations exhibited correlations between arbor stratification and aberrant inhibitory input, while excitatory input did not vary with arbor distribution. These findings illustrate the relationship between aberrant activity and RGC morphology at early stages of retinal degeneration.
Collapse
Affiliation(s)
- Christopher W Yee
- Departments of Ophthalmology and Neurology, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, NY, 10605
| | | | | | | |
Collapse
|
57
|
Ren C, Pu M, Cui Q, So KF. Dendritic morphology of caudal periaqueductal gray projecting retinal ganglion cells in Mongolian gerbil (Meriones unguiculatus). PLoS One 2014; 9:e103306. [PMID: 25054882 PMCID: PMC4108400 DOI: 10.1371/journal.pone.0103306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/27/2014] [Indexed: 12/01/2022] Open
Abstract
In this study we investigated the morphological features of the caudal periaqueductal gray (cPAG)-projecting retinal ganglion cells (RGCs) in Mongolian gerbils using retrograde labeling, in vitro intracellular injection, confocal microscopy and three-dimensional reconstruction approaches. cPAG-projecting RGCs exhibit small somata (10–17 µm) and irregular dendritic fields (201–298 µm). Sizes of somata and dendritic fields do not show obvious variation at different distance from the optic disk (eccentricity). Dendrites are moderately branched. Morphological analysis (n = 23) reveals that cPAG-projecting RGCs ramified in sublamina a and b in the inner plexiform layer. These cells exhibit different stratification patterns based on the thickness of dendritic bands in sublaminas a and b: majority of analyzed cells (16 out of 23) have two bands of arborizations share similar thickness. The rest of analyzed cells (7 out of 23) exhibit thinner band in sublamina a than in sublamina b. Together, the present study suggests that cPAG of Mongolian gerbil could receive direct retinal inputs from two types of bistratified RGCs. Furthermore, a small subset of melanopsin-expressing RGCs (total 41 in 6 animals) is shown to innervate the rostral PAG (rPAG). Functional characteristics of these non-visual center projecting RGCs remain to be determined.
Collapse
Affiliation(s)
- Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
- Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China
- GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
- * E-mail: (CR); (K-FS)
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, PR China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, PR China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, PR China
| | - Qi Cui
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
- Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China
- GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
- Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China
- GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, PR China
- * E-mail: (CR); (K-FS)
| |
Collapse
|
58
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
59
|
Compartment-specific tyrosine hydroxylase-positive innervation to AII amacrine cells in the rabbit retina. Neuroscience 2014; 270:88-97. [DOI: 10.1016/j.neuroscience.2014.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/18/2022]
|
60
|
Ivanova E, Toychiev AH, Yee CW, Sagdullaev BT. Intersublaminar vascular plexus: the correlation of retinal blood vessels with functional sublaminae of the inner plexiform layer. Invest Ophthalmol Vis Sci 2014; 55:78-86. [PMID: 24346172 DOI: 10.1167/iovs.13-13196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Interactions between vasculature and neurons provide important insight into the function of the nervous system, as well as into neurological diseases wherein these interactions are disrupted. This study characterizes a previously unreported retinal vascular plexus and examines potential sites of neurovascular interaction. METHODS Vascular, neuronal, and glial elements were visualized using immunohistochemical markers. The distribution of vascular layers was measured and compared across eccentricities. Intensity profiles were calculated from confocal image reconstructions to reveal the proximity of vasculature to neuronal and glial processes. RESULTS Retinal vasculature forms a plexus that coincides with the dendritic processes of OFF cholinergic amacrine cells within the inner plexiform layer. Across eccentricities, this plexus comprises approximately 8% of the total length of horizontally running blood vessels in the retina. Processes of Müller glia and OFF cholinergic amacrine cells colocalize with the blood vessels that form the intersublaminar plexus. CONCLUSIONS In the retina, vasculature lacks autonomic control, but shows efficient local regulation. Although the source of this regulation is unclear, these results suggest that cholinergic amacrine cells and Müller glia may interact with the intersublaminar plexus to influence vasomotor activity. This may indicate a key role in modulating reciprocal interactions between neuronal activity and blood flow.
Collapse
Affiliation(s)
- Elena Ivanova
- Departments of Ophthalmology and Neurology, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, New York
| | | | | | | |
Collapse
|