51
|
Gracia-Cazaña T, Salazar N, Zamarrón A, Mascaraque M, Lucena SR, Juarranz Á. Resistance of Nonmelanoma Skin Cancer to Nonsurgical Treatments. Part II: Photodynamic Therapy, Vismodegib, Cetuximab, Intralesional Methotrexate, and Radiotherapy. ACTAS DERMO-SIFILIOGRAFICAS 2016; 107:740-750. [PMID: 27436804 DOI: 10.1016/j.ad.2016.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/22/2016] [Accepted: 04/30/2016] [Indexed: 12/18/2022] Open
Abstract
A wide range of treatments is now available for nonmelanoma skin cancer, including 5-fluorouracil, ingenol mebutate, imiquimod, diclofenac, photodynamic therapy, methotrexate, cetuximab, vismodegib, and radiotherapy. All are associated with high clinical and histologic response rates. However, some tumors do not respond due to resistance, which may be primary or acquired. Study of the resistance processes is a broad area of research that aims to increase our understanding of the nature of each tumor and the biologic features that make it resistant, as well as to facilitate the design of new therapies directed against these tumors. In this second article, having covered the topical treatments of nonmelanoma skin cancer, we review resistance to other nonsurgical treatments, such as monoclonal antibodies against basal and squamous cell carcinomas, intralesional chemotherapy, photodynamic therapy, and radiotherapy.
Collapse
Affiliation(s)
- T Gracia-Cazaña
- Unidad de Dermatología, Hospital de Barbastro, Barbastro, Huesca, España; Instituto Aragonés de Ciencias de la Salud, Zaragoza, España.
| | - N Salazar
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, España
| | - A Zamarrón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, España
| | - M Mascaraque
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, España
| | - S R Lucena
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, España
| | - Á Juarranz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, España
| |
Collapse
|
52
|
Fan J, He Q, Liu Y, Zhang F, Yang X, Wang Z, Lu N, Fan W, Lin L, Niu G, He N, Song J, Chen X. Light-Responsive Biodegradable Nanomedicine Overcomes Multidrug Resistance via NO-Enhanced Chemosensitization. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13804-11. [PMID: 27213922 PMCID: PMC5233726 DOI: 10.1021/acsami.6b03737] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Multidrug resistance (MDR) is responsible for the relatively low effectiveness of chemotherapeutics. Herein, a nitric oxide (NO) gas-enhanced chemosensitization strategy is proposed to overcome MDR by construction of a biodegradable nanomedicine formula based on BNN6/DOX coloaded monomethoxy(polyethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA). On one hand, the nanomedicine features high biocompatibility due to the high density of PEG and biodegradable PLGA. On the other hand, the nanoformula exhibits excellent stability under physiological conditions but exhibits stimuli-responsive decomposition of BNN6 for NO gas release upon ultraviolet-visible irradiation. More importantly, after NO release is triggered, gas molecules are generated that break the nanoparticle shell and lead to the release of doxorubicin. Furthermore, NO was demonstrated to reverse the MDR of tumor cells and enhance the chemosensitization for doxorubicin therapy.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Bioelectronics, Southeast University , Nanjing 210096, Jiangsu, P.R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
- Biological Target Diagnosis & Treatment Center, Guangxi Medical University , Nanning 530021, Guangxi, P.R. China
| | - Qianjun He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University , Shenzhen 518060, Guangdong, P.R. China
| | - Yi Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Xiangyu Yang
- State Key Laboratory of Bioelectronics, Southeast University , Nanjing 210096, Jiangsu, P.R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Nan Lu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University , Shenzhen 518060, Guangdong, P.R. China
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University , Nanjing 210096, Jiangsu, P.R. China
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
53
|
Jayasooriya RGPT, Dilshara MG, Kang CH, Lee S, Choi YH, Jeong YK, Kim GY. Fulvic acid promotes extracellular anti-cancer mediators from RAW 264.7 cells, causing to cancer cell death in vitro. Int Immunopharmacol 2016; 36:241-248. [PMID: 27177083 DOI: 10.1016/j.intimp.2016.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022]
Abstract
Fulvic acid (FA) is known to promote electrochemical balance as a donor or a receptor possessing many biomedical functions. Nevertheless, the effect of FA on the anti-cancer activity has not been elucidated. In the current study, we first isolated FA from humus and investigated whether FA regulates immune-stimulating functions, such as production of nitric oxide (NO), in RAW 264.7 cells. Our data showed that FA slightly enhances cell viability in a dose-dependent manner and secretion of NO from RAW 264.7 cells. It upregulated the protein and mRNA expression of inducible NO synthesis (iNOS). In addition, FA enhanced the DNA-binding activity of nuclear factor-κB (NF-κB) in RAW 264.7 cells; the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC) effectively attenuated the expression of FA-stimulated iNOS, suggesting that FA stimulates NF-κB to promote iNOS and NO production. Finally, FA-stimulated culture media (FA-CM) from RAW 264.7 cells were collected and MCA-102 fibrosarcoma cells were cultured in this media. The FA-CM augmented MCA-102 fibrosarcoma cell apoptosis; however, an NO inhibitor N(G)-monomethyl-l-arginine (NMMA) slightly inhibited the FA-CM-mediated MCA-102 fibrosarcoma cell apoptosis, which was accompanied by low levels of NO. In the present study, we found that FA induces the generation of NO and iNOS in RAW 264.7 cells by inducing NF-κB activation; however, NO did not significantly stimulate MCA-102 fibrosarcoma cell apoptosis in the current study. In addition, FA-CM enhanced cell death in various human cancer cells such as Hep3B, LNCaP, and HL60. Taken together, FA most likely stimulates immune-modulating molecules such as NO and induces cancer cell apoptosis.
Collapse
Affiliation(s)
| | | | - Chang-Hee Kang
- Department of Marine Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Nakdonggang National Institute of Biological Resource, Sangju-si, Gyeongsangbuk-do 37242, Republic of Korea
| | - Seungheon Lee
- Department of Marine Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47340, Republic of Korea
| | - Yong Kee Jeong
- Department of Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea.
| |
Collapse
|
54
|
Fan J, Song J, Liu Y, Yu G, Ma Y, Deng Y, He N, Zhang F. Synthesis of biocompatible polymeric nanomaterial dually loaded with paclitaxel and nitric oxide for anti-MDR cancer therapy. RSC Adv 2016. [DOI: 10.1039/c6ra23637e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A copolymer nanomedicine mPEG–PEI–PLLA–PTX–NO was synthesized and studied in an OVCAR-8/ADR MDR cancer model.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Bioelectronics
- Southeast University
- Nanjing 210096
- P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Yan Deng
- State Key Laboratory of Bioelectronics
- Southeast University
- Nanjing 210096
- P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics
- Southeast University
- Nanjing 210096
- P. R. China
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| |
Collapse
|
55
|
Girotti AW. Role of Endogenous Nitric Oxide in Hyperaggressiveness of Tumor Cells that Survive a Photodynamic Therapy Challenge. Crit Rev Oncog 2016; 21:353-363. [PMID: 29431083 DOI: 10.1615/critrevoncog.2017020909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many malignant tumors exploit nitric oxide (NO) for a survival, growth, and migration/invasion advantage, and also to withstand the cytotoxic effects of chemo- and radiotherapies. Endogenous NO has also been shown to antagonize photodynamic therapy (PDT), a unique minimally invasive modality involving a photosensitizing (PS) agent, PS-exciting light in the visible- to near-infrared range, and molecular oxygen. The anti-PDT effects of NO were discovered about 20 years ago, but the underlying mechanisms are still not fully understood. More recent studies in the author's laboratory using breast, prostate, and brain cancer cell lines have shown that inducible NO synthase (iNOS/NOS2) is dramatically upregulated after a PDT challenge using 5-aminolevulinic acid (ALA-) -induced protoporphyrin IX as the PS. The parallel increase in NO resulted not only in a greater resistance to cell killing but also in a striking increase in the growth and migration/invasion rate of surviving cells. These in vitro findings and their recent recapitulation at the in vivo level are discussed in this article, along with how iNOS/NO's negative effects on PDT can be attenuated by the use of select iNOS inhibitors as PDT adjuvants.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA
| |
Collapse
|
56
|
Affiliation(s)
- Jordi Muntané
- Department of General Surgery Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/IBiS/CSIC/Universidad de Sevilla, Av Manuel Siurot s/n, 41013 Sevilla, Spain.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics David Geffen School of Medicine Jonsson Comprehensive Cancer Center University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|