51
|
Propson NE, Gedam M, Zheng H. Complement in Neurologic Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:277-298. [PMID: 33234021 DOI: 10.1146/annurev-pathol-031620-113409] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Classic innate immune signaling pathways provide most of the immune response in the brain. This response activates many of the canonical signaling mechanisms identified in peripheral immune cells, despite their relative absence in this immune-privileged tissue. Studies over the past decade have strongly linked complement protein production and activation to age-related functional changes and neurodegeneration. The reactivation of the complement signaling pathway in aging and disease has opened new avenues for understanding brain aging and neurological disease pathogenesis and has implicated cell types such as astrocytes, microglia, endothelial cells, oligodendrocytes, neurons, and even peripheral immune cells in these processes. In this review, we aim to unravel the past decade of research related to complement activation and its numerous consequences in aging and neurological disease.
Collapse
Affiliation(s)
- Nicholas E Propson
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manasee Gedam
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
52
|
Gavriilaki M, Kimiskidis VK, Gavriilaki E. Precision Medicine in Neurology: The Inspirational Paradigm of Complement Therapeutics. Pharmaceuticals (Basel) 2020; 13:E341. [PMID: 33114553 PMCID: PMC7693884 DOI: 10.3390/ph13110341] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Precision medicine has emerged as a central element of healthcare science. Complement, a component of innate immunity known for centuries, has been implicated in the pathophysiology of numerous incurable neurological diseases, emerging as a potential therapeutic target and predictive biomarker. In parallel, the innovative application of the first complement inhibitor in clinical practice as an approved treatment of myasthenia gravis (MG) and neuromyelitis optica spectrum disorders (NMOSD) related with specific antibodies raised hope for the implementation of personalized therapies in detrimental neurological diseases. A thorough literature search was conducted through May 2020 at MEDLINE, EMBASE, Cochrane Library and ClinicalTrials.gov databases based on medical terms (MeSH)" complement system proteins" and "neurologic disease". Complement's role in pathophysiology, monitoring of disease activity and therapy has been investigated in MG, multiple sclerosis, NMOSD, spinal muscular atrophy, amyotrophic lateral sclerosis, Parkinson, Alzheimer, Huntington disease, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, stroke, and epilepsy. Given the complexity of complement diagnostics and therapeutics, this state-of-the-art review aims to provide a brief description of the complement system for the neurologist, an overview of novel complement inhibitors and updates of complement studies in a wide range of neurological disorders.
Collapse
Affiliation(s)
- Maria Gavriilaki
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasilios K. Kimiskidis
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Eleni Gavriilaki
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece;
| |
Collapse
|
53
|
Li N, Stewart T, Sheng L, Shi M, Cilento EM, Wu Y, Hong JS, Zhang J. Immunoregulation of microglial polarization: an unrecognized physiological function of α-synuclein. J Neuroinflammation 2020; 17:272. [PMID: 32943057 PMCID: PMC7500012 DOI: 10.1186/s12974-020-01940-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Microglial function is vital for maintaining the health of the brain, and their activation is an essential component of neurodegeneration. There is significant research on factors that provoke “reactive” or “inflammatory” phenotypes in conditions of injury or disease. One such factor, exposure to the aggregated or oligomeric forms of α-synuclein, an abundant brain protein, plays an essential role in driving microglial activation; including chemotactic migration and production of inflammatory mediators in Lewy body (LB) diseases such as Parkinson’s disease. On the other hand, it is increasingly recognized that microglia also undergo changes, dependent on the cellular environment, that promote mainly reconstructive and anti-inflammatory functions, i.e., mostly desirable functions of microglia in a physiological state. What maintains microglia in this physiological state is essentially unknown. Methods In this study, using in vitro and in vivo models, we challenged primary microglia or BV2 microglia with LPS + IFN-γ, IL-4 + IL-13, α-synuclein monomer, and α-synuclein oligomer, and examined microglia phenotype and the underlying mechanism by RT-PCR, Western blot, ELISA, IF, IHC, Co-IP. Results We described a novel physiological function of α-synuclein, in which it modulates microglia toward an anti-inflammatory phenotype by interaction with extracellular signal-regulated kinase (ERK) and recruitment of the ERK, nuclear factor kappa B (NF-κB), and peroxisome proliferator-activated receptor γ (PPARγ) pathways. Conclusions These findings suggest a previously unrecognized function of monomeric α-synuclein that likely gives new insights into the pathogenesis and potential therapies for Lewy body-related diseases and beyond, given the abundance and multiple functions of α-synuclein in brain tissue.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.,Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Tessandra Stewart
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Lifu Sheng
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Eugene M Cilento
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Yufeng Wu
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jau-Syong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Jing Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China. .,Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA. .,Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang, 310002, China.
| |
Collapse
|
54
|
Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front Immunol 2020; 11:2021. [PMID: 33013859 PMCID: PMC7513624 DOI: 10.3389/fimmu.2020.02021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological disorders are major contributors to death and disability worldwide. The pathology of injuries and disease processes includes a cascade of events that often involve molecular and cellular components of the immune system and their interaction with cells and structures within the central nervous system. Because of this, there has been great interest in developing neuroprotective therapeutic approaches that target neuroinflammatory pathways. Several neuroprotective anti-inflammatory agents have been investigated in clinical trials for a variety of neurological diseases and injuries, but to date the results from the great majority of these trials has been disappointing. There nevertheless remains great interest in the development of neuroprotective strategies in this arena. With this in mind, the complement system is being increasingly discussed as an attractive therapeutic target for treating brain injury and neurodegenerative conditions, due to emerging data supporting a pivotal role for complement in promoting multiple downstream activities that promote neuroinflammation and degeneration. As we move forward in testing additional neuroprotective and immune-modulating agents, we believe it will be useful to review past trials and discuss potential factors that may have contributed to failure, which will assist with future agent selection and trial design, including for complement inhibitors. In this context, we also discuss inhibition of the complement system as a potential neuroprotective strategy for neuropathologies of the central nervous system.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Davis M. Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Mohammed Alshareef
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
55
|
Zhou Y, Su Y, Xu W, Wang W, Yao S. Constipation Increases Disability and Decreases Dopamine Levels in the Nigrostriatal System through Gastric Inflammatory Factors in Parkinson's Disease. Curr Neurovasc Res 2020; 16:241-249. [PMID: 31258082 DOI: 10.2174/1567202616666190618170103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Recent studies suggest that not only is constipation a clinical marker of premotor phase in Parkinson's Disease (PD), but is also correlated with the duration and severity. Some reports indicated that inflammatory from gut dysbiosis might be involved in the pathogenesis of PD, but the correlation between them remains poorly understood. This study aims to investigate how the presence of constipation affects the dopamine level of nigrostriatal system and whether gastrointestinal (GI) inflammation is involved in the brain-gut axis. METHODS Clinical materials, serum inflammatory factors, and datum of dopamine level including 84 cases and 83 controls, were collected consecutively and randomly from November 1, 2017 to October 31, 2018. Dopamine levels of nigrostriatal system were detected by [18F]-DTBZ radiotracer (18F-AV-133). Data analysis was conducted by variance, covariance analysis, bicorrelation, partial correlation, chi-square analysis and logistic regression. RESULTS The mean age of cases was older than that of controls, and male predominance was also observed (P<0.05). The mean scores of Hoehn-Yahr and unified Parkinson's disease rating scale Ⅲ (UPDRS-Ⅲ) were of significantly different duration between two groups (P<0.05). The total dose of levodopa was not different between two groups (P>0.05). The dopamine levels of putamen and caudate nucleus, especially in the dorsal part of putamen, were significantly decreased in cases than that in controls (P<0.05). There were significant differences of complement 3 (C3) and complement 4 (C4) between cases and controls (P<0.05). Dopamine levels in putamen and caudate nucleus were negatively correlated with serum concentrations of immunoglobulin A (IgA), immunoglobulin G (IgG) and C3 in cases (P<0.05). But we did not observe similar negative correlations in controls (P>0.05). CONCLUSION The presence of constipation may increase the severity of motor symptoms and decrease dopamine levels of nigrostriatal system in PD. Inflammatory factors may be involved in the brain-gut axis of PD.
Collapse
Affiliation(s)
- Yongtao Zhou
- The Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,The Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China.,Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing 100029, China
| | - Yusheng Su
- The Nuclear Medicine Department, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Weihua Xu
- Gastroenterology Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing 100053, China
| | - Wei Wang
- Gastroenterology Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing 100053, China
| | - Shukun Yao
- The Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China.,Gastroenterology Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing 100053, China
| |
Collapse
|
56
|
Lin CW, Fan CH, Chang YC, Hsieh-Li HM. ERK activation precedes Purkinje cell loss in mice with Spinocerebellar ataxia type 17. Neurosci Lett 2020; 738:135337. [PMID: 32877710 DOI: 10.1016/j.neulet.2020.135337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant neurodegenerative disease caused by CAG expansion in the gene encoding the TATA-binding protein (TBP). The neurological features of SCA17 are Purkinje cell loss and gliosis. We have generated SCA17 transgenic mice which recapitulate the patients' phenotypes and are suitable for the study of the SCA17 pathomechanism. Our previous study identified the activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) occurred in the SCA17 cerebella, this study aims to study the role of ERK activation in SCA17. The levels of pERK, calbindin, and gliosis markers on the mouse cerebellum at 4-8 weeks old were analyzed to elucidate the correlation among behavioral performance, ERK activation and Purkinje cell degeneration. The motor incoordination was initiated in SCA17 mice at 6 weeks old. We found that the presence of TBP nuclear aggregation and microglia activation were observed at 4 weeks old. Gliosis of astrocytes and Bergmann glia, pERK, Bax/Bcl2 ratio, and caspase-3 were significantly increased in the 6-week-old SCA17 mouse cerebellum. In addition to the polyglutamine-protein aggregation in Purkinje cells caused apoptosis cell-autonomously, a significant body of evidence have shown that ERK pathways involves in neuronal apoptosis. Our study showed that the activation of ERK in the astrocytes and Bergmann glia was identified as preceding motor deficits, which suggest the elevated gliosis by ERK activation may contribute to neuronal apoptosis in SCA17 mice.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taiwan
| | - Chia-Hao Fan
- Department of Life Science, National Taiwan Normal University, Taiwan
| | - Ya-Chin Chang
- Department of Pharmacy, Taiwan Adventist Hospital, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taiwan.
| |
Collapse
|
57
|
Simpson DSA, Oliver PL. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants (Basel) 2020; 9:E743. [PMID: 32823544 PMCID: PMC7463655 DOI: 10.3390/antiox9080743] [Citation(s) in RCA: 491] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, such as Alzheimer's disease, are a global public health burden with poorly understood aetiology. Neuroinflammation and oxidative stress (OS) are undoubtedly hallmarks of neurodegeneration, contributing to disease progression. Protein aggregation and neuronal damage result in the activation of disease-associated microglia (DAM) via damage-associated molecular patterns (DAMPs). DAM facilitate persistent inflammation and reactive oxygen species (ROS) generation. However, the molecular mechanisms linking DAM activation and OS have not been well-defined; thus targeting these cells for clinical benefit has not been possible. In microglia, ROS are generated primarily by NADPH oxidase 2 (NOX2) and activation of NOX2 in DAM is associated with DAMP signalling, inflammation and amyloid plaque deposition, especially in the cerebrovasculature. Additionally, ROS originating from both NOX and the mitochondria may act as second messengers to propagate immune activation; thus intracellular ROS signalling may underlie excessive inflammation and OS. Targeting key kinases in the inflammatory response could cease inflammation and promote tissue repair. Expression of antioxidant proteins in microglia, such as NADPH dehydrogenase 1 (NQO1), is promoted by transcription factor Nrf2, which functions to control inflammation and limit OS. Lipid droplet accumulating microglia (LDAM) may also represent a double-edged sword in neurodegenerative disease by sequestering peroxidised lipids in non-pathological ageing but becoming dysregulated and pro-inflammatory in disease. We suggest that future studies should focus on targeted manipulation of NOX in the microglia to understand the molecular mechanisms driving inflammatory-related NOX activation. Finally, we discuss recent evidence that therapeutic target identification should be unbiased and founded on relevant pathophysiological assays to facilitate the discovery of translatable antioxidant and anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Dominic S. A. Simpson
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire OX11 0RD, UK;
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L. Oliver
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire OX11 0RD, UK;
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
58
|
Hou L, Zhang L, Hong JS, Zhang D, Zhao J, Wang Q. Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy. Antioxid Redox Signal 2020; 33:374-393. [PMID: 31968994 DOI: 10.1089/ars.2019.8014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The growing incidence of neurodegenerative diseases significantly impacts the individuals who suffer from these disorders and is a major health concern globally. Although the specific mechanisms of neurodegenerative diseases are still far from being acknowledged, it is becoming clear that oxidative stress and neuroinflammation are critical contributing factors to the progression of neurodegeneration. Thus, it is conceivable that the inhibition of oxidative stress and neuroinflammation may represent promising therapeutic targets for the treatment of neurodegenerative diseases. Recent Advances: Recently, the strategy for neurodegenerative disease therapy has shifted from the use of antioxidants and conventional anti-inflammatory targets to upstream mediators due to the failure of most antioxidants and nonsteroidal anti-inflammatory drugs in clinical trials. Nicotinamide adenine dinucleotide phosphate oxidases (NOXs), a family of superoxide-producing enzyme complexes, have been identified as an upstream factor that controls both oxidative stress and neuroinflammation. Genetic inactivation or pharmacological inhibition of NOX enzymes displays potent neuroprotective effects in a broad spectrum of neurodegenerative disease models. Critical Issues: The detailed mechanisms of how NOX enzymes regulate oxidative stress and neuroinflammation still remain unclear. Moreover, the currently available inhibitors of NOX enzymes exhibit nonspecificity, off-target effects, unsuitable pharmacokinetic properties, and even high toxicity, markedly limiting their potential clinical applications. Future Directions: This review provides novel insights into the roles of NOXs in neurodegenerative pharmacology, and indicates the types of NOX enzyme inhibitors that should be identified and developed as candidates for future applications, which might reveal novel neurodegenerative disease therapies based on NOXs.
Collapse
Affiliation(s)
- Liyan Hou
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Dan Zhang
- State Key Laboratory of Natural Products and Functions, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Qingshan Wang
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
59
|
Shahraz A, Wißfeld J, Ginolhac A, Mathews M, Sinkkonen L, Neumann H. Phagocytosis-related NADPH oxidase 2 subunit gp91phox contributes to neurodegeneration after repeated systemic challenge with lipopolysaccharides. Glia 2020; 69:137-150. [PMID: 32721081 DOI: 10.1002/glia.23890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Repeated systemic challenge with lipopolysaccharides (LPS) can induce microglia activation and inflammatory neurodegeneration in the substantia nigra pars compacta region of mice. We now explored the role of mononuclear phagocytes associated nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX-2) in inflammatory neurodegeneration. Cybb-deficient NOX-2 knock-out (KO) and control wild type (WT) mice were treated intraperitoneally daily over four consecutive days with 1 μg/gbw/day LPS. Transcriptome analysis by RNA-seq of total brain tissue indicated increased LPS-induced upregulation of genes belonging to the reactive oxygen species and reactive nitrogen species production, complement and lysosome activation as well as apoptosis and necroptosis in WT compared to NOX-2 KO mice. Validation of up-regulated gene transcripts via qRT-PCR confirmed that LPS-challenged NOX-2 KO mice expressed lower levels of the microglial phagocytosis-related genes Nos2, Cd68, Aif1/Iba1, Cyba, Itgam, and Fcer1g compared to WT mice at Day 5 after systemic inflammatory challenge, but no significant differences in the pro-inflammatory genes Tnfα and Il1b as well as microglial IBA1 and CD68 intensities were observed between both genotypes. Furthermore, loss of tyrosine hydroxylase positive (TH+) and NeuN positive neurons in the substantia nigra pars compacta upon repeated systemic LPS application were attenuated in NOX-2 KO mice. Thus, our data demonstrate that loss of dopaminergic neurons in the substantia nigra pars compacta after repeated systemic challenge with LPS is associated with a microglial phagocytosis-related gene activation profile involving the NADPH oxidase subunit Cybb/gp91phox.
Collapse
Affiliation(s)
- Anahita Shahraz
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Jannis Wißfeld
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Aurélien Ginolhac
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L4367, Luxembourg
| | - Mona Mathews
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L4367, Luxembourg
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| |
Collapse
|
60
|
Hou L, Qu X, Qiu X, Huang R, Zhao X, Wang Q. Integrin CD11b mediates locus coeruleus noradrenergic neurodegeneration in a mouse Parkinson's disease model. J Neuroinflammation 2020; 17:148. [PMID: 32375810 PMCID: PMC7201626 DOI: 10.1186/s12974-020-01823-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 04/22/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The loss of locus coeruleus noradrenergic (LC/NE) neurons in the brainstem is reported in multiple neurodegenerative disorders, including Parkinson's disease (PD). However, the mechanisms remain unclear. Strong evidence suggested that microglia-mediated neuroinflammation contributes to neurodegeneration in PD. We recently recognized integrin CD11b, the α-chain of macrophage antigen complex-1 (Mac-1, also called CR3), as a key regulator for microglial activation. However, whether CD11b is involved in LC/NE neurodegeneration in PD remains to be investigated. METHODS LC/NE neurodegeneration and microglial activation were compared between wild type (WT) and CD11b KO mice after treated with paraquat and maneb, two pesticides that widely used to create PD model. The role of NLRP3 inflammasome in CD11b-mediated microglial dysfunction and LC/NE neurodegeneration was further explored. LC/NE neurodegeneration, microglial phenotype, and NLRP3 inflammasome activation were determined by using Western blot, immunohistochemistry, and RT-PCR technologies. RESULTS Paraquat and maneb co-exposure elevated the expressions of CD11b in the brainstem of mice, and CD11b knockout significantly reduced LC/NE neurodegeneration induced by paraquat and maneb. Mitigated microglial activation and gene expressions of proinflammatory cytokines were also observed in paraquat and maneb-treated CD11b-/- mice. Mechanistically, CD11b-mediated NLRP3 inflammasome activation contributes to paraquat and maneb-induced LC/NE neurodegeneration. Compared with WT controls, CD11b deficiency reduced paraquat and maneb-induced NLRP3 expression, caspase-1 activation, and interleukin-1β production in mice. Furthermore, inhibition of NLRP3 inflammasome by glybenclamide, a sulfonylurea inhibitor of NLRP3 inflammasome, was found to be able to suppress microglial proinflammatory activation and nuclear factor-κB activation induced by paraquat and maneb. Moreover, reduced reactive oxygen species production, NADPH oxidase, and inducible nitric oxide synthase expressions as well as 4-hydroxynonenal and malondialdehyde levels were detected in combined glybenclamide and paraquat and maneb-treated mice compared with paraquat and maneb alone group. Finally, we found that glybenclamide treatment ameliorated LC/NE neurodegeneration and α-synuclein aggregation in paraquat and maneb-treated mice. CONCLUSION Our findings suggested that CD11b mediates LC/NE neurodegeneration through NLRP3 inflammation-dependent microglial proinflammatory activation in a two pesticide-induced mouse PD model, providing a novel insight into the immune pathogenesis of LC/NE neuronal damage in related disorders.
Collapse
Affiliation(s)
- Liyan Hou
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xingyue Qu
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaofei Qiu
- Qingdao Municipal Center for Disease Control & Prevention/Qingdao Institute of Preventive Medicine, Qingdao, 266033, China.,School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ruixue Huang
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xiulan Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, 116044, China. .,National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
61
|
Xin T, Lu C. Irisin activates Opa1-induced mitophagy to protect cardiomyocytes against apoptosis following myocardial infarction. Aging (Albany NY) 2020; 12:4474-4488. [PMID: 32155590 PMCID: PMC7093202 DOI: 10.18632/aging.102899] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Myocardial infarction is characterized by sudden ischemia and cardiomyocyte death. Mitochondria have critical roles in regulating cardiomyocyte viability and can sustain damage under ischemic conditions. Mitophagy is a mechanism by which damaged mitochondria are removed by autophagy to maintain mitochondrial structure and function. We investigated the role of the dynamin-like GTPase optic atrophy 1 (Opa1) in mitophagy following myocardial infarction. Opa1 expression was downregulated in infarcted hearts in vivo and in hypoxia-treated cardiomyocytes in vitro. We found that Opa1 overexpression protected cardiomyocytes against hypoxia-induced damage and enhanced cell viability by inducing mitophagy. Opa1-induced mitophagy was activated by treatment with irisin, which protected cardiomyocytes from further damage following myocardial infarction. Opa1 knockdown abolished the cardioprotective effects of irisin resulting in an enhanced inflammatory response, increased oxidative stress, and mitochondrial dysfunction in cardiomyocytes. Our data indicate that Opa1 plays an important role in maintaining cardiomyocyte viability and mitochondrial function following myocardial infarction by inducing mitophagy. Irisin can activate Opa1-induced mitophagy and protect against cardiomyocyte injury following myocardial infarction.
Collapse
Affiliation(s)
- Ting Xin
- The First Center Clinic College of Tianjin Medical University, Tianjin First Center Hospital, Tianjin, China.,Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
62
|
Yang H, Wang L, Zang C, Wang Y, Shang J, Zhang Z, Liu H, Bao X, Wang X, Zhang D. Src Inhibition Attenuates Neuroinflammation and Protects Dopaminergic Neurons in Parkinson's Disease Models. Front Neurosci 2020; 14:45. [PMID: 32132891 PMCID: PMC7040487 DOI: 10.3389/fnins.2020.00045] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic neuroinflammation is of great importance in the pathogenesis of Parkinson's disease (PD). During the process of neuroinflammation, overactivated microglia release many proinflammatory factors, which eventually induce neurodegeneration. Inhibition of excessive microglial activation is regarded as a promising strategy for PD treatment. Src is a non-receptor tyrosine kinase that is closely related to tumors. Recently, some reports indicated that Src is a central mediator in multiple signaling pathways including neuroinflammation. The aim of our study was to demonstrate the role of Src in microglial regulation and neuroinflammation. The lipopolysaccharide (LPS)-stimulated BV2 microglia model and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model were applied in this study. The results showed that inhibition of Src could significantly relieve microgliosis and decrease levels of inflammatory factors. Besides, inhibition of Src function reduced the loss of dopaminergic neurons and improved the motor behavior of the MPTP-treated mice. Thus, this study not only verified the critical role of Src tyrosine kinase in neuroinflammation but also further proved that interfering neuroinflammation is beneficial for PD treatment. More importantly, this study shed a light on the hypothesis that Src tyrosine kinase might be a potential therapeutic target for PD and other neuroinflammation-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
63
|
Li P, Hu F, Cao X, Luo L, Tu Q. Melatonin receptor protects cardiomyocyte against oxidative stress-induced apoptosis through the MAPK-ERK signaling pathway. J Recept Signal Transduct Res 2020; 40:117-125. [PMID: 31986953 DOI: 10.1080/10799893.2020.1719151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Li
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Fang Hu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Xin Cao
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Liyun Luo
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Qiuyun Tu
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| |
Collapse
|
64
|
The protective effect of inosine against rotenone-induced Parkinson's disease in mice; role of oxido-nitrosative stress, ERK phosphorylation, and A2AR expression. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1041-1053. [PMID: 31915844 DOI: 10.1007/s00210-019-01804-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a severe disabling syndrome in which neuroinflammation and various signaling pathways are believed to mediate dopaminergic neurodegeneration. Here, the possible disease-modifying effects of the purine nucleoside inosine were examined against rotenone-induced PD. Mice were allocated into six groups, namely, a normal control group receiving dimethylsulfoxide, a PD control group receiving rotenone, a standard treatment group receiving L-dopa/carbidopa together with rotenone, and three treatment groups receiving inosine in low, medium, and high doses together with rotenone. At the end of the experimental protocol, three behavioral tests were performed to assess PD motor manifestations, namely, wire-hanging test, wood-walking test, and stair test. After performing the behavioral study, mice striata were isolated for the colorimetric assay of hypoxanthine, the enzyme-linked immunosorbent assay of dopamine, tumor necrosis factor-α, interleukin-6 and nitrite, the Western blot estimation of total and phosphorylated extracellular signal-regulated kinase (tERK and pERK), the polymerase chain reaction estimation of adenosine A2A receptor (A2AR) expression, as well as the histopathological examination of substantia nigra and striatal tissue. Inosine protected against PD progression in a dose-dependent manner, with the effect comparable to the standard treatment L-dopa/carbidopa, evidenced by behavioral, biochemical, and histologic findings. The beneficial antiparkinsonian effect of inosine could be attributed to the ability of the drug to ameliorate neuroinflammation and oxido-nitrosative stress, together with suppression of ERK phosphorylation and down-regulation of A2AR expression. Inosine could therefore be considered as a disease-modifying agent against PD, but further studies are claimed to confirm such effects clinically.
Collapse
|
65
|
Yang Y, Gong Z, Wang Z. Yes-associated protein reduces neuroinflammation through upregulation of Sirt3 and inhibition of JNK signaling pathway. J Recept Signal Transduct Res 2019; 39:479-487. [PMID: 31858862 DOI: 10.1080/10799893.2019.1705339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: Neuroinflammation is linked to a series of neurodegenerative diseases through the unknown mechanisms.Aim: The aim of this study was to investigate the role of Yes-associated protein (Yap) in the regulation of neuroinflammation.Methods: BV-2 neuroglia cells were treated with TNFα in vitro. Then, western blots, qPCR, immunofluorescence, and ELISA were used to verify the influence of Yap in BV-2 cells neuroinflammation response.Results: After exposure to TNFα, viability of BV-2 cells decreased whereas apoptosis index was increased. Of note, Yap expression in BV-2 cells was significantly reduced, when compared to the normal cells. Interestingly, adenovirus-induced Yap overexpression was capable to reverse cell viability and thus reduce apoptotic index in TNFα-treated BV-2 cells. Molecular investigation demonstrated that Yap overexpression was linked to Sirt3 upregulation. Increased Sirt3 reduced endoplasmic reticulum (ER) stress, attenuated mitochondrial damage, and blocked JNK pro-apoptotic pathway. Interestingly, loss of Sirt3 abolished the protective effects induced by Yap overexpression in TNFα-treated BV-2 cells.Conclusions: Altogether, our results demonstrated that neuroinflammation could be caused by Yap downregulation, possible driven through Sirt3 inhibition and JNK activation. However, overexpression of Yap could protect BV-2 cells against TNFα-mediated apoptosis through modulating Sirt3-JNK signaling pathways.
Collapse
Affiliation(s)
- Yang Yang
- Tianjin First Central Hospital, Tianjin, P.R. China
| | | | - Zhiyun Wang
- Tianjin First Central Hospital, Tianjin, P.R. China
| |
Collapse
|
66
|
Cao D, Qiao H, He D, Qin X, Zhang Q, Zhou Y. Mesenchymal stem cells inhibited the inflammation and oxidative stress in LPS-activated microglial cells through AMPK pathway. J Neural Transm (Vienna) 2019; 126:1589-1597. [PMID: 31707461 DOI: 10.1007/s00702-019-02102-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
Microglia are the resident mononuclear immune cells of the central nervous system (CNS) and the activation of microglia contributes to the production of excessive neurotoxic factors. In particular, the overproduction of neurotoxic factors has critical effects on the development of brain injuries and neurodegenerative diseases. The human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have blossomed into an effective approach with great potential for the treatment of neurodegenerative diseases and gliomas. The present study aimed to investigate the mechanism behind the therapeutic effect of hBM-MSCs on the activation of microglia in vitro. Specifically, the hBM-MSCs significantly inhibited the proliferation of lipopolysaccharide-activated microglial cells (LPS)-activated microglial cells. Additionally, we investigated whether the adenosine-monophosphate-activated protein kinase signaling (AMPK) pathway was involved in this process. Our data demonstrated that hBM-MSCs significantly increased the phosphorylated AMPK in LPS-activated microglial cells. In addition, our study indicated the inhibitory effect of hBM-MSCs on the pro-inflammatory mediators and oxidative stress by the AMPK pathway in LPS-activated microglial cells. These results could shed light on the understanding of the molecular basis for the inhibition of hBM-MSCs on LPS-activated microglial cells and provide a molecular mechanism for the hBM-MSCs implication in brain injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dayong Cao
- Department of Burns, The First People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, People's Republic of China
| | - Haowen Qiao
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Dejiao He
- Department of Nephrology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, People's Republic of China
| | - Xingping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Qian Zhang
- Department of Oncology, The First People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, People's Republic of China
| | - Yu Zhou
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Road, Changsha, 410000, Hunan, People's Republic of China.
| |
Collapse
|
67
|
Lee JD, Coulthard LG, Woodruff TM. Complement dysregulation in the central nervous system during development and disease. Semin Immunol 2019; 45:101340. [PMID: 31708347 DOI: 10.1016/j.smim.2019.101340] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
The complement cascade is an important arm of the immune system that plays a key role in protecting the central nervous system (CNS) from infection. Recently, it has also become clear that complement proteins have fundamental roles in the developing and aging CNS that are distinct from their roles in immunity. During neurodevelopment, complement signalling is involved in diverse processes including neural tube closure, neural progenitor proliferation and differentiation, neuronal migration, and synaptic pruning. In acute neurotrauma and ischamic brain injury, complement drives inflammation and neuronal death, but also neuroprotection and regeneration. In diseases of the aging CNS including dementias and motor neuron disease, chronic complement activation is associated with glial activation, and synapse and neuron loss. Proper regulation of complement is thus essential to allow for an appropriately developed CNS and prevention of excessive damage following neurotrauma or during neurodegeneration. This review provides a comprehensive overview of the evidence for functional roles of complement in brain formation, and its dysregulation during acute and chronic disease. We also provide working models for how complement can lead to neurodevelopmental disorders such as schizophrenia and autism, and either protect, or propagate neurodegenerative diseases including Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
68
|
Lesion of the Locus Coeruleus Damages Learning and Memory Performance in Paraquat and Maneb-induced Mouse Parkinson’s Disease Model. Neuroscience 2019; 419:129-140. [DOI: 10.1016/j.neuroscience.2019.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 11/18/2022]
|
69
|
Abstract
The endotoxin hypothesis of neurodegeneration is the hypothesis that endotoxin causes or contributes to neurodegeneration. Endotoxin is a lipopolysaccharide (LPS), constituting much of the outer membrane of gram-negative bacteria, present at high concentrations in gut, gums and skin and in other tissue during bacterial infection. Blood plasma levels of endotoxin are normally low, but are elevated during infections, gut inflammation, gum disease and neurodegenerative disease. Adding endotoxin at such levels to blood of healthy humans induces systemic inflammation and brain microglial activation. Adding high levels of endotoxin to the blood or body of rodents induces microglial activation, priming and/or tolerance, memory deficits and loss of brain synapses and neurons. Endotoxin promotes amyloid β and tau aggregation and neuropathology, suggesting the possibility that endotoxin synergises with different aggregable proteins to give different neurodegenerative diseases. Blood and brain endotoxin levels are elevated in Alzheimer's disease, which is accelerated by systemic infections, including gum disease. Endotoxin binds directly to APOE, and the APOE4 variant both sensitises to endotoxin and predisposes to Alzheimer's disease. Intestinal permeability increases early in Parkinson's disease, and injection of endotoxin into mice induces α-synuclein production and aggregation, as well as loss of dopaminergic neurons in the substantia nigra. The gut microbiome changes in Parkinson's disease, and changing the endotoxin-producing bacterial species can affect the disease in patients and mouse models. Blood endotoxin is elevated in amyotrophic lateral sclerosis, and endotoxin promotes TDP-43 aggregation and neuropathology. Peripheral diseases that elevate blood endotoxin, such as sepsis, AIDS and liver failure, also result in neurodegeneration. Endotoxin directly and indirectly activates microglia that damage neurons via nitric oxide, oxidants and cytokines, and by phagocytosis of synapses and neurons. The endotoxin hypothesis is unproven, but if correct, then neurodegeneration may be reduced by decreasing endotoxin levels or endotoxin-induced neuroinflammation.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
70
|
Fan J, Zhu Q, Wu Z, Ding J, Qin S, Liu H, Miao P. Protective effects of irisin on hypoxia-reoxygenation injury in hyperglycemia-treated cardiomyocytes: Role of AMPK pathway and mitochondrial protection. J Cell Physiol 2019; 235:1165-1174. [PMID: 31268170 DOI: 10.1002/jcp.29030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
Recent evidence has verified the cardioprotective actions of irisin in different diseases models. However, the beneficial action of irisin on hypoxia-reoxygenation (HR) injury under high glucose stress has not been described. Herein our research investigated the influence of irisin on HR-triggered cardiomyocyte death under high glucose stress. HR model was established in vitro under high glucose treatment. The results illuminated that HR injury augmented apoptotic ratio of cardiomyocyte under high glucose stress; this effect could be abolished by irisin via modulating mitochondrial function. Irisin treatment attenuated cellular redox stress, improved cellular ATP biogenetics, sustained mitochondria potential, and impaired mitochondrion-related cell death. At the molecular levels, irisin treatment activated the 5'-adenosine monophosphate-activated protein kinase (AMPK) pathway and the latter protected cardiomyocyte and mitochondria against HR injury under high glucose stress. Altogether, our results indicated a novel role of irisin in HR-treated cardiomyocyte under high glucose stress. Irisin-activated AMPK pathway and the latter sustained cardiomyocyte viability and mitochondrial function.
Collapse
Affiliation(s)
- Jiamao Fan
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Qing Zhu
- Department of Cardiology, Linfen Central Hospital, Linfen, China.,Institutes of Biomedical Sciences, Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhenhua Wu
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Jiao Ding
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Shuai Qin
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Hui Liu
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Pengfei Miao
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| |
Collapse
|
71
|
Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A. Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol Ther 2019; 197:61-82. [PMID: 30677475 PMCID: PMC6520143 DOI: 10.1016/j.pharmthera.2019.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the increased incidence of neurodegenerative diseases worldwide, Parkinson's disease (PD) represents the second-most common neurodegenerative disease. PD is a progressive multisystem neurodegenerative disorder characterized by a marked loss of nigrostriatal dopaminergic neurons and the formation of Lewy pathology in diverse brain regions. Although the mechanisms underlying dopaminergic neurodegeneration remain poorly characterized, data from animal models and postmortem studies have revealed that heightened inflammatory responses mediated via microglial and astroglial activation and the resultant release of proinflammatory factors may act as silent drivers of neurodegeneration. In recent years, numerous studies have demonstrated a positive association between the exposure to environmental neurotoxicants and the etiology of PD. Although it is unclear whether neuroinflammation drives pesticide-induced neurodegeneration, emerging evidence suggests that the failure to dampen neuroinflammatory mechanisms may account for the increased vulnerability to pesticide neurotoxicity. Furthermore, recent studies provide additional evidence that shifts the focus from a neuron-centric view to glial-associated neurodegeneration following pesticide exposure. In this review, we propose to summarize briefly the possible factors that regulate neuroinflammatory processes during environmental neurotoxicant exposure with a focus on the potential roles of mitochondria-driven redox mechanisms. In this context, a critical discussion of the data obtained from experimental research and possible epidemiological studies is included. Finally, we hope to provide insights on the pivotal role of exosome-mediated intercellular transmission of aggregated proteins in microglial activation response and the resultant dopaminergic neurodegeneration after exposure to pesticides. Collectively, an improved understanding of glia-mediated neuroinflammatory signaling might provide novel insights into the mechanisms that contribute to neurodegeneration induced by environmental neurotoxicant exposure.
Collapse
Affiliation(s)
- Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Adhithiya Charli
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anantharam Vellareddy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
72
|
Ahmad S, Kindelin A, Khan SA, Ahmed M, Hoda MN, Bhatia K, Ducruet AF. C3a Receptor Inhibition Protects Brain Endothelial Cells Against Oxygen-glucose Deprivation/Reperfusion. Exp Neurobiol 2019; 28:216-228. [PMID: 31138990 PMCID: PMC6526115 DOI: 10.5607/en.2019.28.2.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
The complement cascade is a central component of innate immunity which plays a critical role in brain inflammation. Complement C3a receptor (C3aR) is a key mediator of post-ischemic cerebral injury, and pharmacological antagonism of the C3a receptor is neuroprotective in stroke. Cerebral ischemia injures brain endothelial cells, causing blood brain barrier (BBB) disruption which further exacerbates ischemic neuronal injury. In this study, we used an in vitro model of ischemia (oxygen glucose deprivation; OGD) to investigate the protective effect of a C3aR antagonist (C3aRA, SB290157) on brain endothelial cells (bEnd.3). Following 24 hours of reperfusion, OGD-induced cell death was assessed by TUNEL and Caspase-3 staining. Western blot and immunocytochemistry were utilized to demonstrate that OGD upregulates inflammatory, oxidative stress and antioxidant markers (ICAM-1, Cox-2, Nox-2 and MnSOD) in endothelial cells and that C3aRA treatment significantly attenuate these markers. We also found that C3aRA administration restored the expression level of the tight junction protein occludin in endothelial cells following OGD. Interestingly, OGD/reperfusion injury increased the phosphorylation of ERK1/2 and C3aR inhibition significantly reduced the activation of ERK suggesting that endothelial C3aR may act via ERK signaling. Furthermore, exogenous C3a administration stimulates these same inflammatory mechanisms both with and without OGD, and C3aRA suppresses these C3a-mediated responses, supporting an antagonist role for C3aRA. Based on these results, we conclude that C3aRA administration attenuates inflammation, oxidative stress, ERK activation, and protects brain endothelial cells following experimental brain ischemia.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Adam Kindelin
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Shah Alam Khan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA.,Oman Medical College, Muscat 130, Sultanate of Oman
| | - Maaz Ahmed
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Md Nasrul Hoda
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Kanchan Bhatia
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA.,School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| |
Collapse
|
73
|
Zhang L, Li S, Wang R, Chen C, Ma W, Cai H. Anti-tumor effect of LATS2 on liver cancer death: Role of DRP1-mediated mitochondrial division and the Wnt/β-catenin pathway. Biomed Pharmacother 2019; 114:108825. [PMID: 30981110 DOI: 10.1016/j.biopha.2019.108825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Large tumor suppressor 2 (LATS2), an important mediator of the cell apoptotic response pathway, has been linked to the progression of several cancers. Here, we described the molecular feature of LATS2 as a novel antitumor factor in liver cancer cells in vitro. Western blotting was used to detect the expression of LATS2 and its downstream factors. ELISA, immunofluorescence, and flow cytometry were used to evaluate the alterations of mitochondrial function in response to LATS2 overexpression. Adenovirus-loaded LATS2 and siRNA against DRP1 were transfected into liver cancer cells to overexpress LATS2 and knockdown DRP1 expression, respectively. The results of the present study demonstrated that overexpression of LATS2 was closely associated with more liver cancer cell death. Mechanistically, LATS2 overexpression increased the expression of DRP1, and DRP1 elevated mitochondrial division, an effect that was accompanied by mitochondrial dysfunction, including mitochondrial membrane potential reduction, mitochondrial respiratory complex downregulation, mitochondrial cyt-c release into the nucleus and mitochondrial oxidative injury. Moreover, LATS2 overexpression also initiated mitochondrial apoptosis, and this process was highly dependent on DRP1-related mitochondrial division. Molecular investigations demonstrated that LATS2 modulated DRP1 expression via the Wnt/β-catenin pathway. Inhibition of the Wnt/β-catenin pathway pregented LATS2-mediated DRP1 upregulation, ultimately sustaining mitochondrial function and cell viability in the presence of LATS2 overexpression. Altogether, the above data identify LATS2-Wnt/β-catenin/DRP1/mitochondrial division as a novel anticancer signaling pathway promoting cancer cell death, which might be an attractive therapeutic target for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Radiotherapy, Gansu Province Hospital, No.204 Donggang West Road, Chengguan District, Lanzhou 730000, Gansu Province, People's Republic of China; Department of Cardiology, Shanghai Songjiang District Central Hospital, No.746 Zhongshan Middle Road, Songjiang District, Shanghai 201600, People's Republic of China.
| | - Shuping Li
- Department of Radiotherapy, Gansu Province Hospital, No.204 Donggang West Road, Chengguan District, Lanzhou 730000, Gansu Province, People's Republic of China.
| | - Rong Wang
- Department of Radiotherapy, Gansu Province Hospital, No.204 Donggang West Road, Chengguan District, Lanzhou 730000, Gansu Province, People's Republic of China.
| | - Changyuan Chen
- Department of Cardiology, Shanghai Songjiang District Central Hospital, No.746 Zhongshan Middle Road, Songjiang District, Shanghai 201600, People's Republic of China.
| | - Wen Ma
- Department of Radiotherapy, Gansu Province Hospital, No.204 Donggang West Road, Chengguan District, Lanzhou 730000, Gansu Province, People's Republic of China.
| | - Hongyi Cai
- Department of Radiotherapy, Gansu Province Hospital, No.204 Donggang West Road, Chengguan District, Lanzhou 730000, Gansu Province, People's Republic of China.
| |
Collapse
|
74
|
Yap-Hippo promotes A549 lung cancer cell death via modulating MIEF1-related mitochondrial stress and activating JNK pathway. Biomed Pharmacother 2019; 113:108754. [PMID: 30875659 DOI: 10.1016/j.biopha.2019.108754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/31/2022] Open
Abstract
Although the role of Yes-associated protein (Yap) has been described in the progression of lung cancer, the downstream effector of the Yap-Hippo pathway has not been identified. Accordingly, the aim of our study is to explore whether Yap modulates the activity of lung cancer by controlling mitochondrial elongation factor 1 (MIEF1)-related mitochondrial stress in a manner dependent on the JNK pathway. Cell viability was determined via MTT, LDH release and immunofluorescence assays. ATP production, the mitochondrial membrane potential, and caspase-9 activity were investigated to assess mitochondrial function. siRNA transfection and pathway blockers were used to observe the roles of MIEF1 and JNK in Yap-modulated cell viability in lung cancer cells in vitro. Yap deletion reduced cell viability in A549 and H358 lung cancer cells. At the molecular level, Yap deletion promoted mitochondrial dysfunction, as evidenced by the decreased mitochondrial potential, increased mitochondrial oxidative stress, augmented mitochondrial pro-apoptotic factor leakage and elevated caspase-9 activity. In addition, we found that Yap modulated mitochondrial stress via MIEF1 and that loss of MIEF1 abolished the regulatory actions of Yap on mitochondrial stress and cell viability. Besides, we provided evidence to support the necessary role of JNK in Yap-mediated MIEF1 upregulation. Inhibition of JNK abolished the promotive effect of Yap deletion on MIEF1 activation. Taken together, our results identified the JNK-MIEF1 pathway and mitochondrial stress as downstream effectors of Yap in lung cancer. This finding suggests a novel approach for the treatment of lung cancer in clinical practice.
Collapse
|
75
|
Carpanini SM, Torvell M, Morgan BP. Therapeutic Inhibition of the Complement System in Diseases of the Central Nervous System. Front Immunol 2019; 10:362. [PMID: 30886620 PMCID: PMC6409326 DOI: 10.3389/fimmu.2019.00362] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system plays critical roles in development, homeostasis, and regeneration in the central nervous system (CNS) throughout life; however, complement dysregulation in the CNS can lead to damage and disease. Complement proteins, regulators, and receptors are widely expressed throughout the CNS and, in many cases, are upregulated in disease. Genetic and epidemiological studies, cerebrospinal fluid (CSF) and plasma biomarker measurements and pathological analysis of post-mortem tissues have all implicated complement in multiple CNS diseases including multiple sclerosis (MS), neuromyelitis optica (NMO), neurotrauma, stroke, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Given this body of evidence implicating complement in diverse brain diseases, manipulating complement in the brain is an attractive prospect; however, the blood-brain barrier (BBB), critical to protect the brain from potentially harmful agents in the circulation, is also impermeable to current complement-targeting therapeutics, making drug design much more challenging. For example, antibody therapeutics administered systemically are essentially excluded from the brain. Recent protocols have utilized "Trojan horse" techniques to transport therapeutics across the BBB or used osmotic shock or ultrasound to temporarily disrupt the BBB. Most research to date exploring the impact of complement inhibition on CNS diseases has been in animal models, and some of these studies have generated convincing data; for example, in models of MS, NMO, and stroke. There have been a few recent clinical trials of available anti-complement drugs in CNS diseases associated with BBB impairment, for example the use of the anti-C5 monoclonal antibody (mAb) eculizumab in NMO, but for most CNS diseases there have been no human trials of anti-complement therapies. Here we will review the evidence implicating complement in diverse CNS disorders, from acute, such as traumatic brain or spine injury, to chronic, including demyelinating, neuroinflammatory, and neurodegenerative diseases. We will discuss the particular problems of drug access into the CNS and explore ways in which anti-complement therapies might be tailored for CNS disease.
Collapse
Affiliation(s)
- Sarah M Carpanini
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Megan Torvell
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Bryan Paul Morgan
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
76
|
Hou L, Huang R, Sun F, Zhang L, Wang Q. NADPH oxidase regulates paraquat and maneb-induced dopaminergic neurodegeneration through ferroptosis. Toxicology 2019; 417:64-73. [PMID: 30797899 DOI: 10.1016/j.tox.2019.02.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 01/19/2023]
Abstract
The activation of NADPH oxidase contributes to dopaminergic neurodegeneration induced by paraquat and maneb, two concurrently used pesticides in agriculture. However, the mechanisms remain unclear. Ferroptosis, a recently recognized form of regulated cell death, has been implicated in the pathogenesis of multiple neurodegenerative diseases. This study is designed to investigate whether ferroptosis is involved in NADPH oxidase-regulated dopaminergic neurotoxicity. In vitro study showed that paraquat and maneb exposure induced ferroptosis in SHSY5Y dopaminergic cells, which was associated with activation of NADPH oxidase. Inhibition of NADPH oxidase by apocynin or diphenyleneiodonium (DPI), two widely used NADPH oxidase inhibitors mitigated paraquat and maneb-induced ferroptotic cell death. Consistently, stimulating activation of NADPH oxidase by phorbol myristate acetate (PMA) or supplementation of H2O2 exacerbated ferroptosis in paraquat and maneb-treated SHSY5Y cells. Mechanistic inquiry revealed that NADPH oxidase activation elicited lipid peroxidation, a main driving force for ferroptosis, since both apocynin and DPI greatly reduced MDA contents and simultaneously recovered levels of glutathione and glutathione peroxidase 4 (GPX4) in paraquat and maneb-treated SHSY5Y cells. The contribution of NADPH oxidase on ferroptosis of dopaminergic neurons was further verified in vivo by showing reduced iron content, lipid peroxidation, neuroinflammation and dopaminergic neurodegeneration, which are all involved in ferroptosis, in combined apocynin and paraquat and maneb-treated mice compared with paraquat and maneb alone group. Altogether, our findings showed that NADPH oxidase contributed to paraquat and maneb-induced dopaminergic neurodegeneration through ferroptosis, providing a novel mechanism for pesticide-induced dopaminergic neurotoxicity.
Collapse
Affiliation(s)
- Liyan Hou
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Ruixue Huang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Fuqiang Sun
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Lin Zhang
- Academy of Integrative Medicine, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
77
|
Hou L, Sun F, Huang R, Sun W, Zhang D, Wang Q. Inhibition of NADPH oxidase by apocynin prevents learning and memory deficits in a mouse Parkinson's disease model. Redox Biol 2019; 22:101134. [PMID: 30798073 PMCID: PMC6389731 DOI: 10.1016/j.redox.2019.101134] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/29/2022] Open
Abstract
The activation of NADPH oxidase contributes to dopaminergic neurodegeneration and motor deficits in Parkinson's disease (PD). However, whether NADPH oxidase is involved in non-motor symptoms, especially cognitive dysfunction in PD remains unknown. This study is undertaken to characterize the effects of inhibition of NADPH oxidase by a widely used NADPH oxidase inhibitor apocynin on learning and memory deficits in paraquat and maneb-induced mouse PD model. Results showed that mice injected with paraquat and maneb displayed impairments of spatial learning and memory, which was associated with reduced tyrosine hydroxylase expression as well as increased neurodegeneration, synaptic loss, α-synuclein expression and Ser129-phosphorylation in the hippocampus. Interestingly, apocynin treatment significantly ameliorated learning and memory deficits as well as hippocampal neurodegeneration and α-synuclein pathology in mice treated with these two pesticides. Mechanistically, we found that apocynin mitigated paraquat and maneb-induced NADPH oxidase activation and related oxidative stress. Furthermore, reduced microglial activation and M1 polarization were observed in apocynin and paraquat and maneb co-treated mice compared with paraquat and maneb alone group. Finally, apocynin inhibited the activation of signal transducers and activators of transcription 1 (STAT1) and nuclear factor kappa B (NF-κB) pathways, two key regulatory factors for microglial M1 inflammatory responses, in paraquat and maneb-treated mice. Altogether, our findings implied that NADPH oxidase mediates learning and memory deficits in PD, and inhibition of NADPH oxidase by apocynin blocks impairments of learning and memory via the suppression of oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Liyan Hou
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Fuqiang Sun
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Ruixue Huang
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Wei Sun
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Dan Zhang
- State Key Laboratory of Natural Products and Functions, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
78
|
Tong H, Zhang X, Meng X, Lu L, Mai D, Qu S. Simvastatin Inhibits Activation of NADPH Oxidase/p38 MAPK Pathway and Enhances Expression of Antioxidant Protein in Parkinson Disease Models. Front Mol Neurosci 2018; 11:165. [PMID: 29872377 PMCID: PMC5972184 DOI: 10.3389/fnmol.2018.00165] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that oxidative stress is involved in the pathogenesis of Parkinson disease (PD). Simvastatin has been suggested to protect against oxidative stress in several diseases. However, the molecular mechanisms by which simvastatin protects against neuropathology and oxidative damage in PD are poorly elucidated. In this study, we aimed to investigate the potential neuroprotective effects of simvastatin owing to its anti-oxidative properties in 6-hydroxydopamine (6-OHDA)-treated SH-SY5Y cells and mice. The results of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence and CCK-8 assay demonstrated that simvastatin reduced intracellular reactive oxygen species (ROS) levels and reversed apoptosis in 6-OHDA-treated SH-SY5Y cells. Mechanistic studies revealed that 6-OHDA-induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase/p38 mitogen-activated protein kinase (MAPK) pathway was inhibited and nuclear factor-κB (NF-κB) nuclear transcription decreased in SH-SY5Y cells after simvastatin treatment. Enhanced expression levels of superoxide dismutase (SOD), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and glutamate-cysteine ligase modifier subunit (GCLM) were observed after simvastatin treatment in 6-OHDA-treated SH-SY5Y cells. In vivo studies revealed that administration of simvastatin by gavage decreased limb-use asymmetry and apomorphine-induced rotations in 6-OHDA-lesioned mice. Simvastatin increased dopaminergic neurons and reduced protein tyrosine nitration and gliosis in the midbrain of PD mice. An inhibitory effect on activation of the NADPH oxidase/p38 MAPK was observed, and increased antioxidant protein expression in the midbrain were seen in the simvastatin plus 6-OHDA group compared with the 6-OHDA-lesioned group. Taken together, these results demonstrate that simvastatin might inhibit the activation of NADPH oxidase/p38 MAPK pathway, enhance antioxidant protein expression and protect against oxidative stress, thereby providing a novel antioxidant mechanism that has therapeutic validity.
Collapse
Affiliation(s)
- Huichun Tong
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xingjun Meng
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Lingli Lu
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Dongmei Mai
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Shaogang Qu
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
79
|
Taurine protects dopaminergic neurons in a mouse Parkinson's disease model through inhibition of microglial M1 polarization. Cell Death Dis 2018; 9:435. [PMID: 29568078 PMCID: PMC5864871 DOI: 10.1038/s41419-018-0468-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 01/23/2023]
Abstract
Microglia-mediated neuroinflammation is implicated in multiple neurodegenerative disorders, including Parkinson’s disease (PD). Hence, the modulatioein of sustained microglial activation may have therapeutic potential. This study is designed to test the neuroprotective efficacy of taurine, a major intracellular free β-amino acid in mammalian tissues, by using paraquat and maneb-induced PD model. Results showed that mice intoxicated with paraquat and maneb displayed progressive dopaminergic neurodegeneration and motor deficits, which was significantly ameliorated by taurine. Taurine also attenuated the aggregation of α-synuclein in paraquat and maneb-intoxicated mice. Mechanistically, taurine suppressed paraquat and maneb-induced microglial activation. Moreover, depletion of microglia abrogated the dopaminergic neuroprotective effects of taurine, revealing the role of microglial activation in taurine-afforded neuroprotection. Subsequently, we found that taurine suppressed paraquat and maneb-induced microglial M1 polarization and gene expression levels of proinflammatory factors. Furthermore, taurine was shown to be able to inhibit the activation of NADPH oxidase (NOX2) by interfering with membrane translocation of cytosolic subunit, p47phox and nuclear factor-kappa B (NF-κB) pathway, two key factors for the initiation and maintenance of M1 microglial inflammatory response. Altogether, our results showed that taurine exerted dopaminergic neuroprotection through inactivation of microglia-mediated neuroinflammation, providing a promising avenue and candidate for the potential therapy for patients suffering from PD.
Collapse
|
80
|
Integrin CD11b mediates α-synuclein-induced activation of NADPH oxidase through a Rho-dependent pathway. Redox Biol 2017; 14:600-608. [PMID: 29154191 PMCID: PMC5975218 DOI: 10.1016/j.redox.2017.11.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
The activation of microglial NADPH oxidase (NOX2) induced by α-synuclein has been implicated in Parkinson's disease (PD) and other synucleinopathies. However, how α-synuclein activates NOX2 remains unclear. Previous study revealed that both toll-like receptor 2 (TLR2) and integrin play important roles in α-synuclein-induced microglial activation. In this study, we found that blocking CD11b, the α chain of integrin αMβ2, but not TLR2 attenuated α-synuclein-induced NOX2 activation in microglia. The involvement of CD11b in α-synuclein-induced activation of NOX2 was further confirmed in CD11b-/- microglia by showing reduced membrane translocation of NOX2 cytosolic subunit p47phox and superoxide production. Mechanistically, α-synuclein bound to CD11b and subsequently activated Rho signaling pathway. α-Synuclein induced activation of RhoA and downstream ROCK but not Rac1 in a CD11b-dependent manner. Moreover, siRNA-mediated knockdown of RhoA impeded NOX2 activation in response to α-synuclein. Furthermore, we found that inhibition of NOX2 failed to interfere with the activation of RhoA signaling and interactions between α-synuclein and CD11b, further confirming that NOX2 was the downstream target of CD11b. Finally, we found that genetic deletion of CD11b abrogated α-synuclein-induced NOX2 activatoin in vivo. Taken together, our results indicated that integrin CD11b mediates α-synuclein-induced NOX2 activation through a RhoA-dependent pathway, providing not only a novel mechanistic insight but also a new potential therapeutic target for synucleinopathies. Blocking CD11b, the α chain of integrin αMβ2, but not TLR2 attenuates α-synuclein-induced NOX2 activation. α-Synuclein binds to CD11b. CD11b regulates NOX2 activation induced by α-synuclein through a RhoA-dependent pathway.
Collapse
|