51
|
Anchordoquy JM, Anchordoquy JP, Galarza EM, Farnetano NA, Giuliodori MJ, Nikoloff N, Fazzio LE, Furnus CC. Parenteral Zinc Supplementation Increases Pregnancy Rates in Beef Cows. Biol Trace Elem Res 2019; 192:175-182. [PMID: 30723881 DOI: 10.1007/s12011-019-1651-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/22/2019] [Indexed: 11/26/2022]
Abstract
Zinc (Zn) is required for normal reproductive performance in cattle. The aim of this study was to evaluate the effect of subcutaneous injection of 400 mg Zn at the beginning of fixed-time artificial insemination (FTAI) on preovulatory follicle and corpus luteum (CL) size, plasma estradiol (E2) and progesterone (P4) concentrations, and pregnancy rates in beef cows. Copper (Cu) concentration and alkaline phosphatase (ALP) activity in plasma were also evaluated. Zinc supplementation at the beginning of the FTAI protocol (day 0) increased the area of preovulatory follicle (APF, day 9; P = 0.042) and plasma P4 concentration (day 16; P = 0.01), whereas plasma E2 concentration (day 9) and area of CL (ACL; day 16) were not modified by Zn supplementation in cows with adequate plasma Zn concentration. Zinc supplementation in Zn-deficient cows increased ACL with respect to controls (P = 0.048) but did not modify plasma E2 concentration. Pregnancy rate on day 41 after FTAI was higher in cows supplemented with Zn compared with controls (80.95% and 51.61%, respectively; P = 0.042). Plasma Zn and Cu concentrations on days 7, 9, and 16 were not affected by Zn supplementation. In conclusion, the results obtained in the present study determined that parenteral Zn supplementation at the beginning of the FTAI protocol increased preovulatory follicle size, plasma P4 concentration, and pregnancy rates in beef cows.
Collapse
Affiliation(s)
- J M Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
- Cátedra de Fisiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - J P Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
- Cátedra de Fisiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - E M Galarza
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
- Cátedra de Fisiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - N A Farnetano
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - M J Giuliodori
- Cátedra de Fisiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - N Nikoloff
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - L E Fazzio
- Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 y 118, 1900, La Plata, Argentina
| | - C C Furnus
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
52
|
Likszo P, Skarzynski DJ, Moza Jalali B. Proteomic Analysis of Porcine Pre-ovulatory Follicle Differentiation Into Corpus Luteum. Front Endocrinol (Lausanne) 2019; 10:774. [PMID: 31798533 PMCID: PMC6879000 DOI: 10.3389/fendo.2019.00774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
The luteinization of the follicular cells, following a LH surge, causes extensive molecular and structural changes in preovulatory follicles (POF) that lead to ovulation and ultimate formation of the corpus luteum (CL). The objective of this study was to identify proteins expressed in porcine POF before the LH surge and a new CL formed, 2-3 days after ovulation, and evaluate proteome changes associated with formation of the CL from a follicle. We used 2D-gel electrophoresis-based proteomics and tandem mass spectrometry followed by a functional analysis using Ingenuity Pathway analysis (IPA) to evaluate functional pathways associated with the luteinization process. Protein lysates were prepared from isolated POFs and from the newly formed CL. A total of 422 protein spots were identified in both structures. A total of 15 and 48 proteins or their proteoforms were detected only in the POFs and CL, respectively. An IPA analysis of a POF proteome showed that most of the follicular proteins were involved in cellular infiltration, endoplasmic stress responses, and the protein ubiquitination pathway. Most of the early luteal proteins were associated with steroid metabolism, cell death and survival, free radical scavenging, and the protein ubiquitination pathway. A comparison of a follicular proteome with that of an early luteal proteome revealed that 167 identified proteins or their proteoforms were differentially regulated between POFs and the newly formed CL (p < 0.05 and a fold change of >1.8). Proteins that were significantly more abundant in follicles included cAMP-dependent protein kinase, histone binding protein RBBP4, reticulocalbin, vimentin, and calumenin; more abundant luteal proteins included albumin, farnesyl diphosphate synthase, serine protease inhibitors, elongation factor-1, glutaredoxin, and selenium-binding protein. Proteins that were significantly altered with luteal formation were found to be associated with cholesterol biosynthesis, cell death and survival, and acute phase response. Moreover, upstream regulators of differentially abundant proteins in CL were identified that included insulin growth factor-1, sterol regulatory element-binding transcription factor-1, and nuclear factor erythroid-derived 2. We have identified novel proteins that advance our understanding of (1) processes associated with differentiation of POFs into the CL, (2) possible mechanisms of luteal cell survival, and (3) pathways regulating steroidogenesis in the newly formed CL.
Collapse
Affiliation(s)
| | | | - Beenu Moza Jalali
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
53
|
Menezes VG, Monte APO, Gouveia BB, Lins TLBG, Donfack NJ, Macedo TJS, Barberino RS, Santos JM, Matos MHT, Batista AM, Wischral A. Effects of leptin on the follicular development and mitochondrial activity of ovine isolated early antral follicles cultured in vitro. Theriogenology 2019; 138:77-83. [PMID: 31302434 DOI: 10.1016/j.theriogenology.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
This study evaluated the effect of leptin on the in vitro culture of isolated sheep early antral follicles. Early antral follicles (300-450 μm) were isolated and cultured for 12 days in tissue culture medium 199 (TCM 199) supplemented with glutamine, hypoxanthine, transferrin, insulin, selenium, ascorbic acid, bovine serum albumin (BSA) and recombinant follicle stimulating hormone (rFSH) (TCM 199+: control medium) or TCM 199+ supplemented with 2 or 10 ng/mL leptin. After culture, oocytes were subjected to in vitro maturation (IVM). The parameters analyzed were morphology, extrusion rate, follicular diameter, growth and fully-grown oocytes (oocytes ≥110 μm) rates. After IVM, reactive oxygen species (ROS) levels, mitochondrial activity, meiotic stages and meiotic resumption rates were also analyzed. After 12 days of culture, the concentration of 2 ng/mL of leptin showed a higher percentage of morphologically normal follicles, fully-grown oocytes (≥110 μm), active mitochondria and meiotic resumption compared to the control medium (TCM 199+; P < 0.05) but did not differ when compared to leptin concentration of 10 ng/mL (P > 0.05). After culturing, no significant differences existed among treatments in terms of the follicle diameter and ROS levels. In conclusion, the addition of 2 ng/mL leptin to the base culture medium is capable of improving follicular survival, oocyte growth, mitochondrial activity and meiotic resumption after the in vitro culture of isolated sheep early antral follicles.
Collapse
Affiliation(s)
- V G Menezes
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil.
| | - A P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - B B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - T L B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - N J Donfack
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - T J S Macedo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - R S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - J M Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - M H T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - A M Batista
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - A Wischral
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
54
|
New Insights into the Process of Placentation and the Role of Oxidative Uterine Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9174521. [PMID: 31341539 PMCID: PMC6615000 DOI: 10.1155/2019/9174521] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
Abstract
For a successful pregnancy to occur, a predecidualized receptive endometrium must be invaded by placental differentiated cells (extravillous trophoblast cells (EVTs)) and, at the same time, continue decidualization. EVT invasion is aimed at anchoring the placenta to the maternal uterus and ensuring local blood supply increase necessary to provide normal placental and foetal development. The first is achieved by migrating through the maternal endometrium and deeper into the myometrium, while the second by transforming uterine spiral arteries into large vessels. This process is a tightly regulated battle comprising interests of both the mother and the foetus. Invading EVTs are required to perform a scope of functions: move, adhere, proliferate, differentiate, interact, and digest the extracellular matrix (ECM); tolerate hypoxia; transform the maternal spiral arteries; and die by apoptosis. All these functions are modulated by their surrounding microenvironment: oxygen, soluble factors (e.g., cytokines, growth factors, and hormones), ECM proteins, and reactive oxygen species. A deeper comprehension of oxidative uterine microenvironment contribution to trophoblast function will be addressed in this review.
Collapse
|
55
|
Ghribi R, Correia AT, Elleuch B, Nunes B. Toxicity Assessment of Impacted Sediments from Southeast Coast of Tunisia Using a Biomarker Approach with the Polychaete Hediste diversicolor. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:678-691. [PMID: 30852624 DOI: 10.1007/s00244-019-00611-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Toxicity caused by exposure to pollutants from marine sediments is a consequence of the interaction between biota and xenobiotics most frequently released by anthropogenic activities. The present work intended to characterize the toxicity of natural sediments putatively impacted by distinct human activities, collected at several sites located in the south of the Gulf of Gabes, Zarzis area, Tunisia. The selected toxicity criteria were analysed following ecologically relevant test conditions. Organisms of the polychaete species Hediste diversicolor were chronically exposed (28 days) to the mentioned sediments. Toxicity endpoints were biomarkers involved in the toxic response to common anthropogenic chemicals, namely neurotoxic (acetylcholinesterase), anti-oxidant (catalase, glutathione peroxidase), metabolic (glutathione S-transferases) enzymatic activities, and oxidative damage (lipid peroxidation, TBARS assay). The chemical characterization of sediments showed that the samples collected from the site near an aquaculture facility were highly contaminated by heavy metals (Cd, Cu, Cr, Hg, Pb, and Zn) and polycyclic aromatic hydrocarbons (fluorene, phenanthrene, anthracene, fluoranthene and pyrene). H. diversicolor individuals exposed to the sediments from this specific site showed the highest values among all tested biomarkers, suggesting that these organisms were possibly under a pro-oxidative stress condition potentially promoted by anthropogenic pollution. Moreover, it was possible to conclude that individuals of the polychaete species H. diversicolor responded to the chronic exposure to potentially contaminated sediments from the southeast coast of Tunisia, eliciting adaptive responses of significant biological meaning.
Collapse
Affiliation(s)
- Rayda Ghribi
- Laboratoire Génie de l'Environnement et de l'Écotechnologie - Geet, National School of Engineers of Sfax, Université de Sfax, Route de Soukra Km 4.5 BP W, 3038, Sfax, Tunisia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Porto, Portugal
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Porto, Portugal
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS/UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| | - Boubaker Elleuch
- Laboratoire Génie de l'Environnement et de l'Écotechnologie - Geet, National School of Engineers of Sfax, Université de Sfax, Route de Soukra Km 4.5 BP W, 3038, Sfax, Tunisia
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
56
|
Song Y, Wu H, Wang X, Haire A, Zhang X, Zhang J, Wu Y, Lian Z, Fu J, Liu G, Wusiman A. Melatonin improves the efficiency of super-ovulation and timed artificial insemination in sheep. PeerJ 2019; 7:e6750. [PMID: 31086729 PMCID: PMC6487178 DOI: 10.7717/peerj.6750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
It has been well proved that melatonin participates in the regulation of the seasonal reproduction of ewes. However, the effects of short term treatment of melatonin on ewe's ovulation are still to be clarified. In this study, the effects of melatonin on the number of embryos harvested from superovulation, and the pregnant rate in recipients after embryo transferred have been investigated. Hu sheep with synchronous estrus treatment were given melatonin subcutaneously injection (0, 5, and 10 mg/ewe, respectively). It was found that the estrogen level in the group of 5 mg melatonin was significantly higher than that of other two groups at the time of sperm insemination (p < 0.05). The pregnant rate and number of lambs in the group of 5 mg melatonin treatment was also significantly higher than that of the rests of the groups (P < 0.05). In another study, 31 Suffolk ewes as donors and 103 small-tailed han sheep ewes as recipients were used to produce pronuclear embryo and embryo transfer. Melatonin (5 mg) was given to the donors during estrus. The results showed that, the number of pronuclear embryos and the pregnancy rate were also significantly higher in melatonin group than that in the control group. In addition, 28 donors and 44 recipient ewes were used to produce morula/blastocyst and embryo transferring. Melatonin (5 mg) was given during estrus. The total number of embryos harvested (7.40 ± 1.25/ewe vs. 3.96 ± 0.73/ewe, P < 0.05) and the pregnant rate (72.3 ± 4.6% vs. 54.7 ± 4.0%, P < 0.05) and number of lambs were also increased in melatonin group compared to the control group. Collectively, the results have suggested that melatonin treatment 36 hours after CIDR withdrawal could promote the number and quality of embryos in vivo condition and increased the pregnant rate and number of lambs.
Collapse
Affiliation(s)
- Yukun Song
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, Beijing, China
| | - Xuguang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Aerman Haire
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, Tianjin, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, Tianjin, China
| | - Yingjie Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, Beijing, China
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, Beijing, China
| | - Juncai Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, Beijing, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, Beijing, China
| | - Abulizi Wusiman
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
57
|
de la Vega MDC, Delsouc MB, Ponce I, Ragusa V, Vallcaneras S, Anzulovich AC, Casais M. Circadian rhythms of factors involved in luteal regression are modified in p55 tumour necrosis factor receptor (TNFRp55)-deficient mice. Reprod Fertil Dev 2018; 30:1651-1665. [PMID: 29903342 DOI: 10.1071/rd18058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/05/2018] [Indexed: 12/17/2023] Open
Abstract
The rhythm of factors involved in luteal regression is crucial in determining the physiological duration of the oestrous cycle. Given the role of tumour necrosis factor (TNF)-α in luteal function and circadian regulation and that most of the effects of TNF-α are mediated by p55 TNF receptor (TNFRp55), the aims of the present study were to analyse the following during the luteal regression phase in the ovary of mice: (1) whether the pattern of expression of progesterone (P4) and the enzymes involved in the synthesis and degradation of P4 is circadian and endogenous (the rhythm persists in constant conditions, (i.e., constant darkness) with a period of about 24 hours); (2) circadian oscillations in clock gene expression; (3) whether there are daily variations in the expression of key genes involved in apoptosis and antioxidant mechanisms; and (4) the consequences of TNFRp55 deficiency. P4 was found to oscillate circadianally following endogenous rhythms of clock factors. Of note, TNFRp55 deficiency modified the circadian oscillation in P4 concentrations and its enzymes involved in the synthesis and degradation of P4, probably as a consequence of changes in the circadian oscillations of brain and muscle ARNT-Like protein 1 (Bmal1) and Cryptochrome 1 (Cry1). Furthermore, TNFRp55 deficiency modified the circadian rhythms of apoptosis genes, as well as antioxidant enzymes and peroxidation levels in the ovary in dioestrus. The findings of the present study strengthen the hypothesis that dysregulation of TNF-α signalling may be a potential cause for altered circadian and menstrual cycling in some gynaecological diseases.
Collapse
Affiliation(s)
- Magali Del C de la Vega
- Laboratorio de Biología de la Reproducción, Facultad de Química, Bioquímica y Farmacia, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Universidad Nacional de San Luis, Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - María B Delsouc
- Laboratorio de Biología de la Reproducción, Facultad de Química, Bioquímica y Farmacia, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Universidad Nacional de San Luis, Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Ivana Ponce
- Laboratorio de Cronobiología, Facultad de Química, Bioquímica y Farmacia, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Universidad Nacional de San Luis, Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Vicente Ragusa
- Laboratorio de Biología de la Reproducción, Facultad de Química, Bioquímica y Farmacia, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Universidad Nacional de San Luis, Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Sandra Vallcaneras
- Laboratorio de Biología de la Reproducción, Facultad de Química, Bioquímica y Farmacia, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Universidad Nacional de San Luis, Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Ana C Anzulovich
- Laboratorio de Cronobiología, Facultad de Química, Bioquímica y Farmacia, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Universidad Nacional de San Luis, Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Marilina Casais
- Laboratorio de Biología de la Reproducción, Facultad de Química, Bioquímica y Farmacia, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Universidad Nacional de San Luis, Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| |
Collapse
|
58
|
Dang X, Du G, Hu W, Ma L, Wang P, Li Y. Peroxisome proliferator‐activated receptor gamma coactivator‐1α/HSF1 axis effectively alleviates lipopolysaccharide‐induced acute lung injury via suppressing oxidative stress and inflammatory response. J Cell Biochem 2018; 120:544-551. [PMID: 30216506 DOI: 10.1002/jcb.27409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/11/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Xingbo Dang
- Department of Emergency Surgery Shannxi Provincial People‘s Hospital Xi’an Shannxi China
| | - Gongliang Du
- Department of Emergency Surgery Shannxi Provincial People‘s Hospital Xi’an Shannxi China
| | - Wei Hu
- Department of Emergency Surgery Shannxi Provincial People‘s Hospital Xi’an Shannxi China
| | - Longyang Ma
- Department of Emergency Surgery Shannxi Provincial People‘s Hospital Xi’an Shannxi China
| | - Pei Wang
- Department of Emergency Surgery Shannxi Provincial People‘s Hospital Xi’an Shannxi China
| | - Yi Li
- Department of Emergency Surgery Shannxi Provincial People‘s Hospital Xi’an Shannxi China
| |
Collapse
|
59
|
Park HJ, Lee DG, Seong JB, Lee HS, Kwon OS, Kang BS, Park JW, Lee SR, Lee DS. Peroxiredoxin I maintains luteal function by regulating unfolded protein response. Reprod Biol Endocrinol 2018; 16:79. [PMID: 30111318 PMCID: PMC6094449 DOI: 10.1186/s12958-018-0396-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mounting evidence shows that ROS regulation by various antioxidants is essential for the expression of enzymes involved in steroidogenesis and maintenance of progesterone production by the corpus luteum (CL). However, the underlying mechanisms of peroxiredoxin 1 (PRDX1), an antioxidant enzyme, in luteal function for progesterone production in mice have not been reported. The aim of this study was to evaluate the functional link between PRDX1 and progesterone production in the CL of Prdx1 knockout (K/O) mice in the functional stage of CL. METHODS The expression pattern of the unfolded protein response (UPR) signaling pathways, endoplasmic reticulum (ER) stress-induced apoptosis related genes and peroxiredoxins 1 (PRDX1) were investigated by western blotting analysis in CL tissue of 10 weeks mice during functional stage of CL. The protein levels of these genes after ER-stress inducer tunicamycin (Tm), ER-stress inhibitor tauroursodeoxycholic acid (TUDCA) and ROS scavenger, N-acetylcysteine (NAC) stimulation by intraperitoneal (i.p) injection were also investigated in CL tissue of wild type (WT) mice. Finally, we examined progesterone production and UPR signaling related gene expression in CL tissue of Prdx1 K/O mice. RESULTS We demonstrated that PRDX1 deficiency in the functional stage activates the UPR signaling pathways in response to ER stress-induced apoptosis. Interestingly, CL number, serum progesterone levels, and steroidogenic enzyme expression in Prdx1 K/O mice decreased significantly, compared to those in wild type mice. Levels of UPR signaling pathway markers (GRP78/BIP, P50ATF6, and phosphorylated (p)-eIF2) and ER-stress associated apoptotic factors (CHOP, p-JNK, and cleaved caspase-3) were dramatically increased in the CL tissue of Prdx1 K/O mice. In addition, administration of the NAC, reduced progesterone production and activated ER-stress-induced UPR signaling in the CL tissue obtained from the ovary of Prdx1 K/O mice. Taken together, these results indicated that reduction in serum progesterone levels and activation of ER-stress-induced UPR signaling are restored by NAC injection in the CL of Prdx1 K/O mice. CONCLUSION These observations provide the first evidence regarding the basic mechanisms connecting PRDX1 and progesterone production in the functional stage of CL.
Collapse
Affiliation(s)
- Hyo-Jin Park
- 0000 0001 0744 1296grid.412077.7College of Engineering, Daegu University, Biotechnology, Gyeongsan, South Korea
| | - Dong Gil Lee
- 0000 0001 0661 1556grid.258803.4School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Jung Bae Seong
- 0000 0001 0661 1556grid.258803.4School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Hyun-Shik Lee
- 0000 0001 0661 1556grid.258803.4School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Oh-Shin Kwon
- 0000 0001 0661 1556grid.258803.4School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Beom Sik Kang
- 0000 0001 0661 1556grid.258803.4School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Jeen-woo Park
- 0000 0001 0661 1556grid.258803.4School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Sang-Rae Lee
- 0000 0004 0636 3099grid.249967.7Korea Research Institute of Bioscience and Biotechnology (KRIBB), National Primate Research Center (NPRC), Daejeon, South Korea
| | - Dong-Seok Lee
- 0000 0001 0661 1556grid.258803.4School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- 0000 0001 0661 1556grid.258803.4College of Natural Sciences, Kyungpook National University, Daegu, 702-701 Republic of Korea
| |
Collapse
|
60
|
Different enzymatic antioxidative pathways operate within the sheep caruncular and intercaruncular endometrium throughout the estrous cycle and early pregnancy. Theriogenology 2017; 99:111-118. [DOI: 10.1016/j.theriogenology.2017.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 05/03/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
|
61
|
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8416763. [PMID: 28819546 PMCID: PMC5551541 DOI: 10.1155/2017/8416763] [Citation(s) in RCA: 1918] [Impact Index Per Article: 274.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a phenomenon caused by an imbalance between production and accumulation of oxygen reactive species (ROS) in cells and tissues and the ability of a biological system to detoxify these reactive products. ROS can play, and in fact they do it, several physiological roles (i.e., cell signaling), and they are normally generated as by-products of oxygen metabolism; despite this, environmental stressors (i.e., UV, ionizing radiations, pollutants, and heavy metals) and xenobiotics (i.e., antiblastic drugs) contribute to greatly increase ROS production, therefore causing the imbalance that leads to cell and tissue damage (oxidative stress). Several antioxidants have been exploited in recent years for their actual or supposed beneficial effect against oxidative stress, such as vitamin E, flavonoids, and polyphenols. While we tend to describe oxidative stress just as harmful for human body, it is true as well that it is exploited as a therapeutic approach to treat clinical conditions such as cancer, with a certain degree of clinical success. In this review, we will describe the most recent findings in the oxidative stress field, highlighting both its bad and good sides for human health.
Collapse
Affiliation(s)
- Gabriele Pizzino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mariapaola Cucinotta
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
62
|
Talukder S, Kerrisk KL, Gabai G, Celi P. Role of oxidant–antioxidant balance in reproduction of domestic animals. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reproductive process leads to dynamic changes in metabolism and energy consumption, which may be responsible for the excessive production of free radicals (oxidants) that are generated during the physiological process of oxygen consumption. As the ovary is a metabolically active organ, it produces oxidants. Growing follicles, granulose cells of Graffian follicles and ovulated follicles all produce both enzymatic and non-enzymatic antioxidants to preserve themselves from the oxidative damage of oxidants. Oxidants and antioxidants are involved in several reproductive functions such as the regulation of follicular fluid environment, folliculogenesis, steroidogenesis, corpus luteum function, and luteolysis. In this article, the currently available literature is reviewed in relation to the roles of oxidants and oxidative stress in both normal and abnormal reproductive physiological processes.
Collapse
|
63
|
Ge M, Chen C, Yao W, Zhou S, Huang F, Cai J, Hei Z. Overexpression of Brg1 Alleviates Hepatic Ischemia/Reperfusion-Induced Acute Lung Injury through Antioxidative Stress Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8787392. [PMID: 28798861 PMCID: PMC5534314 DOI: 10.1155/2017/8787392] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023]
Abstract
AIM To investigate whether overexpression of Brahma-related gene-1 (Brg1) can alleviate lung injury induced by hepatic ischemia/reperfusion (HIR) and its precise mechanism. METHODS Cytomegalovirus-transgenic Brg1-overexpressing (CMV-Brg1) mice and wild-type (WT) C57BL/6 mice underwent HIR. Lung histology, oxidative injury markers, and antioxidant enzyme concentrations in the lung were assessed. The protein expression levels of Brg1, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in the lung were analyzed by Western blotting. RESULTS In the WT group, histopathological analysis revealed that lung damage peaked at 6 h after HIR. Meanwhile, the lung reactive oxygen species (ROS) and 8-isoprostane levels were significantly increased. The protein expression of Brg1 in lung tissue decreased to a minimum at 6 h. Overexpression of Brg1 alleviated lung injury and decreased the amounts of oxidative products, including the levels of 8-isoprostane and ROS, as well as the percentage of positive cells for 4-hydroxynonenal (4-HNE) and 8-oxo-2'-deoxyguanosine (8-OHdG). Brg1 overexpression increased the expression and nuclear translocation of Nrf2 as well as activated the antioxidases. In addition, it decreased the expression of inflammatory factors. CONCLUSION Overexpression of Brg1 alleviates oxidative lung injury induced by HIR, likely through the Nrf2 pathway.
Collapse
Affiliation(s)
- Mian Ge
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Jun Cai
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
- *Jun Cai: and
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
- *Ziqing Hei:
| |
Collapse
|
64
|
Patlevič P, Vašková J, Švorc P, Vaško L, Švorc P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr Med Res 2016; 5:250-258. [PMID: 28462126 PMCID: PMC5390420 DOI: 10.1016/j.imr.2016.07.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/11/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
Crohn's disease and ulcerative colitis, known together as inflammatory bowel diseases (IBDs), and celiac disease are the most common disorders affecting not only adults but also children. Both IBDs and celiac disease are associated with oxidative stress, which may play a significant role in their etiologies. Reactive oxygen species (ROS) such as superoxide radicals (O2•-), hydroxyl radicals (•OH), hydrogen peroxide (H2O2), and singlet oxygen (1O2) are responsible for cell death via oxidation of DNA, proteins, lipids, and almost any other cellular constituent. To protect biological systems from free radical toxicity, several cellular antioxidant defense mechanisms exist to regulate the production of ROS, including enzymatic and nonenzymatic pathways. Superoxide dismutase catalyzes the dismutation of O2•- to H2O2 and oxygen. The glutathione redox cycle involves two enzymes: glutathione peroxidase, which uses glutathione to reduce organic peroxides and H2O2; and glutathione reductase, which reduces the oxidized form of glutathione with concomitant oxidation of nicotinamide adenine dinucleotide phosphate. In addition to this cycle, GSH can react directly with free radicals. Studies into the effects of free radicals and antioxidant status in patients with IBDs and celiac disease are scarce, especially in pediatric patients. It is therefore very necessary to conduct additional research studies to confirm previous data about ROS status and antioxidant activities in patients with IBDs and celiac disease, especially in children.
Collapse
Affiliation(s)
- Peter Patlevič
- Department of Ecology, Faculty of Humanities and Natural Sciences, Prešov University in Prešov, Prešov, Slovak Republic
| | - Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Pavol Švorc
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Ostrava-Zábřeh, Czech Republic
| | - Ladislav Vaško
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Pavol Švorc
- Department of Medical Physiology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
65
|
Xu J, Li Y, Wang Y, Xu Y, Zhou C. Loss of Bmal1 decreases oocyte fertilization, early embryo development and implantation potential in female mice. ZYGOTE 2016; 24:760-7. [PMID: 27140828 DOI: 10.1017/s0967199416000083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biological clock genes expressed in reproductive tissues play important roles in maintaining the normal functions of reproductive system. However, disruption of female circadian rhythm on oocyte fertilization, preimplantation embryo development and blastocyst implantation potential is still unclear. In this study, ovulation, in vivo and in vitro oocyte fertilization, embryo development, implantation and intracellular reactive oxygen species (ROS) levels in ovary and oviduct were studied in female Bmal1+/+ and Bmal1-/- mice. The number of naturally ovulated oocyte in Bmal1-/- mice decreased (5.2 ± 0.8 vs 7.8 ± 0.8, P < 0.001), with an increasing abnormal oocyte ratio (20.4 ± 3.5 vs 11.7 ± 2.0%, P = 0.001) after superovulation. Significantly lower fertilization rate and obtained blastocyst number were observed in Bmal1-/- female mice either mated with wild-type in vivo or fertilized by sperm from wild-type male mice in vitro (all P < 0.05). Interestingly, in vitro fertilization rate of oocytes derived from Bmal1-/- increased significantly compared with in vivo study (P < 0.01). After transferring blastocysts derived from Bmal1+/+ and Bmal1-/- female mice to pseudopregnant mice, the implantation sites of the latter decreased 5 days later (8.0 ± 0.8 vs 5.3 ± 1.0, P = 0.005). The intracellular ROS levels in the ovary on proestrus day and in the oviduct on metestrus day increased significantly in Bmal1-/- mice compared with that of Bmal1+/+ mice. Deletion of the core biological clock gene Bmal1 significantly decreases oocyte fertilization rate, early embryo development and implantation potential in female mice, and these may be possibly caused by excess ROS levels generated in ovary and oviduct.
Collapse
Affiliation(s)
- Jian Xu
- Reproductive Medicine Center,Guangzhou Women and Children's Medical Center,Guangzhou,Guangzhou Medical University,China
| | - Yan Li
- Reproductive Medicine Center,Henan Provincial People's Hospital,Zhengzhou,Henan,China
| | - Yizi Wang
- Reproductive Medicine Center,First Affiliated Hospital of Sun Yat-sen University,Guangzhou,China;Guangdong Provincial Key Laboratory of Reproductive Medicine,Guangdong,China
| | - Yanwen Xu
- Reproductive Medicine Center,First Affiliated Hospital of Sun Yat-sen University,58 Zhongshan Road II,Guangzhou,China
| | - Canquan Zhou
- Reproductive Medicine Center,First Affiliated Hospital of Sun Yat-sen University,58 Zhongshan Road II,Guangzhou,China
| |
Collapse
|
66
|
Petrakos G, Andriopoulos P, Tsironi M. Pregnancy in women with thalassemia: challenges and solutions. Int J Womens Health 2016; 8:441-51. [PMID: 27660493 PMCID: PMC5019437 DOI: 10.2147/ijwh.s89308] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Advances in treatment of thalassemia have led to the aging of thalassemic patients, and consequently concern about successful reproductive outcome is augmented. Although women with thalassemia intermedia only were considered competent of achieving pregnancy, case series reveal the willingness of both thalassemia major and thalassemia intermedia women to have a family. Pregnancy in general is characterized by dynamic multiple-system changes and increased susceptibility to oxidative stress, while homozygous, transfusion-dependent, β-thalassemia patients manifest cardiac, hepatic, endocrine, and metabolic disorders attributable to chronic anoxia and iron overload and thalassemia intermedia, usually nontransfused, is associated with augmented risk of thromboembolic events. Pregnancy in thalassemia should be considered a high risk for both mother and fetus, and favorable outcomes are the result of continuous preconception, antenatal, and postpartum assessment and management by a team of thalassemia experts.
Collapse
Affiliation(s)
- George Petrakos
- Department of Nursing, University of Peloponnese, Sparta, Greece
| | | | - Maria Tsironi
- Department of Nursing, University of Peloponnese, Sparta, Greece
| |
Collapse
|
67
|
Santos C, Pires MDA, Santos D, Payan-Carreira R. Distribution of superoxide dismutase 1 and glutathione peroxidase 1 in the cyclic canine endometrium. Theriogenology 2016; 86:738-48. [DOI: 10.1016/j.theriogenology.2016.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/09/2016] [Accepted: 02/27/2016] [Indexed: 01/21/2023]
|
68
|
Farías JG, Herrera EA, Carrasco-Pozo C, Sotomayor-Zárate R, Cruz G, Morales P, Castillo RL. Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress. Pharmacol Ther 2015; 158:1-23. [PMID: 26617218 DOI: 10.1016/j.pharmthera.2015.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypoxia is the failure of oxygenation at the tissue level, where the reduced oxygen delivered is not enough to satisfy tissue demands. Metabolic depression is the physiological adaptation associated with reduced oxygen consumption, which evidently does not cause any harm to organs that are exposed to acute and short hypoxic insults. Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability of endogenous antioxidant systems to scavenge ROS, where ROS overwhelms the antioxidant capacity. Oxidative stress plays a crucial role in the pathogenesis of diseases related to hypoxia during intrauterine development and postnatal life. Thus, excessive ROS are implicated in the irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Here, we describe several pathophysiological conditions and in vivo and ex vivo models developed for the study of hypoxic and oxidative stress injury. We reviewed existing literature on the responses to hypoxia and oxidative stress of the cardiovascular, renal, reproductive, and central nervous systems, and discussed paradigms of chronic and intermittent hypobaric hypoxia. This systematic review is a critical analysis of the advantages in the application of some experimental strategies and their contributions leading to novel pharmacological therapies.
Collapse
Affiliation(s)
- Jorge G Farías
- Facultad de Ingeniería y Ciencias, Departamento de Ingeniería Química, Universidad de la Frontera, Casilla 54-D, Temuco, Chile
| | - Emilio A Herrera
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Chile
| | | | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Paola Morales
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Rodrigo L Castillo
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
69
|
Talbott H, Delaney A, Zhang P, Yu Y, Cushman RA, Cupp AS, Hou X, Davis JS. Effects of IL8 and immune cells on the regulation of luteal progesterone secretion. Reproduction 2014; 148:21-31. [PMID: 24686456 DOI: 10.1530/rep-13-0602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have suggested that chemokines may mediate the luteolytic action of prostaglandin F2α (PGF). Our objective was to identify chemokines induced by PGF in vivo and to determine the effects of interleukin 8 (IL8) on specific luteal cell types in vitro. Mid-cycle cows were injected with saline or PGF, ovaries were removed after 0.5-4 h, and expression of chemokine was analyzed by qPCR. In vitro expression of IL8 was analyzed after PGF administration and with cell signaling inhibitors to determine the mechanism of PGF-induced chemokine expression. Purified neutrophils were analyzed for migration and activation in response to IL8 and PGF. Purified luteal cell types (steroidogenic, endothelial, and fibroblast cells) were used to identify which cells respond to chemokines. Neutrophils and peripheral blood mononuclear cells (PBMCs) were cocultured with steroidogenic cells to determine their effect on progesterone production. IL8, CXCL2, CCL2, and CCL8 transcripts were rapidly increased following PGF treatment in vivo. The stimulatory action of PGF on IL8 mRNA expression in vitro was prevented by inhibition of p38 and JNK signaling. IL8, but not PGF, TNF, or TGFB1, stimulated neutrophil migration. IL8 had no apparent action in purified luteal steroidogenic, endothelial, or fibroblast cells, but stimulated ERK phosphorylation in neutrophils. In coculture experiments neither IL8 nor activated neutrophils altered basal or LH-stimulated luteal cell progesterone synthesis. In contrast, activated PBMCs inhibited LH-stimulated progesterone synthesis from cultured luteal cells. These data implicate a complex cascade of events during luteolysis, involving chemokine signaling, neutrophil recruitment, and immune cell action within the corpus luteum.
Collapse
Affiliation(s)
- Heather Talbott
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Abigail Delaney
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Pan Zhang
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Yangsheng Yu
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Robert A Cushman
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Andrea S Cupp
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Xiaoying Hou
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - John S Davis
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| |
Collapse
|
70
|
Beta-thalassemia major and female fertility: the role of iron and iron-induced oxidative stress. Anemia 2013; 2013:617204. [PMID: 24396593 PMCID: PMC3876768 DOI: 10.1155/2013/617204] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 01/19/2023] Open
Abstract
Endocrine complications due to haemosiderosis are present in a significant number of patients with beta-thalassemia major (BTM) worldwide and often become barriers in their desire for parenthood. Thus, although spontaneous fertility can occur, the majority of females with BTM is infertile due to hypogonadotropic hypogonadism (HH) and need assisted reproductive techniques. Infertility in these women seems to be attributed to iron deposition and iron-induced oxidative stress (OS) in various endocrine organs, such as hypothalamus, pituitary, and female reproductive system, but also through the iron effect on other organs, such as liver and pancreas, contributing to the impaired metabolism of hormones and serum antioxidants. Nevertheless, the gonadal function of these patients is usually intact and fertility is usually retrievable. Meanwhile, a significant prooxidants/antioxidants imbalance with subsequent increased (OS) exists in patients with BTM, which is mainly caused by tissue injury due to overproduction of free radicals by secondary iron overload, but also due to alteration in serum trace elements and antioxidant enzymes. Not only using the appropriate antioxidants, essential trace elements, and minerals, but also regulating the advanced glycation end products, could probably reduce the extent of oxidative damage and related complications and retrieve BTM women's infertility.
Collapse
|
71
|
Abstract
Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health, University of Milan, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, Italy
| | | | | |
Collapse
|