51
|
Zhong J, Slevin F, Scarsbrook AF, Serra M, Choudhury A, Hoskin PJ, Brown S, Henry AM. Salvage Reirradiation Options for Locally Recurrent Prostate Cancer: A Systematic Review. Front Oncol 2021; 11:681448. [PMID: 34568012 PMCID: PMC8459721 DOI: 10.3389/fonc.2021.681448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/16/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Reirradiation using brachytherapy (BT) and external beam radiation therapy (EBRT) are salvage strategies with locally radiorecurrent prostate cancer. This systematic review describes the oncologic and toxicity outcomes for salvage BT and EBRT [including Stereotactic Body Radiation Therapy (SBRT)]. METHODS An International Prospective Register of Systematic Reviews (PROSPERO) registered (#211875) study was conducted using Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines. EMBASE and MEDLINE databases were searched from inception to December 2020. For BT, both low dose rate (LDR) and high dose rate (HDR) BT techniques were included. Two authors independently assessed study quality using the 18-item Modified Delphi technique. RESULTS A total of 39 eligible studies comprising 1967 patients were included (28 BT and 11 SBRT). In 35 studies (90%), the design was single centre and/or retrospective and no randomised prospective studies were found. Twelve BT studies used LDR only, 11 HDR only, 4 LDR or HDR and 1 pulsed-dose rate only. All EBRT studies used SBRT exclusively, four with Cyberknife alone and 7 using both Cyberknife and conventional linear accelerator treatments. Median (range) modified Delphi quality score was 15 (6-18). Median (range) follow-up was 47.5 months (13-108) (BT) and 25.4 months (21-44) (SBRT). For the LDR-BT studies, the median (range) 2-year and 5-year bRFS rates were 71% (48-89.5) and 52.5% (20-79). For the HDR-BT studies, the median (range) 2-year and 5-year bRFS rates were 74% (63-89) and 51% (45-65). For the SBRT studies, the median (range) 2-year bRFS for the SBRT group was 54.9% (40-80). Mean (range) acute and late grade≥3 GU toxicity rates for LDR-BT/HDR-BT/SBRT were 7.4%(0-14)/2%(0-14)/2.7%(0-8.7) and 13.6%(0-30)/7.9%(0-21.3%)/2.7%(0-8%). Mean (range) acute and late grade≥3 GI toxicity rates for LDR-BT/HDR-BT/SBRT were 6.5%(0-19)/0%/0.5%(0-4%) and 6.4%(0-20)/0.1%(0-0.9)/0.2%(0-1.5). One third of studies included Patient Reported Outcome Measures (PROMs). CONCLUSIONS Salvage reirradiation of radiorecurrent prostate cancer using HDR-BT or SBRT provides similar biochemical control and acceptable late toxicity. Salvage LDR-BT is associated with higher late GU/GI toxicity. Challenges exist in comparing BT and SBRT from inconsistencies in reporting with missing data, and prospective randomised trials are needed.
Collapse
Affiliation(s)
- Jim Zhong
- Department of Diagnostic and Interventional Radiology, Leeds Cancer Centre, St James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
- Department of Clinical Oncology, Leeds Cancer Centre, St James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Finbar Slevin
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
- Department of Clinical Oncology, Leeds Cancer Centre, St James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Andrew F. Scarsbrook
- Department of Diagnostic and Interventional Radiology, Leeds Cancer Centre, St James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Maria Serra
- Department of Clinical Oncology, The Christie Hospital, Manchester, United Kingdom
| | - Ananya Choudhury
- Department of Clinical Oncology, The Christie Hospital, Manchester, United Kingdom
- The Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Peter J. Hoskin
- Department of Clinical Oncology, The Christie Hospital, Manchester, United Kingdom
- The Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Department of Clinical Oncology, Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Sarah Brown
- Clinical Trials Research Unit, University of Leeds, Leeds, United Kingdom
| | - Ann M. Henry
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
- Department of Clinical Oncology, Leeds Cancer Centre, St James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
52
|
Role of radiotherapy for high risk localized prostate cancers. Cancer Radiother 2021; 25:660-662. [PMID: 34417087 DOI: 10.1016/j.canrad.2021.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/23/2022]
Abstract
Management of high-risk prostate cancers is still a subject of debate, because of the lack of randomized trial comparing surgery and radiotherapy. If external beam radiotherapy is proposed, it must be associated with a long-term androgen deprivation therapy, at least 18-months. Irradiation of pelvic lymph nodes seems to improve distant metastasis-free survival and is so indicated in most of the cases. Moderate hypofractionation is not validated for pelvic lymph nodes irradiation. A combination of external beam radiotherapy and brachytherapy improved biochemical control in randomized trials without impact on survival. But this combination has been evaluated in large retrospective studies and seems to improve specific and overall survivals. An integrated boost on the MRI-defined index lesion is another way of dose escalation and improved also biochemical control. Stereotactic radiotherapy is not a validated option at this moment. For each patient, according to the extension of the disease, age, comorbidities and also his willingness, the best approach must be chosen, ideally in multidisciplinary meeting.
Collapse
|
53
|
Dhere VR, Fischer-Valuck BW, Goyal S, Liu Y, Morgan TM, Ghavidel E, Moghanaki DM, Hershatter BW, Patel PR, Jani AB, Godette KD, Rossi PJ, Patel SA. Patient-reported outcomes after Low-dose-rate versus High-dose-rate brachytherapy boost in combination with external beam radiation for intermediate and high risk prostate cancer. Brachytherapy 2021; 20:1130-1138. [PMID: 34417136 DOI: 10.1016/j.brachy.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Addition of a brachytherapy boost to external beam radiation therapy (EBRT) reduces prostate cancer (PCa) recurrence at the expense of genitourinary (GU) toxicity. Whether brachytherapy boost technique, specifically low-dose-rate (LDR-BT) versus high-dose-rate (HDR-BT), impacts treatment-related toxicity is unclear. METHODS Between 2012-2018, 106 men with intermediate/high risk PCa underwent EBRT (37.5-45 Gy in 1.8-2.5 Gy/fraction) plus brachytherapy boost, either with LDR-BT (110 Gy I-125 or 100 Gy Pd-103; n = 51) or HDR-BT (15 Gy x1 Ir-192; n = 55). Patient-reported outcomes (PRO) were assessed by International Prostate Symptom Score (IPSS) and Expanded Prostate Cancer Index Composite (EPIC-CP) surveys at 3-6-month intervals for up to three years following treatment, with higher scores indicating more severe toxicity. Provider-reported GU and gastrointestinal (GI) toxicity was graded per CTCAE v5.0 at each follow-up. Linear mixed models comparing PROs between LDR-BT versus HDR-BT were fitted. Stepwise multivariable analysis (MVA) was performed to account for age, gland size, androgen deprivation therapy use, and alpha-blocker medication use. Incidence rates of grade 2+ GU/GI toxicity was compared using Fisher's exact test. RESULTS Use of LDR-BT was associated with greater change in IPSS (p=0.003) and EPIC-CP urinary irritative score (p = 0.002) compared with HDR-BT, but effect size diminished over time (LDR-BT versus HDR-BT: baseline to 6-/24-month mean IPSS change, +6.4/+1.4 versus +2.7/-3.0, respectively; mean EPIC-CP irritative/obstructive change, +2.5/+0.1 versus +0.9/+0.1, respectively). Results remained significant on MVA. Post-treatment grade 2+ GU toxicity was significantly higher in the LDR-BT group (67.5% versus 42.9% for LDR-BT and HDR-BT, respectively; p <0.001). There were no differences between groups in incontinence, bowel function, and erectile function, or grade 2+ GI toxicity. CONCLUSION Compared with LDR-BT, HDR-BT was associated with lower acute patient- and provider-reported GU toxicity.
Collapse
Affiliation(s)
- Vishal R Dhere
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | | | - Subir Goyal
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta GA
| | - Yuan Liu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta GA
| | | | - Elizabeth Ghavidel
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Drew M Moghanaki
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Bruce W Hershatter
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Pretesh R Patel
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Ashesh B Jani
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Karen D Godette
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA
| | - Peter J Rossi
- Calaway Young Cancer Center, Valley View Hospital, Glenwood Springs CO
| | - Sagar A Patel
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta GA.
| |
Collapse
|
54
|
Lecavalier-Barsoum M, Khosrow-Khavar F, Asiev K, Popovic M, Vuong T, Enger SA. Utilization of brachytherapy in Quebec, Canada. Brachytherapy 2021; 20:1282-1288. [PMID: 34420860 DOI: 10.1016/j.brachy.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND PURPOSE Despite the excellent clinical outcomes from brachytherapy treatments compared with other modalities and the low associated costs, there have been reports of a decline in utilization of brachytherapy. The aim of this study was to investigate in detail the trend in utilization of brachytherapy in the province of Québec, Canada, from 2011 to 2019. MATERIALS AND METHODS All radiotherapy clinics in the province of Quebec, and among these the clinics that provide brachytherapy treatments, were identified. This observational retrospective cohort study involved analysis of data compiled by the Ministère de la Santé et des Services Sociaux du Québec for the period of 2011 to end of 2019 on all brachytherapy procedures performed in the province of Quebec. Time series graphs were used to describe the number of high dose rate (HDR) and low dose rate (LDR) brachytherapy treatments during the studied time period. Statistical analysis was conducted using R statistical software. RESULTS Between 2011 and 2019, 12 hospitals in the province of Québec provided radiotherapy treatments, and all of them offered brachytherapy services. The median annual number of brachytherapy sessions was 4413 (range 3930-4829). HDR brachytherapy represented over 90% of all brachytherapy treatments throughout the study period. Significant changes over time were observed in the number of treatments: at least 5% change was seen only for the two most common subtypes of brachytherapy, HDR interstitial and HDR intracavitary, with an increase of 9.6% and a decrease of 9.2%, respectively. The use of other subtypes of brachytherapy (HDR-plesiotherapy, LDR-interstitial, LDR-intracavitary, LDR-eye plaque) was stable between 2011 and 2019, with ≤ 2.5% variation. CONCLUSION This study demonstrates an overall steady use of brachytherapy between 2011 and 2019 in Quebec. Brachytherapy offers numerous advantages for the treatment of diverse cancer sites. Although more sophisticated external beam radiotherapy treatments have emerged in the last decades, the precision and cost-effectiveness of brachytherapy remain unbeaten. To ensure the continued use and availability of brachytherapy, governments must put in place policies and regulations to that effect. Training and exposure of future health care professionals to brachytherapy within Quebec and Canada is essential to provide all patients the same access to this life saving modality.
Collapse
Affiliation(s)
- Magali Lecavalier-Barsoum
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Department of Radiation Oncology, Jewish General Hospital, McGill, University, Montreal, Quebec, Canada.
| | - Farzin Khosrow-Khavar
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Krum Asiev
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Department of Medical Physics, Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - Marija Popovic
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Te Vuong
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Department of Radiation Oncology, Jewish General Hospital, McGill, University, Montreal, Quebec, Canada
| | - Shirin A Enger
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Department of Medical Physics, Jewish General Hospital, McGill University, Montreal, Québec, Canada.; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
55
|
Graff P, Crehange G. [Ultra-hypofractionated radiotherapy for the treatment of localized prostate cancer: Results, limits and prospects]. Cancer Radiother 2021; 25:684-691. [PMID: 34274223 DOI: 10.1016/j.canrad.2021.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Still an emerging approach a few years ago, stereotactic body radiation therapy (SBRT) has ranked as a valid option for the treatment of localized prostate cancer. Inherent properties of prostatic adenocarcinoma (low α/β) make it the perfect candidate. We propose a critical review of the literature trying to put results into perspective to identify their strengths, limits and axes of development. Technically sophisticated, the stereotactic irradiation of the prostate is well tolerated. Despite the fact that median follow-up of published data is still limited, ultra-hypofractionated radiotherapy seems very efficient for the treatment of low and intermediate risk prostate cancers. Data seem satisfying for high-risk cancers as well. New developments are being studied with a main interest in treatment intensification for unfavorable intermediate risk and high-risk cancers. Advantage is taken of the sharp dose gradient of stereotactic radiotherapy to offer safe reirradiation to patients with local recurrence in a previously irradiated area.
Collapse
Affiliation(s)
- P Graff
- Département d'oncologie radiothérapie, Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| | - G Crehange
- Département d'oncologie radiothérapie, Institut Curie, 26, rue d'Ulm, 75005 Paris, France
| |
Collapse
|
56
|
Abstract
OBJECTIVES To present an overview of radiation therapy (RT) for prostate cancer over the past decade. METHODS The literature on prostate cancer radiation therapy was reviewed and summarised. Radiation therapy (RT) for prostate cancer has dramatically evolved in the past decade, with superior techniques and exciting advances, pushing the role of the radiation oncologist to new frontiers. RESULTS Innovations in imaging, treatment delivery, and a deeper understanding of biology has resulted in more tailored RT for individuals. In the present review, we summarise the changing landscape and broadly discuss new developments in prostate RT. CONCLUSIONS Questions and challenges remain in the field, however there are multiple opportunities to further improve upon RT for our patients with prostate cancer.
Collapse
Affiliation(s)
- Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anthony L Zietman
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
57
|
Choudhury A, Henry Md Frcr A, Mitin Md PhD T, Chen Md Mph R, Joseph Md Frcr N, Spratt Md PhD DE. Photons, Protons, SBRT, Brachytherapy-What Is Leading the Charge for the Management of Prostate Cancer? A Perspective From the GU Editorial Team. Int J Radiat Oncol Biol Phys 2021; 110:1114-1121. [PMID: 34171236 DOI: 10.1016/j.ijrobp.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/22/2023]
Affiliation(s)
- Ananya Choudhury
- Department of Clinical Oncology, Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, University of Manchester and Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Ann Henry Md Frcr
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust and the University of Leeds, Leeds, United Kingdom
| | - Timur Mitin Md PhD
- Knight Cancer Institute, Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon
| | - Ronald Chen Md Mph
- Department of Radiation Oncology, University of Kansas, Kansas City, Kansas
| | - Nuradh Joseph Md Frcr
- General Hospital Chilaw, Ministry of Health, Colombo, Sri Lanka; Sri Lanka Cancer Research Group
| | | |
Collapse
|
58
|
Dess RT. Prostate Brachytherapy Boost: Where Are We and Where Are We Going. Int J Radiat Oncol Biol Phys 2021; 110:708-711. [PMID: 34089677 DOI: 10.1016/j.ijrobp.2021.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Robert T Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
59
|
Petersen SE, Høyer M. Androgen Deprivation Therapy Combined With Particle Therapy for Prostate Cancer: A Systematic Review. Front Oncol 2021; 11:695647. [PMID: 34249753 PMCID: PMC8260995 DOI: 10.3389/fonc.2021.695647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 12/09/2022] Open
Abstract
Purpose There is high-level evidence for addition of androgen deprivation therapy to photon-based radiotherapy of the prostate in intermediate- and high-risk prostate cancer. Little is known about the value of ADT in particle therapy of prostate cancer. We are conducting a systematic review on biochemical disease-free survival, overall survival, and morbidity after combined particle therapy and ADT for prostate cancer. Methods A thorough search in PubMed, Embase, Scopus, and Web of Science databases were conducted, searching for relevant studies. Clinical studies on prostate cancer and the treatment combination of particle therapy and androgen deprivation therapy were included. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and registered on PROSPERO (CRD42021230801). Results A total of 298 papers were identified. Fifteen papers reporting on 7,202 patients after proton or carbon-ion therapy for localized prostate cancer where a fraction or all patients received ADT were selected for analysis. Three thousand five hundred and nineteen (49%) of the patients had received combined ADT and particle therapy. Primarily high-risk (87%), to a lesser extent intermediate-risk (34%) and low-risk patients (12%) received ADT. There were no comparative studies on the effect of ADT in patients treated with particles and no studies identified ADT as an independent prognostic factor related to survival outcomes. Conclusions The review found no evidence to support that the effects on biochemical disease-free survival and morbidity of combining ADT to particle therapy differs from the ADT effects in conventional photon based radiotherapy. The available data on the topic is limited.
Collapse
Affiliation(s)
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
60
|
Musunuru HB, Cheung P, Vesprini D, Liu SK, Chu W, Chung HT, Morton G, Deabreu A, Davidson M, Ravi A, Helou J, Ho L, Zhang L, Loblaw A. Stereotactic pelvic radiotherapy with HDR boost for dose escalation in intermediate and high-risk prostate cancer (SPARE): Efficacy, toxicity and quality of life. Radiother Oncol 2021; 161:40-46. [PMID: 34089752 DOI: 10.1016/j.radonc.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The ASCO/CCO guidelines recommend brachytherapy (BT) boost for eligible intermediate- (IR) or high-risk (HR) prostate cancer (PCa) patients. We present efficacy, toxicity and quality-of-life (QoL) outcomes in patients treated on a prospective protocol of MRI dose-painted high-dose-rate BT boost (HDR-BT) followed by 5-fraction pelvic radiotherapy (RT) and 6-18 months of androgen deprivation therapy (ADT). METHODS In this phase I/II study, IR or HR PCa patients received HDR-BT 15 Gy × 1 to prostate and up to 22.5 Gy to MRI nodule, followed by 25 Gy in 5, weekly fractions to pelvis. Toxicity was assessed using CTCAEv3.0, and QoL was captured using EPIC questionnaire. Biochemical failure (BF; nadir + 2.0), and proportion of patients with PSA < 0.4 ng/ml at 4-years (4yPSARR) were evaluated. A minimally clinically important change (MCIC) was recorded if QoL score decreased >0.5 standard deviation of baseline scores. RESULTS Thirty-one patients (NCCN 3.2% favorable IR, 48.4% unfavorable IR and 48.4% HR) completed treatment with a median follow-up of 61 months. Median D90 to MR nodule was 19.0 Gy and median prostate V100% was 96.5%. The actuarial 5-year BF rate was 18.2%, and the 4yPSARR was 71%. One patient died of PCa. Acute grade 2 and 3 toxicities: GU: 50%, 7%, and GI: 3%, none, respectively. Late grade 2 and 3 toxicities were: GU: 23%, 3%, and GI: 7%, none, respectively. Proportion of patients with MCIC was 7.7% for urinary domain and 32.0% for bowel domain. CONCLUSIONS This novel treatment protocol incorporating MRI dose-painted HDR-BT boost and 5-fraction pelvic RT with ADT is well tolerated.
Collapse
Affiliation(s)
| | - Patrick Cheung
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - Danny Vesprini
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - Stanley K Liu
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - William Chu
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - Hans T Chung
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - Gerard Morton
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - Andrea Deabreu
- Clinical Trials and Epidemiology Program, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada
| | - Melanie Davidson
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - Ananth Ravi
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - Joelle Helou
- Department of Radiation Oncology, University of Toronto, Canada; Princess Margaret Cancer Centre, Canada
| | - Ling Ho
- Department of Radiation Oncology, University of Toronto, Canada
| | - Liying Zhang
- Clinical Trials and Epidemiology Program, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada
| | - Andrew Loblaw
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Canada; Institute of Health Policy, Management and Evaluation, Canada.
| |
Collapse
|
61
|
Foerster R, Zwahlen DR, Buchali A, Tang H, Schroeder C, Windisch P, Vu E, Akbaba S, Bostel T, Sprave T, Zamboglou C, Zilli T, Stelmes JJ, Telkhade T, Murthy V. Stereotactic Body Radiotherapy for High-Risk Prostate Cancer: A Systematic Review. Cancers (Basel) 2021; 13:cancers13040759. [PMID: 33673077 PMCID: PMC7918664 DOI: 10.3390/cancers13040759] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Radiotherapy (RT) is an established, potentially curative treatment option for all risk constellations of localized prostate cancer (PCA). Androgen deprivation therapy (ADT) and dose-escalated RT can further improve outcome in high-risk (HR) PCA. In recent years, shorter RT schedules based on hypofractionated RT have shown equal outcome. Stereotactic body radiotherapy (SBRT) is a highly conformal RT technique enabling ultra-hypofractionation which has been shown to be safe and efficient in patients with low- and intermediate-risk PCA. There is a paucity of data on the role of SBRT in HR PCA. In particular, the need for pelvic elective nodal irradiation (ENI) needs to be addressed. Therefore, we conducted a systematic review to analyze the available data on observed toxicities, ADT prescription practice, and oncological outcome to shed more light on the value of SBRT in HR PCA. METHODS We searched the PubMed and Embase electronic databases for the terms "prostate cancer" AND "stereotactic" AND "radiotherapy" in June 2020. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. RESULTS After a rigorous selection process, we identified 18 individual studies meeting all selection criteria for further analyses. Five additional studies were included because their content was judged as relevant. Three trials have reported on prostate SBRT including pelvic nodes; 2 with ENI and 1 with positive pelvic nodes only. The remaining studies investigated SBRT of the prostate only. Grade 2+ acute genitourinary (GU) toxicity was between 12% and 46.7% in the studies investigating pelvic nodes irradiation and ranged from 0% to 89% in the prostate only studies. Grade 2+ chronic GU toxicity was between 7% and 60% vs. 2% and 56.7%. Acute gastrointestinal (GI) grade 2+ toxicity was between 0% to 4% and 0% to 18% for studies with and without pelvic nodes irradiation, respectively. Chronic GI grade 2+ toxicity rates were between 4% and 50.1% vs. 0% and 40%. SBRT of prostate and positive pelvic nodes only showed similar toxicity rates as SBRT for the prostate only. Among the trials that reported on ADT use, the majority of HR PCA patients underwent ADT for at least 2 months; mostly neoadjuvant and concurrent. Biochemical control rates ranged from 82% to 100% after 2 years and 56% to 100% after 3 years. Only a few studies reported longer follow-up data. CONCLUSION At this point, SBRT with or without pelvic ENI cannot be considered the standard of care in HR PCA, due to missing level 1 evidence. Treatment may be offered to selected patients at specialized centers with access to high-precision RT. While concomitant ADT is the current standard of care, the necessary duration of ADT in combination with SBRT remains unclear. Ideally, all eligible patients should be enrolled in clinical trials.
Collapse
Affiliation(s)
- Robert Foerster
- Institute for Radiation Oncology, Cantonal Hospital Winterthur (KSW), 8401 Winterthur, Switzerland; (D.R.Z.); (H.T.); (C.S.); (P.W.)
- Medical Faculty, University of Zurich (UZH), 8091 Zurich, Switzerland
- Correspondence: ; Tel.: +41-52-266-31-40
| | - Daniel Rudolf Zwahlen
- Institute for Radiation Oncology, Cantonal Hospital Winterthur (KSW), 8401 Winterthur, Switzerland; (D.R.Z.); (H.T.); (C.S.); (P.W.)
- Medical Faculty, University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Andre Buchali
- Department of Radiation Oncology, Ruppiner Kliniken GmbH, Brandenburg Medical School (MHB), 16816 Neuruppin, Germany;
| | - Hongjian Tang
- Institute for Radiation Oncology, Cantonal Hospital Winterthur (KSW), 8401 Winterthur, Switzerland; (D.R.Z.); (H.T.); (C.S.); (P.W.)
| | - Christina Schroeder
- Institute for Radiation Oncology, Cantonal Hospital Winterthur (KSW), 8401 Winterthur, Switzerland; (D.R.Z.); (H.T.); (C.S.); (P.W.)
- Department of Radiation Oncology, Ruppiner Kliniken GmbH, Brandenburg Medical School (MHB), 16816 Neuruppin, Germany;
- Center for Proton Therapy, Paul Scherrer Institute (PSI), ETH Domain, 5232 Villingen, Switzerland
| | - Paul Windisch
- Institute for Radiation Oncology, Cantonal Hospital Winterthur (KSW), 8401 Winterthur, Switzerland; (D.R.Z.); (H.T.); (C.S.); (P.W.)
| | - Erwin Vu
- Department of Radiation Oncology, Cantonal Hospital St. Gallen (KSSG), 9007 St. Gallen, Switzerland;
| | - Sati Akbaba
- Department of Radiation Oncology, University Hospital Mainz, 55131 Mainz, Germany; (S.A.); (T.B.)
| | - Tilman Bostel
- Department of Radiation Oncology, University Hospital Mainz, 55131 Mainz, Germany; (S.A.); (T.B.)
| | - Tanja Sprave
- Department of Radiation Oncology, University Hospital Freiburg, 79106 Freiburg, Germany; (T.S.); (C.Z.)
| | - Constantinos Zamboglou
- Department of Radiation Oncology, University Hospital Freiburg, 79106 Freiburg, Germany; (T.S.); (C.Z.)
| | - Thomas Zilli
- Department of Radiation Oncology, University Hospital Geneva (HUG), 1205 Geneva, Switzerland;
| | - Jean-Jacques Stelmes
- Department of Radiation Oncology, Oncological Institute of Southern Switzerland (IOSI), Cantonal Hospitals (EOC), 6500 Bellinzona, Switzerland;
| | - Tejshri Telkhade
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Homi Bhabha National Institute (HBNI), Mumbai 400012, India; (T.T.); (V.M.)
| | - Vedang Murthy
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Homi Bhabha National Institute (HBNI), Mumbai 400012, India; (T.T.); (V.M.)
| |
Collapse
|
62
|
Lakosi F, Antal G, Pall J, Farkas A, Jenei T, Nagy D, Liptak J, Sipocz I, Pytel A, Csima M, Gulyban A, Toller G. HDR brachytherapy boost using MR-only workflow for intermediate- and high-risk prostate cancer: 8-year results of a pilot study. Brachytherapy 2021; 20:576-583. [PMID: 33478906 DOI: 10.1016/j.brachy.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE To report 8-year clinical outcome with high-dose-rate brachytherapy (HDRBT) boost using MRI-only workflow for intermediate (IR) and high-risk (HR) prostate cancer (PC) patients. METHODS AND MATERIALS Fifty-two patients were treated with 46-60 Gy of 3D conformal radiotherapy preceded and/or followed by a single dose of 8-10 Gy MRI-guided HDRBT. Interventions were performed in a 0.35 T MRI scanner. Trajectory planning, navigation, contouring, catheter reconstruction, and dose calculation were exclusively based on MRI images. Biochemical relapse-free- (BRFS), local relapse-free- (LRFS), distant metastasis-free- (DMFS), cancer-specific-(CCS) and overall survival (OS) were analyzed. Late morbidity was scored using the Common Terminology Criteria for Adverse Events (CTCAE 4.0) combined with RTOG (Radiation Therapy Oncology Group) scale for urinary toxicity and rectal urgency (RU) determined by Yeoh. RESULTS Median follow-up time was 107 (range: 19-143) months. The 8-year actuarial rates of BRFS, LRFS, DMFS, CSS and OS were 85.7%, 97%, 97.6%, and 77.6%, respectively. There were no Gr.3 GI side effects. The 8-year actuarial rate of Gr.2 proctitis was 4%. The 8-year cumulative incidence of Gr.3 GU side effects was 8%, including two urinary stenoses (5%) and one cystitis (3%). EPIC urinary and bowel scores did not change significantly over time. CONCLUSIONS MRI-only HDR-BT boost with moderate dose escalation provides excellent 8-year disease control with a favorable toxicity profile for IRPC and HRPC patients. Our results support the clinical importance of MRI across the BT workflow.
Collapse
Affiliation(s)
- Ferenc Lakosi
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary.
| | - Gergely Antal
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary
| | - Janos Pall
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary; Department of Radiation Oncology, Csolnoky Ferenc Hospital, Veszprém, Hungary
| | - Andrea Farkas
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary
| | - Tibor Jenei
- Somogy County Kaposi Mór Teaching Hospital, Department of Urology, Kaposvár, Hungary
| | - Denes Nagy
- Somogy County Kaposi Mór Teaching Hospital, Department of Urology, Kaposvár, Hungary
| | - Jozsef Liptak
- Kanizsai Dorottya Hospital, Department of Urology, Nagykanizsa, Hungary
| | - Istvan Sipocz
- Petz Aladár County Teaching Hospital, Department of Radiation Oncology, Győr, Hungary
| | - Akos Pytel
- Pécs University, Department of Urology, Pecs, Hungary
| | - Melinda Csima
- Faculty of Pedagogy, Szent István University, Kaposvár Campus, Kaposvár, Hungary
| | - Akos Gulyban
- Medical Physics Department, Institut Jules Bordet, Bruxelles, Belgium
| | - Gabor Toller
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary
| |
Collapse
|