51
|
Ong SP, Azam AH, Sasahara T, Miyanaga K, Tanji Y. Characterization of Pseudomonas lytic phages and their application as a cocktail with antibiotics in controlling Pseudomonas aeruginosa. J Biosci Bioeng 2020; 129:693-699. [DOI: 10.1016/j.jbiosc.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/30/2019] [Accepted: 02/01/2020] [Indexed: 12/27/2022]
|
52
|
The Application of Impedance Spectroscopy for Pseudomonas Biofilm Monitoring during Phage Infection. Viruses 2020; 12:v12040407. [PMID: 32272740 PMCID: PMC7232529 DOI: 10.3390/v12040407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Bacterial biofilm prevention and eradication are common treatment problems, hence there is a need for advanced and precise experimental methods for its monitoring. Bacterial resistance to antibiotics has resulted in an interest in using a natural bacterial enemy-bacteriophages. In this study, we present the application of quartz tuning forks (QTF) as impedance sensors to determine in real-time the direct changes in Pseudomonas aeruginosa PAO1 biofilm growth dynamics during Pseudomonas phage LUZ 19 treatment at different multiplicities of infection (MOI). The impedance of the electric equivalent circuit (EEC) allowed us to measure the series resistance (Rs) corresponding to the growth-medium resistance (planktonic culture changes) and the conductance (G) corresponding to the level of QTF sensor surface coverage by bacterial cells and the extracellular polymer structure (EPS) matrix. It was shown that phage impacts on sessile cells (G dynamics) was very similar in the 10-day biofilm development regardless of applied MOI (0.1, 1 or 10). The application of phages at an early stage (at the sixth h) and on three-day biofilm caused a significant slowdown in biofilm dynamics, whereas the two-day biofilm turned out to be insensitive to phage infection. We observed an inhibitory effect of phage infection on the planktonic culture (Rs dynamics) regardless of the MOI applied and the time point of infection. Moreover, the Rs parameter made it possible to detect PAO1 population regrowth at the latest time points of incubation. The number of phage-insensitive forms reached the level of untreated culture at around the sixth day of infection. We conclude that the proposed impedance spectroscopy technique can be used to measure the physiological changes in the biofilm matrix composition, as well as the condition of planktonic cultures in order to evaluate the activity of anti-biofilm compounds.
Collapse
|
53
|
Guo Z, Lin H, Ji X, Yan G, Lei L, Han W, Gu J, Huang J. Therapeutic applications of lytic phages in human medicine. Microb Pathog 2020; 142:104048. [PMID: 32035104 DOI: 10.1016/j.micpath.2020.104048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/03/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
The emergence and spread of antibiotic-resistant bacteria constitute a critical issue for modern medicine. Patients with antibiotic-resistant bacterial infections consume more healthcare resources and have worse clinical outcomes than patients with antibiotic-sensitive bacterial infections. Phages are natural predators of bacteria and may therefore be a source of useful antibacterial drugs. Phage therapy possess availability for oral administration, penetration through the bacteria cell wall, and eradication bacterial biofilms. All of these advantages give phage therapy the possibility to turn into applications for infectious diseases. In this mini-review, we focus on the brief history of lytic phage therapy, the life cycles of lytic phages and the therapeutic effects of lytic phages.
Collapse
Affiliation(s)
- Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hua Lin
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xufeng Ji
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guangmou Yan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, 130062, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, 130062, China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, 130062, China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, 130062, China.
| | - Jing Huang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
54
|
Abstract
This work develops and analyzes a novel model of phage-antibiotic combination therapy, specifically adapted to an in vivo context. The objective is to explore the underlying basis for clinical application of combination therapy utilizing bacteriophage that target antibiotic efflux pumps in Pseudomonas aeruginosa. In doing so, the paper addresses three key questions. How robust is combination therapy to variation in the resistance profiles of pathogens? What is the role of immune responses in shaping therapeutic outcomes? What levels of phage and antibiotics are necessary for curative success? As we show, combination therapy outperforms either phage or antibiotic alone, and therapeutic effectiveness is enhanced given interaction with innate immune responses. Notably, therapeutic success can be achieved even at subinhibitory concentrations of antibiotic. These in silico findings provide further support to the nascent application of combination therapy to treat MDR bacterial infections, while highlighting the role of system-level feedbacks in shaping therapeutic outcomes. The spread of multidrug-resistant (MDR) bacteria is a global public health crisis. Bacteriophage therapy (or “phage therapy”) constitutes a potential alternative approach to treat MDR infections. However, the effective use of phage therapy may be limited when phage-resistant bacterial mutants evolve and proliferate during treatment. Here, we develop a nonlinear population dynamics model of combination therapy that accounts for the system-level interactions between bacteria, phage, and antibiotics for in vivo application given an immune response against bacteria. We simulate the combination therapy model for two strains of Pseudomonas aeruginosa, one which is phage sensitive (and antibiotic resistant) and one which is antibiotic sensitive (and phage resistant). We find that combination therapy outperforms either phage or antibiotic alone and that therapeutic effectiveness is enhanced given interaction with innate immune responses. Notably, therapeutic success can be achieved even at subinhibitory concentrations of antibiotics, e.g., ciprofloxacin. These in silico findings provide further support to the nascent application of combination therapy to treat MDR bacterial infections, while highlighting the role of innate immunity in shaping therapeutic outcomes. IMPORTANCE This work develops and analyzes a novel model of phage-antibiotic combination therapy, specifically adapted to an in vivo context. The objective is to explore the underlying basis for clinical application of combination therapy utilizing bacteriophage that target antibiotic efflux pumps in Pseudomonas aeruginosa. In doing so, the paper addresses three key questions. How robust is combination therapy to variation in the resistance profiles of pathogens? What is the role of immune responses in shaping therapeutic outcomes? What levels of phage and antibiotics are necessary for curative success? As we show, combination therapy outperforms either phage or antibiotic alone, and therapeutic effectiveness is enhanced given interaction with innate immune responses. Notably, therapeutic success can be achieved even at subinhibitory concentrations of antibiotic. These in silico findings provide further support to the nascent application of combination therapy to treat MDR bacterial infections, while highlighting the role of system-level feedbacks in shaping therapeutic outcomes.
Collapse
|
55
|
Morrisette T, Kebriaei R, Lev KL, Morales S, Rybak MJ. Bacteriophage Therapeutics: A Primer for Clinicians on Phage-Antibiotic Combinations. Pharmacotherapy 2020; 40:153-168. [PMID: 31872889 DOI: 10.1002/phar.2358] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multidrug-resistant organisms have caused a marked depletion of effective antimicrobials, and the narrow pipeline of antibiotics has demanded the need to find novel therapeutic alternatives including nonantibiotic agents. Bacteriophages (phages) are viruses that use the bacterial machinery to infect, replicate, and kill bacterial cells. Although a marked decline in their use was driven by the discovery of antibiotics, the era of antibiotic resistance has led to a resurgence of phage therapy into clinical practice. The term phage-antibiotic synergy (PAS) was coined just over a decade ago and described that sublethal concentrations of antibiotics could stimulate phage production by bacterial cells. Recent literature has described PAS and other encouraging interactions with various phage and antibiotic combinations against a variety of bacterial strains. The primary objective of this review is to discuss the positive interactions between phage and antibiotic combinations, with an emphasis on PAS, reductions in bacterial growth or minimum inhibitory concentrations, enhanced biofilm eradication, and alterations in the emergence of bacterial resistance. A peer-reviewed literature search was conducted (1890-2019) using the PubMed, Medline, and Google Scholar databases. Although more investigation is certainly needed, the combination of bacteriophages with antibiotics is a promising strategy to target organisms with limited or no therapeutic options. This approach may also foster the ability to lower the antibiotic dose and may reduce the potential for antibiotic resistance emergence during therapy.
Collapse
Affiliation(s)
- Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Katherine L Lev
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | | | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan.,Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, Michigan.,Department of Pharmacy, Detroit Medical Center, Detroit, Michigan
| |
Collapse
|
56
|
Taati Moghadam M, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A, Masjedian Jazi F. How Phages Overcome the Challenges of Drug Resistant Bacteria in Clinical Infections. Infect Drug Resist 2020; 13:45-61. [PMID: 32021319 PMCID: PMC6954843 DOI: 10.2147/idr.s234353] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022] Open
Abstract
Nowadays the most important problem in the treatment of bacterial infections is the appearance of MDR (multidrug-resistant), XDR (extensively drug-resistant) and PDR (pan drug-resistant) bacteria and the scarce prospects of producing new antibiotics. There is renewed interest in revisiting the use of bacteriophage to treat bacterial infections. The practice of phage therapy, the application of phages to treat bacterial infections, has been around for approximately a century. Phage therapy relies on using lytic bacteriophages and purified phage lytic proteins for treatment and lysis of bacteria at the site of infection. Current research indicates that phage therapy has the potential to be used as an alternative to antibiotic treatments. It is noteworthy that, whether phages are used on their own or combined with antibiotics, phages are still a promising agent to replace antibiotics. So, this review focuses on an understanding of challenges of MDR, XDR, and PDR bacteria and phages mechanism for treating bacterial infections and the most recent studies on potential phages, cocktails of phages, and enzymes of lytic phages in fighting these resistant bacteria.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Hallajzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
57
|
Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe 2019; 25:219-232. [PMID: 30763536 DOI: 10.1016/j.chom.2019.01.014] [Citation(s) in RCA: 648] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Jonathan L Koff
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Paul E Turner
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
58
|
Therapeutic Effects of Intravitreously Administered Bacteriophage in a Mouse Model of Endophthalmitis Caused by Vancomycin-Sensitive or -Resistant Enterococcus faecalis. Antimicrob Agents Chemother 2019; 63:AAC.01088-19. [PMID: 31451497 DOI: 10.1128/aac.01088-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 01/21/2023] Open
Abstract
Endophthalmitis due to infection with Enterococcus spp. progresses rapidly and often results in substantial and irreversible vision loss. Given that the frequency of this condition caused by vancomycin-resistant Enterococcus faecalis has been increasing, the development of novel therapeutics is urgently required. We have demonstrated the therapeutic potential of bacteriophage ΦEF24C-P2 in a mouse model of endophthalmitis caused by vancomycin-sensitive (EF24) or vancomycin-resistant (VRE2) strains of E. faecalis Phage ΦEF24C-P2 induced rapid and pronounced bacterial lysis in turbidity reduction assays with EF24, VRE2, and clinical isolates derived from patients with E. faecalis-related postoperative endophthalmitis. Endophthalmitis was induced in mice by injection of EF24 or VRE2 (1 × 104 cells) into the vitreous. The number of viable bacteria in the eye increased to >1 × 107 CFU, and neutrophil infiltration into the eye was detected as an increase in myeloperoxidase activity at 24 h after infection. A clinical score based on loss of visibility of the fundus as well as the number of viable bacteria and the level of myeloperoxidase activity in the eye were all significantly decreased by intravitreous injection of ΦEF24C-P2 6 h after injection of EF24 or VRE2. Whereas histopathologic analysis revealed massive infiltration of inflammatory cells and retinal detachment in vehicle-treated eyes, the number of these cells was greatly reduced and retinal structural integrity was preserved in phage-treated eyes. Our results thus suggest that intravitreous phage therapy is a potential treatment for endophthalmitis caused by vancomycin-sensitive or -resistant strains of E. faecalis.
Collapse
|
59
|
Shlezinger M, Coppenhagen-Glazer S, Gelman D, Beyth N, Hazan R. Eradication of Vancomycin-Resistant Enterococci by Combining Phage and Vancomycin. Viruses 2019; 11:v11100954. [PMID: 31623253 PMCID: PMC6833023 DOI: 10.3390/v11100954] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, effective options are needed to fight vancomycin-resistant Enterococcus faecalis (VRE). The present study shows that combinations of phage and vancomycin are highly efficient against VRE, despite being resistant to the antibiotic. Vancomycin-phage EFLK1 (anti-E. faecalis phage) synergy was assessed against VRE planktonic and biofilm cultures. The effect of the combined treatment on VRE biofilms was determined by evaluating the viable counts and biomass and then visualized using scanning electron microscopy (SEM). The cell wall peptidoglycan was stained after phage treatment, visualized by confocal microscopy and quantified by fluorescence activated cell sorting (FACS) analysis. The combined treatment was synergistically effective compared to treatment with phage or antibiotic alone, both in planktonic and biofilm cultures. Confocal microscopy and FACS analysis showed that fluorescence intensity of phage-treated bacteria increased eight-fold, suggesting a change in the peptidoglycan of the cell wall. Our results indicate that with combined treatment, VRE strains are not more problematic than sensitive strains and thus give hope in the continuous struggle against the current emergence of multidrug resistant pathogens.
Collapse
Affiliation(s)
- Mor Shlezinger
- Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University, Jerusalem 91120, Israel.
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University, Jerusalem 91120, Israel.
| | - Shunit Coppenhagen-Glazer
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University, Jerusalem 91120, Israel.
| | - Daniel Gelman
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University, Jerusalem 91120, Israel.
| | - Nurit Beyth
- Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University, Jerusalem 91120, Israel.
| | - Ronen Hazan
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University, Jerusalem 91120, Israel.
| |
Collapse
|
60
|
Abstract
Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship. Most bacteria and archaea are infected by latent viruses that change their physiology and responses to environmental stress. We use a population model of the bacterium-phage relationship to examine the role that latent phage play in the bacterial population over time in response to antibiotic treatment. We demonstrate that the stress induced by antibiotic administration, even if bacteria are resistant to killing by antibiotics, is sufficient to control the infection under certain conditions. This work expands the breadth of understanding of phage-antibiotic synergy to include both temperate and chronic viruses persisting in their latent form in bacterial populations. IMPORTANCE Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship.
Collapse
|
61
|
Managing urinary tract infections through phage therapy: a novel approach. Folia Microbiol (Praha) 2019; 65:217-231. [PMID: 31494814 DOI: 10.1007/s12223-019-00750-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
Upsurge in the instances of antibiotic-resistant uropathogenic Escherichia .coli (UPECs) strains has repositioned the attention of researchers towards a century old antimicrobial approach popularly known as phage therapy. Rise of extended spectrum beta lactamase (ESBL) and biofilm producing strains has added another step of hurdle in treatment of uropathogens with conventional antibiotics, thus providing a further impetus for search for exploring new therapeutic measures. In this direction, bacteriophages, commonly called phages, are recently being considered as potential alternatives for treatment of UPECs. Phages are the tiniest form of viruses which are ubiquitous in nature and highly specific for their host. This review discusses the possible ways of using natural phages, genetically engineered phages, and phage lytic enzymes (PLEs) as an alternative antimicrobial treatment for urinary tract infections. The review also sheds light on the synergistic use of conventional antibiotics with phages or PLEs for treatment of uropathogens. These methods of using phages and their derivatives, alone or in combination with antibiotics, have proved fruitful so far in in vitro studies. However, in vivo studies are required to make them accessible for human use. The present review is a concerted effort towards putting together all the information available on the subject.
Collapse
|
62
|
Abstract
The continuous evolvement of bacterial resistance to most, if not all, available antibiotics is a worldwide problem. These strains, frequently isolated from military-associated environments, have created an urgent need to develop supplementary anti-infective modalities. One of the leading directions is phage therapy, which includes the administration of bacteriophages, viruses that specifically target bacteria, as biotherapies. Although neglected in the West until recent years, bacteriophages have been widely studied and clinically administered in the former Soviet Union and Eastern Europe for over a century, where they were found to be incredibly efficient at battling numerous infectious diseases.In this review, we discuss the high potential of phage therapy as a solution for resistant bacterial infectious diseases relating to military medicine. By describing the historical development and knowledge acquired on phage therapy, we define the advantages of bacteriophages for combating resistant bacteria in multiple settings, such as trauma injuries and foodborne illnesses, as a preventive tool and therapy against biological warfare agents, and more. We also present the most recent successful clinical applications of bacteriophages in military settings worldwide.We believe that augmenting military medicine by integrating phage therapy is an important and required step in preparedness for the rapidly approaching post-antibiotic era.
Collapse
|
63
|
Synergistic Action of Phage and Antibiotics: Parameters to Enhance the Killing Efficacy Against Mono and Dual-Species Biofilms. Antibiotics (Basel) 2019; 8:antibiotics8030103. [PMID: 31349628 PMCID: PMC6783858 DOI: 10.3390/antibiotics8030103] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic pathogens and are commonly found in polymicrobial biofilm-associated diseases, namely chronic wounds. Their co-existence in a biofilm contributes to an increased tolerance of the biofilm to antibiotics. Combined treatments of bacteriophages and antibiotics have shown a promising antibiofilm activity, due to the profound differences in their mechanisms of action. In this study, 48 h old mono and dual-species biofilms were treated with a newly isolated P. aeruginosa infecting phage (EPA1) and seven different antibiotics (gentamicin, kanamycin, tetracycline, chloramphenicol, erythromycin, ciprofloxacin, and meropenem), alone and in simultaneous or sequential combinations. The therapeutic efficacy of the tested antimicrobials was determined. Phage or antibiotics alone had a modest effect in reducing biofilm bacteria. However, when applied simultaneously, a profound improvement in the killing effect was observed. Moreover, an impressive biofilm reduction (below the detection limit) was observed when gentamicin or ciprofloxacin were added sequentially after 6 h of phage treatment. The effect observed does not depend on the type of antibiotic but is influenced by its concentration. Moreover, in dual-species biofilms it was necessary to increase gentamicin concentration to obtain a similar killing effect as occurs in mono-species. Overall, combining phages with antibiotics can be synergistic in reducing the bacterial density in biofilms. However, the concentration of antibiotic and the time of antibiotic application are essential factors that need to be considered in the combined treatments.
Collapse
|
64
|
Blanco C, Chen IA. Phage therapy administered noninvasively could be effective in thin tubes subject to episodic flow despite washout: a simulation study. Phys Biol 2019; 16:054001. [PMID: 31266001 PMCID: PMC6771420 DOI: 10.1088/1478-3975/ab2ea0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacteriophages (phages) have been proposed as candidates for the treatment of bacterial infections in light of emerging antibiotic-resistant microorganisms. Bacterial growth within thin tubes is a particular concern, such as in urinary tract infections and colonization of catheters. However, it is not clear whether phage administration to the urinary tract or in catheters could be effective in the context of flow to the outside (i.e. voiding or saline flush). Here, we adapt a previous model of phage infection to a thin tube geometry mimicking the spatial organization of the urinary tract, including bacterial motility and episodic flow during which phages are washed out of the system. We show that density-dependent dynamics permit propagation of the phage infection and that washout has little effect on the timing of bacterial clearance. In addition, instillation of phage at the bottom ~0.1 mm of the tract is effective in our computational model, suggesting that therapeutic phage introduced non-invasively could be efficacious in such situations.
Collapse
Affiliation(s)
- Celia Blanco
- Department of Chemistry and Biochemistry 9510, University of California, Santa Barbara, CA 93106, United States of America
| | | |
Collapse
|
65
|
Tayyarcan EK, Acar Soykut E, Menteş Yılmaz O, Boyaci IH, Khaaladi M, Fattouch S. Investigation of different interactions betweenStaphylococcus aureusphages and pomegranate peel, grape seed, and black cumin extracts. J Food Saf 2019. [DOI: 10.1111/jfs.12679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Esra Acar Soykut
- Yeniçağa Yaşar Çelik Vocational SchoolBolu Abant İzzet Baysal University Bolu Turkey
| | | | - Ismail H. Boyaci
- Department of Food EngineeringHacettepe University Ankara Turkey
| | - Maha Khaaladi
- National Institute of Applied Sciences and Technology (INSAT)University of Carthage Tunis Tunisia
| | - Sami Fattouch
- National Institute of Applied Sciences and Technology (INSAT)University of Carthage Tunis Tunisia
| |
Collapse
|
66
|
Nouraldin AAM, Baddour MM, Harfoush RAH, Essa SAM. Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2015.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
67
|
Chang RYK, Das T, Manos J, Kutter E, Morales S, Chan HK. Bacteriophage PEV20 and Ciprofloxacin Combination Treatment Enhances Removal of Pseudomonas aeruginosa Biofilm Isolated from Cystic Fibrosis and Wound Patients. AAPS JOURNAL 2019; 21:49. [PMID: 30949776 DOI: 10.1208/s12248-019-0315-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/01/2019] [Indexed: 01/02/2023]
Abstract
Antibiotic resistance in Pseudomonas aeruginosa biofilms necessitates the need for novel antimicrobial therapy with anti-biofilm properties. Bacteriophages (phages) are recognized as an ideal biopharmaceutical for combating antibiotic-resistant bacteria especially when used in combination with antibiotics. However, previous studies primarily focused on using phages against of P. aeruginosa biofilms of laboratory strains. In the present study, biofilms of six P. aeruginosa isolated from cystic fibrosis and wound patients, and one laboratory strain was treated singly and with combinations of anti-Pseudomonas phage PEV20 and ciprofloxacin. Of these strains, three were highly susceptible to the phage, while one was partially resistant and one was completely resistant. Combination treatment with PEV20 and ciprofloxacin enhanced biofilm eradication compared with single treatment. Phage and ciprofloxacin synergy was found to depend on phage-resistance profile of the target bacteria. Furthermore, phage and ciprofloxacin combination formulation protected the lung epithelial and fibroblast cells from P. aeruginosa and promoted cell growth. The results demonstrated that thorough screening of phage-resistance is crucial for designing phage-antibiotic formulation. The addition of highly effective phage could reduce the ciprofloxacin concentration required to combat P. aeruginosa infections associated with biofilm in cystic fibrosis and wound patients.
Collapse
Affiliation(s)
- Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Theerthankar Das
- Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jim Manos
- Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | | - Sandra Morales
- AmpliPhi Biosciences AU, 7/27 Dale Street, Brookvale, Sydney, NSW, 2100, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
68
|
Tagliaferri TL, Jansen M, Horz HP. Fighting Pathogenic Bacteria on Two Fronts: Phages and Antibiotics as Combined Strategy. Front Cell Infect Microbiol 2019; 9:22. [PMID: 30834237 PMCID: PMC6387922 DOI: 10.3389/fcimb.2019.00022] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/22/2019] [Indexed: 01/21/2023] Open
Abstract
With the emerging threat of infections caused by multidrug resistant bacteria, phages have been reconsidered as an alternative for treating infections caused by tenacious pathogens. However, instead of replacing antibiotics, the combination of both types of antimicrobials can be superior over the use of single agents. Enhanced bacterial suppression, more efficient penetration into biofilms, and lowered chances for the emergence of phage resistance are the likely advantages of the combined strategy. While a number of studies have provided experimental evidence in support of this concept, negative interference between phages and antibiotics have been reported as well. Neutral effects have also been observed, but in those cases, combined approaches may still be important for at least hampering the development of resistance. In any case, the choice of phage type and antibiotic as well as their mixing ratios must be given careful consideration when deciding for a dual antibacterial approach. The most frequently tested bacterium for a combined antibacterial treatment has been Pseudomonas aeruginosa, but encouraging results have also been reported for Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Enterococcus faecalis, and Burkholderia cepacia. Given the immense play area of conceivable phage-antibiotic combinations and their potential excess value, it is time to recapitulate of what has been achieved so far. This review therefore gathers and compares the results from most relevant studies in order to help researchers and clinicians in their strategies to combat multidrug resistant bacteria. Special attention is given to the selected bacterial model organisms, the phage families and genera employed, and the experimental design and evaluation (e.g., in vitro vs. in vivo models, biofilm vs. planktonic culture experiments, order and frequency of administration etc.). The presented data may serve as a framework for directed further experimental approaches to ultimately achieve a resolute challenge of multidrug resistant bacteria based on traditional antibiotics and phages.
Collapse
Affiliation(s)
- Thaysa Leite Tagliaferri
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mathias Jansen
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Hans-Peter Horz
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
69
|
Abstract
Antibiotic resistance is arguably the biggest current threat to global health. An increasing number of infections are becoming harder or almost impossible to treat, carrying high morbidity, mortality, and financial cost. The therapeutic use of bacteriophages, viruses that infect and kill bacteria, is well suited to be part of the multidimensional strategies to combat antibiotic resistance. Although phage therapy was first implemented almost a century ago, it was brought to a standstill after the successful introduction of antibiotics. Now, with the rise of antibiotic resistance, phage therapy is experiencing a well-deserved rebirth. Among the admittedly vast literature recently published on this topic, this review aims to provide a forward-looking perspective on phage therapy and its role in modern society. We cover the key points of the antibiotic resistance crisis and then explain the biological and evolutionary principles that support the use of phages, their interaction with the immune system, and a comparison with antibiotic therapy. By going through up-to-date reports and, whenever possible, human clinical trials, we examine the versatility of phage therapy. We discuss conventional approaches as well as novel strategies, including the use of phage-antibiotic combinations, phage-derived enzymes, exploitation of phage resistance mechanisms, and phage bioengineering. Finally, we discuss the benefits of phage therapy beyond the clinical perspective, including opportunities for scientific outreach and effective education, interdisciplinary collaboration, cultural and economic growth, and even innovative use of social media, making the case that phage therapy is more than just an alternative to antibiotics.
Collapse
|
70
|
Theodosiou L, Hiltunen T, Becks L. The role of stressors in altering eco‐evolutionary dynamics. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Loukas Theodosiou
- Community Dynamics GroupMax Planck Institute for Evolutionary Biology Plön Germany
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary Biology Plön Germany
| | - Teppo Hiltunen
- Department of MicrobiologyUniversity of Helsinki Helsinki Finland
- Department of BiologyUniversity of Turku Turku Finland
| | - Lutz Becks
- Community Dynamics GroupMax Planck Institute for Evolutionary Biology Plön Germany
- Limnology ‐ Aquatic Ecology and Evolution, Limnological InstituteUniversity of Konstanz Konstanz Germany
| |
Collapse
|
71
|
Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A. Clinical Indications and Compassionate Use of Phage Therapy: Personal Experience and Literature Review with a Focus on Osteoarticular Infections. Viruses 2018; 11:E18. [PMID: 30597868 PMCID: PMC6356659 DOI: 10.3390/v11010018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/30/2023] Open
Abstract
The history of phage therapy started with its first clinical application in 1919 and continues its development to this day. Phages continue to lack any market approval in Western medicine as a recognized drug, but are increasingly used as an experimental therapy for the compassionate treatment of patients experiencing antibiotic failure. The few formal experimental phage clinical trials that have been completed to date have produced inconclusive results on the efficacy of phage therapy, which contradicts the many successful treatment outcomes observed in historical accounts and recent individual case reports. It would therefore be wise to identify why such a discordance exists between trials and compassionate use in order to better develop future phage treatment and clinical applications. The multitude of observations reported over the years in the literature constitutes an invaluable experience, and we add to this by presenting a number of cases of patients treated compassionately with phages throughout the past decade with a focus on osteoarticular infections. Additionally, an abundance of scientific literature into phage-related areas is transforming our knowledge base, creating a greater understanding that should be applied for future clinical applications. Due to the increasing number of treatment failures anticipatedfrom the perspective of a possible post-antibiotic era, we believe that the introduction of bacteriophages into the therapeutic arsenal seems a scientifically sound and eminently practicable consideration today as a substitute or adjuvant to antibiotic therapy.
Collapse
Affiliation(s)
- Olivier Patey
- Service of Infectious and Tropical Diseases, CHI Lucie et Raymond Aubrac, 94190 Villeneuve Saint Georges, France.
| | - Shawna McCallin
- Department of Musculoskeletal Medicine DAL, Centre Hospitalier Universitaire Vaudois CHUV, Service of Plastic, Reconstructive & Hand Surgery, Regenerative Therapy Unit (UTR), CHUV-EPCR/Croisettes 22, 1066 Epalinges, Switzerland.
| | - Hubert Mazure
- HGM Consultants, 63 Rebecca Parade, Winston Hills, NSW 2153, Australia.
| | - Max Liddle
- School of Life Sciences, University of Technology, Ultimo, NSW 2007, Australia.
| | - Anthony Smithyman
- Cellabs Pty Ltd, and Founder Special Phage Services Pty Ltd, both of 7/27 Dale St, Brookvale, NSW 2100, Australia.
| | - Alain Dublanchet
- Service of Infectious and Tropical Diseases, CHI Lucie et Raymond Aubrac, 94190 Villeneuve Saint Georges, France.
| |
Collapse
|
72
|
Castillo DE, Nanda S, Keri JE. Propionibacterium (Cutibacterium) acnes Bacteriophage Therapy in Acne: Current Evidence and Future Perspectives. Dermatol Ther (Heidelb) 2018; 9:19-31. [PMID: 30539425 PMCID: PMC6380980 DOI: 10.1007/s13555-018-0275-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Acne vulgaris is the most common dermatological disorder worldwide. It is a multifactorial disease that involves increased sebum production, hyperkeratinization of the pilosebaceous unit, Propionibacterium acnes (Cutibacterium acnes) colonization, and inflammation. The human skin microbiome hosts a wide variety of microorganisms, including bacteria, viruses, and fungi. A delicate balance of these microorganisms is essential for the barrier function of the skin. Propionibacterium acnes represents nearly 90% of the human skin microbiome of healthy adults. Acne is a chronic recurrent disease that requires long-lasting treatment, which has led to the emergence of antibiotic resistance. New alternatives to traditional therapy are emerging, including antimicrobial peptides, natural engineered antibodies, and bacteriophages. Bacteriophages have been shown to play a role in human skin health and disease. There is evidence supporting phage therapy in many types of skin infections. P. acnes bacteriophages have been isolated and characterized. However, only a few in vitro studies have tested the ability of bacteriophages to kill P. acnes. Furthermore, there is no evidence on bacteriophage therapy in the treatment of acne in humans. In this review, we summarize the most recent evidence regarding P. acnes bacteriophages and the potential role of these bacteriophages in the treatment of acne. Further research on this field will provide the evidence to use phage therapy to decrease rates of antibiotic resistance and restore antibiotic susceptibility of P. acnes.
Collapse
Affiliation(s)
- David E Castillo
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sonali Nanda
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonette E Keri
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- Veterans Affairs Miami Health Care System, Miami, FL, USA.
| |
Collapse
|
73
|
Lopes A, Pereira C, Almeida A. Sequential Combined Effect of Phages and Antibiotics on the Inactivation of Escherichia coli. Microorganisms 2018; 6:E125. [PMID: 30563133 PMCID: PMC6313441 DOI: 10.3390/microorganisms6040125] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
The emergence of antibiotic resistance in bacteria is a global concern. The use of bacteriophages (or phages) alone or combined with antibiotics is consolidating itself as an alternative approach to inactivate antibiotic-resistant bacteria. However, phage-resistant mutants have been considered as a major threat when phage treatment is employed. Escherichia coli is one of the main responsible pathogens for moderate and serious infections in hospital and community environments, being involved in the rapid evolution of fluoroquinolones and third-generation cephalosporin resistance. The aim of this study was to evaluate the effect of combined treatments of phages and antibiotics in the inactivation of E. coli. For this, ciprofloxacin at lethal and sublethal concentrations was added at different times (0, 6, 12 and 18 h) and was tested in combination with the phage ELY-1 to inactivate E. coli. The efficacy of the combined treatment varied with the antibiotic concentration and with the time of antibiotic addition. The combined treatment prevented bacterial regrowth when the antibiotic was used at minimum inhibitory concentration (MIC) and added after 6 h of phage addition, causing less bacterial resistance than phage and antibiotic applied alone (4.0 × 10-7 for the combined treatment, 3.9 × 10-6 and 3.4 × 10-5 for the antibiotics and the phages alone, respectively). Combined treatment with phage and antibiotic can be effective in reducing the bacterial density and it can also prevent the emergence of resistant variants. However, the antibiotic concentration and the time of antibiotic application are essential factors that need to be considered in the combined treatment.
Collapse
Affiliation(s)
- Ana Lopes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
74
|
Phage-Antibiotic Synergy via Delayed Lysis. Appl Environ Microbiol 2018; 84:AEM.02085-18. [PMID: 30217844 DOI: 10.1128/aem.02085-18] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022] Open
Abstract
When phages infect bacteria cultured in the presence of sublethal doses of antibiotics, the sizes of the phage plaques are significantly increased. This phenomenon is known as phage-antibiotic synergy (PAS). In this study, the observation of PAS was extended to a wide variety of bacterium-phage pairs using different classes of antibiotics. PAS was shown in both Gram-positive and Gram-negative bacteria. Cells stressed with β-lactam antibiotics filamented or swelled extensively, resulting in an increase in phage production. PAS was also sometimes observed in the presence of other classes of antibiotics with or without bacterial filamentation. The addition of antibiotics induced recA expression in various bacteria, but a recA deletion mutant strain of Escherichia coli also showed filamentation and PAS in the presence of quinolone antibiotics. The phage adsorption efficiency did not change in the presence of the antibiotics when the cell surfaces were enlarged as they filamented. Increases in the production of phage DNA and mRNAs encoding phage proteins were observed in these cells, with only a limited increase in protein production. The data suggest that PAS is the product of a prolonged period of particle assembly due to delayed lysis. The increase in the cell surface area far exceeded the increase in phage holin production in the filamented host cells, leading to a relatively limited availability of intracellular holins for aggregating and forming holes in the host membrane. Reactive oxygen species (ROS) stress also led to an increased production of phages, while heat stress resulted in only a limited increase in phage production.IMPORTANCE Phage-antibiotic synergy (PAS) has been reported for a decade, but the underlying mechanism has never been vigorously investigated. This study shows the presence of PAS from a variety of phage-bacterium-antibiotic pairings. We show that increased phage production resulted directly from a lysis delay caused by the relative shortage of holin in filamented bacterial hosts in the presence of sublethal concentrations of stress-inducing substances, such as antibiotics and reactive oxygen species (ROS).
Collapse
|
75
|
Enhanced antibacterial effect of the novel T4-like bacteriophage KARL-1 in combination with antibiotics against multi-drug resistant Acinetobacter baumannii. Sci Rep 2018; 8:14140. [PMID: 30237558 PMCID: PMC6147977 DOI: 10.1038/s41598-018-32344-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023] Open
Abstract
The continuing rise of infections caused by multi-drug resistant bacteria has led to a renewed interest in bacteriophage therapy. Here we characterize phage vB_AbaM-KARL-1 with lytic activity against multi-drug resistant clinical isolates of Acinetobacter baumannii (AB). Besides genomic and phenotypic phage analysis, the objective of our study was to investigate the antibacterial outcome when the phage acts in concert with distinct antibiotics. KARL-1 belongs to the family of Myoviridae and is able to lyse 8 of 20 (40%) tested clinical isolates. Its double-stranded DNA genome consists of 166,560 bp encoding for 253 open reading frames. Genome wide comparison suggests that KARL-1 is a novel species within the subfamily Tevenvirinae, sharing 77% nucleotide identity (coverage 58%) with phage ZZ1. The antibacterial efficacy at various multiplicities of infection (MOI) was monitored either alone or in combination with meropenem, ciprofloxacin, and colistin. A complete clearance of liquid cultures was achieved with KARL-1 at an MOI of 10-1 and meropenem (>128 mg/l). KARL-1 was still effective at an MOI of 10-7, but antibacterial activity was significantly augmented with meropenem. While ciprofloxacin did generally not support phage activity, the application of KARL-1 at an MOI of 10-7 and therapeutic doses of colistin significantly elevated bacterial suppression. Hence, KARL-1 represents a novel candidate for use against multi-drug resistant AB and the therapeutic outcome may be positively influenced by the addition of traditional antibiotics.
Collapse
|
76
|
Synergy of nebulized phage PEV20 and ciprofloxacin combination against Pseudomonas aeruginosa. Int J Pharm 2018; 551:158-165. [PMID: 30223075 DOI: 10.1016/j.ijpharm.2018.09.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 01/09/2023]
Abstract
Nebulization is currently used for delivery of antibiotics for respiratory infections. Bacteriophages (or phages) are effective predators of pathogens including Pseudomonas aeruginosa commonly found in the lungs of patients with cystic fibrosis (CF). It is known that phages and antibiotics can potentially show synergistic antimicrobial effect on bacterial killing. In the present study, we investigated synergistic antimicrobial effect of phage PEV20 with five different antibiotics against three P. aeruginosa strains isolated from sputum of CF patients. The antibiotics included ciprofloxacin, tobramycin, colistin, aztreonam and amikacin, which are approved by U.S Food and Drug Administration (FDA) for inhaled administration. Phage and antibiotic synergy was determined by assessing bacterial killing performing time-kill studies. Among the different phage-antibiotic combinations, PEV20 and ciprofloxacin exhibited the most synergistic effect. Two phage-ciprofloxacin combinations, containing 1/4 and 1/2 of the minimum inhibitory concentration (MIC) of ciprofloxacin against P. aeruginosa strains FADD1-PA001 (A) and JIP865, respectively were aerosolized using both air-jet and vibrating mesh nebulizers and the synergistic antibacterial activity was maintained after nebulization. Air-jet nebulizer generated droplets with smaller volume median diameters (3.6-3.7 µm) and slightly larger span (2.3-2.4) than vibrating mesh nebulizers (5.1-5.3 µm; 2.1-2.2), achieving a higher fine particle fraction (FPF) of 70%. In conclusion, nebulized phage PEV20 and ciprofloxacin combination shows promising antimicrobial and aerosol characteristics for potential treatment of respiratory tract infections caused by drug-resistant P. aeruginosa.
Collapse
|
77
|
Chang RYK, Wallin M, Lin Y, Leung SSY, Wang H, Morales S, Chan HK. Phage therapy for respiratory infections. Adv Drug Deliv Rev 2018; 133:76-86. [PMID: 30096336 PMCID: PMC6226339 DOI: 10.1016/j.addr.2018.08.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/06/2018] [Accepted: 08/01/2018] [Indexed: 01/12/2023]
Abstract
A respiratory infection caused by antibiotic-resistant bacteria can be life-threatening. In recent years, there has been tremendous effort put towards therapeutic application of bacteriophages (phages) as an alternative or supplementary treatment option over conventional antibiotics. Phages are natural parasitic viruses of bacteria that can kill the bacterial host, including antibiotic-resistant bacteria. Inhaled phage therapy involves the development of stable phage formulations suitable for inhalation delivery followed by preclinical and clinical studies for assessment of efficacy, pharmacokinetics and safety. We presented an overview of recent advances in phage formulation for inhalation delivery and their efficacy in acute and chronic rodent respiratory infection models. We have reviewed and presented on the prospects of inhaled phage therapy as a complementary treatment option with current antibiotics and as a preventative means. Inhaled phage therapy has the potential to transform the prevention and treatment of bacterial respiratory infections, including those caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | - Martin Wallin
- Faculty of Pharmaceutical Sciences, University of Copenhagen, Denmark
| | - Yu Lin
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia
| | - Sharon Sui Yee Leung
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia; Faculty of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Wang
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia
| | - Sandra Morales
- AmpliPhi Biosciences AU, Brookvale, Sydney, NSW, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia.
| |
Collapse
|
78
|
Gelman D, Beyth S, Lerer V, Adler K, Poradosu-Cohen R, Coppenhagen-Glazer S, Hazan R. Combined bacteriophages and antibiotics as an efficient therapy against VRE Enterococcus faecalis in a mouse model. Res Microbiol 2018; 169:531-539. [PMID: 29777835 DOI: 10.1016/j.resmic.2018.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/17/2018] [Indexed: 10/16/2022]
Abstract
Clinical applications of bacteriophage therapy have been recently gathering significant attention worldwide, used mostly as rescue therapy in cases of near-fatal antibiotic failure. Thus, clinically relevant in-vivo models presenting both short- and long-term implications of phage therapy given as rescue treatment for fulminant infections are of highest importance. In this study, a cocktail consisting of two lytic bacteriophages was used to evaluate the therapeutic efficacy of phage therapy as a rescue treatment for severe septic peritonitis in a mouse model. We established that a single injection of the bacteriophage cocktail was sufficient to completely reverse a 100% mortality trend caused by Vancomycin-Resistant Enterococcus faecalis, with significant improvement in both the clinical state and laboratory test results, and without harmful effects on the microbiome. The combination of bacteriophages with a suboptimal antibiotic regimen imparts an additional beneficial effect on the treatment success.
Collapse
Affiliation(s)
- Daniel Gelman
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel; The Military Track of Medicine, Faculty of Medicine, The Hebrew University - Hadassah School of Medicine, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel.
| | - Shaul Beyth
- Orthopedic Surgery Department, Hadassah Medical Center, Hadassah University Hospital, P.O.B 12000, Jerusalem, 91120, Israel.
| | - Vanda Lerer
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel.
| | - Karen Adler
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel.
| | - Ronit Poradosu-Cohen
- Department of Infectious Diseases of Sourasky Medical Center and Tel-Aviv University, Tel-Aviv, Israel.
| | - Shunit Coppenhagen-Glazer
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel.
| | - Ronen Hazan
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel.
| |
Collapse
|
79
|
Cooper CJ, Koonjan S, Nilsson AS. Enhancing Whole Phage Therapy and Their Derived Antimicrobial Enzymes through Complex Formulation. Pharmaceuticals (Basel) 2018; 11:ph11020034. [PMID: 29671806 PMCID: PMC6027540 DOI: 10.3390/ph11020034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
The resurgence of research into phage biology and therapy is, in part, due to the increasing need for novel agents to treat multidrug-resistant infections. Despite a long clinical history in Eastern Europe and initial success within the food industry, commercialized phage products have yet to enter other sectors. This relative lack of success is, in part, due to the inherent biological limitations of whole phages. These include (but are not limited to) reaching target sites at sufficiently high concentrations to establish an infection which produces enough progeny phages to reduce the bacterial population in a clinically meaningful manner and the limited host range of some phages. Conversely, parallels can be drawn between antimicrobial enzymes derived from phages and conventional antibiotics. In the current article the biological limitations of whole phage-based therapeutics and their derived antimicrobial enzymes will be discussed. In addition, the ability of more complex formulations to address these issues, in the context of medical and non-medical applications, will also be included.
Collapse
Affiliation(s)
- Callum J Cooper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Shazeeda Koonjan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Anders S Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
80
|
Casey E, van Sinderen D, Mahony J. In Vitro Characteristics of Phages to Guide 'Real Life' Phage Therapy Suitability. Viruses 2018; 10:v10040163. [PMID: 29601536 PMCID: PMC5923457 DOI: 10.3390/v10040163] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022] Open
Abstract
The increasing problem of antibiotic-resistant pathogens has put enormous pressure on healthcare providers to reduce the application of antibiotics and to identify alternative therapies. Phages represent such an alternative with significant application potential, either on their own or in combination with antibiotics to enhance the effectiveness of traditional therapies. However, while phage therapy may offer exciting therapeutic opportunities, its evaluation for safe and appropriate use in humans needs to be guided initially by reliable and appropriate assessment techniques at the laboratory level. Here, we review the process of phage isolation and the application of individual pathogens or reference collections for the development of specific or "off-the-shelf" preparations. Furthermore, we evaluate current characterization approaches to assess the in vitro therapeutic potential of a phage including its spectrum of activity, genome characteristics, storage and administration requirements and effectiveness against biofilms. Lytic characteristics and the ability to overcome anti-phage systems are also covered. These attributes direct phage selection for their ultimate application as antimicrobial agents. We also discuss current pitfalls in this research area and propose that priority should be given to unify current phage characterization approaches.
Collapse
Affiliation(s)
- Eoghan Casey
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
| |
Collapse
|
81
|
Fu Y, Mu D, Qiao W, Zhu D, Wang X, Liu F, Xu H, Saris P, Kuipers OP, Qiao M. Co-expression of Nisin Z and Leucocin C as a Basis for Effective Protection Against Listeria monocytogenes in Pasteurized Milk. Front Microbiol 2018; 9:547. [PMID: 29628920 PMCID: PMC5876312 DOI: 10.3389/fmicb.2018.00547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/09/2018] [Indexed: 11/17/2022] Open
Abstract
Nisin, an important bacteriocin from Lactococcus lactis subsp., is primarily active against various Gram-positive bacteria. Leucocin C, produced by Leuconostoc carnosum 4010, is a class IIa bacteriocin used to inhibit the growth of Listeria monocytogenes. Because two bacteriocins have different modes of action, the combined use of them could be a potential strategy for effective inhibition of foodborne pathogens. In this study, L. lactis N8-r-lecCI (N8 harboring lecCI gene) coexpressing nisin–leucocin C was constructed based on the food-grade carrier L. lactis N8. Production of both bacteriocins was stably maintained. Antimicrobial measurements showed that the recombinant strain is effectively against Listeria monocytogenes and Staphylococcus aureus and moderately against Salmonella enterica serovar Enteritidis and Escherichia coli because of its stronger antibacterial activity than the parental strain, this result first demonstrated that the co-expression of nisin and leucocin C results in highly efficient antimicrobial activity. The checkerboard assay showed that the antibacterial activity of L. lactis N8-r-lecCI supernatant was enhanced in the presence of low concentration of EDTA. Analysis of the scanning electron microscope image showed the biggest cellular morphology change in L. monocytogenes treated with a mixture of EDTA and L. lactis N8-r-lecCI supernatant. The practical effect was verified in pasteurized milk through time-kill assay. The L. lactis N8-r-lecCI strain expressing both nisin and leucocin C has a promising application prospect in pasteurized milk processing and preservation because of its strong antibacterial activity.
Collapse
Affiliation(s)
- Yuxin Fu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Dongdong Mu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Wanjin Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Duolong Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Xiangxiang Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Fulu Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Haijin Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Per Saris
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
82
|
Piperacillin and ceftazidime produce the strongest synergistic phage–antibiotic effect in Pseudomonas aeruginosa. Arch Virol 2018; 163:1941-1948. [DOI: 10.1007/s00705-018-3811-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
|
83
|
Maheshwari M, Safar Althubiani A, Hasan Abulreesh H, Abul Qais F, Shavez Khan M, Ahmad I. Bioactive extracts of Carum copticum L. enhances efficacy of ciprofloxacin against MDR enteric bacteria. Saudi J Biol Sci 2017; 26:1848-1855. [PMID: 31762667 PMCID: PMC6864163 DOI: 10.1016/j.sjbs.2017.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 11/06/2022] Open
Abstract
The widespread occurrence of extended spectrum β-lactamases (ESβLs) producing enteric bacteria and their co-resistance with flouroquinolones has impaired the current antimicrobial therapy. This has prompted the search for new alternatives through synergistic approaches with herbal extracts. In this study Carum copticum (seeds) was extracted first in methanol and then subsequently extracted in different organic solvents. MIC of plant extracts, ciprofloxacin and thymol was determined by broth micro-dilution method using TTC. Synergism between plant extracts and ciprofloxacin was assayed by the checkerboard method. Chemical constituents of active extracts were analyzed by GC-MS. Methanolic, hexane and ether extract of Carum copticum exhibited significant antibacterial activity with MIC values ranged from 0.25 mg/ml to 2.0 mg/ml. Synergy analysis between Carum copticum extracts and ciprofloxacin combinations revealed FIC index in the range of 0.093–0.25. About 81% ciprofloxacin resistant ESβL producing enteric bacteria were re-sensitized in the presence of 15.6–250 μg/ml of methanolic extract of Carum copticum. Moreover, ciprofloxacin showed 8 to 64 folds reduction in MIC in presence of 250 and 500 μg/ml of hexane extract. Whereas, 4–32 folds reduction in MIC of ciprofloxacin was achieved in the presence of 31.25 and 62.5 μg/ml of ether extract, indicating synergistic enhancement of drug activity. The chemical analysis of hexane and ether extracts by GC-MS revealed the common occurrence of one or more phenolic hydroxyl at different locations on benzene ring. This study demonstrated the potential use of herbal extract of Carum copticum in combination therapy against ESβL producing bacteria.
Collapse
Affiliation(s)
- Meenu Maheshwari
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Hussein Hasan Abulreesh
- Department of Biology, Faculty of Applied Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Shavez Khan
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
84
|
Shi C, Zhao X, Meng R, Liu Z, Zhang G, Guo N. Synergistic antimicrobial effects of nisin and p-Anisaldehyde on Staphylococcus aureus in pasteurized milk. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
85
|
Ma S, Shi C, Wang C, Guo M. Effects of Ultrasound Treatment on Physiochemical Properties and Antimicrobial Activities of Whey Protein-Totarol Nanoparticles. J Food Prot 2017; 80:1657-1665. [PMID: 28876131 DOI: 10.4315/0362-028x.jfp-17-078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Totarol is a natural antimicrobial compound extracted from the heartwood of Podocarpus totara, a conifer native to New Zealand. The effects of whey protein-totarol nanoparticles treated with ultrasound on the physiochemical properties and the growth of Staphylococcus aureus were investigated. The particle size of whey protein-totarol nanoparticles was reduced by ultrasound treatment from 31.24 ± 5.31 to 24.20 ± 4.02 nm, and the size distribution was also narrowed by the treatment. Viscosity and modulus data indicated that the flow behaviors of whey protein-totarol nanoparticles seemed to be Newtonian and exerted a typical viscoelastic fluid at protein content of 15% (w/v). Rheological properties were more insensitive to ultrasonic time. Time-killing assays, agar diffusion tests, the cell membrane damage analysis, and microstructure were exploited to study the antibacterial properties of whey protein-totarol nanoparticles. The MIC of whey protein-totarol nanoparticles after ultrasound treatment decreased from 4 to 2 μg/mL compared with that without ultrasound treatment. Whey protein-totarol nanoparticles treated with ultrasound resulted in a significant (P < 0.05) decrease in time killing after 24 h. The agar diffusion results showed that the inhibition zones of whey protein-totarol nanoparticles were 12 and 36 mm for untreated and treated with ultrasound, respectively. The cell membrane damages and the microstructure changes also proved that whey protein-totarol nanoparticles treated with ultrasound had strong antibacterial activities against S. aureus and that the antibacterial effectiveness enhanced with the increasing of ultrasonic time. These findings suggested that whey protein-totarol nanoparticles treated with ultrasound were more effective against S. aureus than untreated nanoparticles.
Collapse
Affiliation(s)
- Shuang Ma
- 1 Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, Peoples Republic of China
| | - Ce Shi
- 1 Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, Peoples Republic of China
| | - Cuina Wang
- 1 Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, Peoples Republic of China
| | - Mingruo Guo
- 1 Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, Peoples Republic of China.,2 Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, The University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
86
|
Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrob Agents Chemother 2017; 61:AAC.00954-17. [PMID: 28807909 PMCID: PMC5610518 DOI: 10.1128/aac.00954-17] [Citation(s) in RCA: 751] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/02/2017] [Indexed: 11/20/2022] Open
Abstract
Widespread antibiotic use in clinical medicine and the livestock industry has contributed to the global spread of multidrug-resistant (MDR) bacterial pathogens, including Acinetobacter baumannii We report on a method used to produce a personalized bacteriophage-based therapeutic treatment for a 68-year-old diabetic patient with necrotizing pancreatitis complicated by an MDR A. baumannii infection. Despite multiple antibiotic courses and efforts at percutaneous drainage of a pancreatic pseudocyst, the patient deteriorated over a 4-month period. In the absence of effective antibiotics, two laboratories identified nine different bacteriophages with lytic activity for an A. baumannii isolate from the patient. Administration of these bacteriophages intravenously and percutaneously into the abscess cavities was associated with reversal of the patient's downward clinical trajectory, clearance of the A. baumannii infection, and a return to health. The outcome of this case suggests that the methods described here for the production of bacteriophage therapeutics could be applied to similar cases and that more concerted efforts to investigate the use of therapeutic bacteriophages for MDR bacterial infections are warranted.
Collapse
|
87
|
Zhao X, Zhen Z, Wang X, Guo N. Synergy of a combination of nisin and citric acid against Staphylococcus aureus and Listeria monocytogenes. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:2058-2068. [PMID: 28795907 DOI: 10.1080/19440049.2017.1366076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Food-borne diseases caused by pathogens, such as Staphylococcus aureus and Listeria monocytogenes, have long attracted attention globally from researchers, food industries, and food safety authorities. Nisin (NS) is the only bacteriocin used worldwide as a generally recognised as safe (GRAS) food preservative, while citric acid (CA) has an unrestricted use in foods since it has GRAS status. In this study, synergistic interactions of NS combined with CA against S. aureus and L. monocytogenes were studied by the chequerboard microdilution method, with fractional inhibitory concentration index values ranging from 0.25 to 0.375 and 0.19 to 0.375, respectively. The positive interactions were verified by time-kill studies in pasteurised milk and disk diffusion assays. The mechanism of the synergistic antibacterial of NS and CA is proposed following SEM analysis and the determination of release of cell constituents. These results suggest that the cell walls and membrane are the probable main targets of this antimicrobial combination. These findings indicated that the combination of NS and CA not only could be used as a new promising naturally sourced food preservative, but may also reduce the problem of bacterial resistance.
Collapse
Affiliation(s)
- Xingchen Zhao
- a Department of Food Quality and Safety, School of Pharmaceutics and Food Science , Tonghua Normal University , Tonghua , China.,b Department of Food Quality and Safety, College of Food Science and Engineering , Jilin University , Changchun , China
| | - Zhen Zhen
- c Department of Technology Center , Qiqihar Entry-Exit Inspection and Quarantine Bureau , Qiqihar , China
| | - Xinyang Wang
- d Department of Petrochemical , Daqing Entry-Exit Inspection and Quarantine Bureau , Daqing , China
| | - Na Guo
- b Department of Food Quality and Safety, College of Food Science and Engineering , Jilin University , Changchun , China
| |
Collapse
|
88
|
Valério N, Oliveira C, Jesus V, Branco T, Pereira C, Moreirinha C, Almeida A. Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Virus Res 2017; 240:8-17. [DOI: 10.1016/j.virusres.2017.07.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/13/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
89
|
Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, Resch G, Que YA. Synergistic Interaction Between Phage Therapy and Antibiotics Clears Pseudomonas Aeruginosa Infection in Endocarditis and Reduces Virulence. J Infect Dis 2017; 215:703-712. [PMID: 28007922 PMCID: PMC5388299 DOI: 10.1093/infdis/jiw632] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/19/2016] [Indexed: 01/21/2023] Open
Abstract
Background. Increasing antibiotic resistance warrants therapeutic alternatives. Here we investigated the efficacy of bacteriophage-therapy (phage) alone or combined with antibiotics against experimental endocarditis (EE) due to Pseudomonas aeruginosa, an archetype of difficult-to-treat infection. Methods. In vitro fibrin clots and rats with aortic EE were treated with an antipseudomonas phage cocktail alone or combined with ciprofloxacin. Phage pharmacology, therapeutic efficacy, and resistance were determined. Results. In vitro, single-dose phage therapy killed 7 log colony-forming units (CFUs)/g of fibrin clots in 6 hours. Phage-resistant mutants regrew after 24 hours but were prevented by combination with ciprofloxacin (2.5 × minimum inhibitory concentration). In vivo, single-dose phage therapy killed 2.5 log CFUs/g of vegetations in 6 hours (P < .001 vs untreated controls) and was comparable with ciprofloxacin monotherapy. Moreover, phage/ciprofloxacin combinations were highly synergistic, killing >6 log CFUs/g of vegetations in 6 hours and successfully treating 64% (n = 7/11) of rats. Phage-resistant mutants emerged in vitro but not in vivo, most likely because resistant mutations affected bacterial surface determinants important for infectivity (eg, the pilT and galU genes involved in pilus motility and LPS formation). Conclusions. Single-dose phage therapy was active against P. aeruginosa EE and highly synergistic with ciprofloxacin. Phage-resistant mutants had impaired infectivity. Phage-therapy alone or combined with antibiotics merits further clinical consideration.
Collapse
Affiliation(s)
- Frank Oechslin
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Philippe Piccardi
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Stefano Mancini
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | | | - Philippe Moreillon
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - José M Entenza
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Gregory Resch
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Bern University Hospital, Switzerland
| |
Collapse
|
90
|
Chaudhry WN, Concepción-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR. Synergy and Order Effects of Antibiotics and Phages in Killing Pseudomonas aeruginosa Biofilms. PLoS One 2017; 12:e0168615. [PMID: 28076361 PMCID: PMC5226664 DOI: 10.1371/journal.pone.0168615] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/02/2016] [Indexed: 01/02/2023] Open
Abstract
In contrast to planktonic cells, bacteria imbedded biofilms are notoriously refractory to treatment by antibiotics or bacteriophage (phage) used alone. Given that the mechanisms of killing differ profoundly between drugs and phages, an obvious question is whether killing is improved by combining antibiotic and phage therapy. However, this question has only recently begun to be explored. Here, in vitro biofilm populations of Pseudomonas aeruginosa PA14 were treated singly and with combinations of two phages and bactericidal antibiotics of five classes. By themselves, phages and drugs commonly had only modest effects in killing the bacteria. However some phage-drug combinations reduced bacterial densities to well below that of the best single treatment; in some cases, bacterial densities were reduced even below the level expected if both agents killed independently of each other (synergy). Furthermore, there was a profound order effect in some cases: treatment with phages before drugs achieved maximum killing. Combined treatment was particularly effective in killing in Pseudomonas biofilms grown on layers of cultured epithelial cells. Phages were also capable of limiting the extent to which minority populations of bacteria resistant to the treating antibiotic ascend. The potential of combined antibiotic and phage treatment of biofilm infections is discussed as a realistic way to evaluate and establish the use of bacteriophage for the treatment of humans.
Collapse
Affiliation(s)
- Waqas Nasir Chaudhry
- National University of Sciences and Technology, Islamabad, Pakistan
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | | | - Taehyun Park
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Saadia Andleeb
- National University of Sciences and Technology, Islamabad, Pakistan
| | - James J. Bull
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
91
|
Cairns J, Frickel J, Jalasvuori M, Hiltunen T, Becks L. Genomic evolution of bacterial populations under coselection by antibiotics and phage. Mol Ecol 2017; 26:1848-1859. [DOI: 10.1111/mec.13950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 11/28/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Johannes Cairns
- Department of Food and Environmental Sciences / Microbiology and Biotechnology; University of Helsinki; P.O. Box 65 00014 Helsinki Finland
| | - Jens Frickel
- Department of Evolutionary Ecology / Community Dynamics Group; Max Planck Institute for Evolutionary Biology; August Thienemann Street 2 24306 Plön Germany
| | - Matti Jalasvuori
- Department of Biological and Environmental Science / Centre of Excellence in Biological Interactions; University of Jyväskylä; P.O. Box 35 Jyväskylä 40014 Finland
| | - Teppo Hiltunen
- Department of Food and Environmental Sciences / Microbiology and Biotechnology; University of Helsinki; P.O. Box 65 00014 Helsinki Finland
| | - Lutz Becks
- Department of Evolutionary Ecology / Community Dynamics Group; Max Planck Institute for Evolutionary Biology; August Thienemann Street 2 24306 Plön Germany
| |
Collapse
|
92
|
Shi C, Zhang X, Zhao X, Meng R, Liu Z, Chen X, Guo N. Synergistic interactions of nisin in combination with cinnamaldehyde against Staphylococcus aureus in pasteurized milk. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
93
|
Scanlan PD, Bischofberger AM, Hall AR. Modification of Escherichia coli-bacteriophage interactions by surfactants and antibiotics in vitro. FEMS Microbiol Ecol 2016; 93:fiw211. [PMID: 27737900 PMCID: PMC5091284 DOI: 10.1093/femsec/fiw211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 01/21/2023] Open
Abstract
Although experiments indicate that the abiotic environment plays an important role in bacterial interactions with their parasitic viruses (bacteriophages or phages), it is not yet clear how exposure to compounds present in nature alters the impact of phages on bacterial growth and evolution. To address this question, we exposed Escherichia coli K12 MG1655, in combination with three lytic phages, to various substances that natural and clinical microbial populations are likely to encounter: bile salts (present in mammalian gastrointestinal tracts), sodium dodecyl sulfate (SDS, a common surfactant in cleaning and hygiene products) and four antibiotics (present at variable concentrations in natural and clinical environments). Our results show that bile salts and SDS can reduce the detrimental effect of phages on bacterial growth. In some cases these compounds completely mitigated any negative effects of phages on bacterial growth and consequently bacteria did not evolve resistance to phages in these conditions. The proportional effects of phages were unaffected by antibiotics in most combinations, excepting three cases of phage-drug synergy. These results suggest that accounting for interactions between phages and environmental factors such as surfactants and antibiotics will improve understanding of both bacterial growth and resistance evolution to phages in vivo and in nature.
Collapse
Affiliation(s)
- Pauline D Scanlan
- APC Microbiome Institute, Bioscience Building, University College Cork, Ireland
| | | | - Alex R Hall
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
94
|
Jo A, Ding T, Ahn J. Synergistic antimicrobial activity of bacteriophages and antibiotics against Staphylococcus aureus. Food Sci Biotechnol 2016; 25:935-940. [PMID: 30263357 DOI: 10.1007/s10068-016-0153-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/25/2022] Open
Abstract
This study was designed to assess the synergistic antimicrobial effect of phages combined with antibiotics against Staphylococcus aureus. The phage-antibiotic synergy (PAS) effect was evaluated using the fractional inhibitory concentration (FIC) and flow cytometric analysis. The determined minimum inhibitory concentration (MIC) values varied from 0.125 to 128 μg/mL for S. aureus KACC 13236 (SAS) and from 0.25 to >256 μg/mL for S. aureus CCARM 3080 (SAR). The PAS effect was more pronounced in SAS treated with phage SA11 in the presence of cefoxitin (FIC=0.62), chloramphenicol (FIC=0.54), and polymyxin B (FIC=0.38). SAS and SAR cells were injured when exposed to asublethal concentration of ciprofloxacin, whereas these cells were highly susceptible to the phage-antibiotic combined treatment, showing 96% of relative percentages of injured and dead cells. The results suggest that the combined treatment of phages and antibiotics can be used to improve antimicrobial efficacy against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ara Jo
- 2Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341 Korea
| | - Tian Ding
- 1Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, 310058 China
| | - Juhee Ahn
- 2Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341 Korea
| |
Collapse
|
95
|
Kaur S, Harjai K, Chhibber S. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA) Mediated Orthopaedic Device Related Infections. PLoS One 2016; 11:e0157626. [PMID: 27333300 PMCID: PMC4917197 DOI: 10.1371/journal.pone.0157626] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA), treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer) allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections) that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC) coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA). Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires) showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication) as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection.
Collapse
Affiliation(s)
- Sandeep Kaur
- Department of Microbiology, Panjab University, Chandigarh-160014, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh-160014, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh-160014, India
- * E-mail:
| |
Collapse
|
96
|
Torres‐Barceló C, Franzon B, Vasse M, Hochberg ME. Long-term effects of single and combined introductions of antibiotics and bacteriophages on populations of Pseudomonas aeruginosa. Evol Appl 2016; 9:583-95. [PMID: 27099623 PMCID: PMC4831460 DOI: 10.1111/eva.12364] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022] Open
Abstract
With escalating resistance to antibiotics, there is an urgent need to develop alternative therapies against bacterial pathogens and pests. One of the most promising is the employment of bacteriophages (phages), which may be highly specific and evolve to counter antiphage resistance. Despite an increased understanding of how phages interact with bacteria, we know very little about how their interactions may be modified in antibiotic environments and, reciprocally, how phage may affect the evolution of antibiotic resistance. We experimentally evaluated the impacts of single and combined applications of antibiotics (different doses and different types) and phages on in vitro evolving populations of the opportunistic pathogen Pseudomonas aeruginosa PAO1. We also assessed the effects of past treatments on bacterial virulence in vivo, employing larvae of Galleria mellonella to survey the treatment consequences for the pathogen. We find a strong synergistic effect of combining antibiotics and phages on bacterial population density and in limiting their recovery rate. Our long-term study establishes that antibiotic dose is important, but that effects are relatively insensitive to antibiotic type. From an applied perspective, our results indicate that phages can contribute to managing antibiotic resistance levels, with limited consequences for the evolution of bacterial virulence.
Collapse
Affiliation(s)
| | - Blaise Franzon
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
| | - Marie Vasse
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
| | - Michael E. Hochberg
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
- Santa Fe InstituteSanta FeNMUSA
| |
Collapse
|
97
|
Knezevic P, Aleksic V, Simin N, Svircev E, Petrovic A, Mimica-Dukic N. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:125-36. [PMID: 26671210 DOI: 10.1016/j.jep.2015.12.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herbal medicine has become an important issue on the global scale during the past decade. Among drugs of natural origin, special place belongs to essential oils, known as strong antimicrobial agents that can be used to combat antibiotic-resistant bacteria. Eucalyptus camaldulensis leaves are traditional herbal remedy used for various purposes, including treatment of infections. The aim of this study was to determine antimicrobial potential of two E. camaldulensis essential oils against multi-drug resistant (MDR) Acinetobacter baumannii wound isolates and to examine possible interactions of essential oils with conventional antimicrobial agents. MATERIALS AND METHODS Chemical composition of essential oils was determined by gas chromatography-mass spectrometry analysis (GC-MS). MIC values of essential oils against A. baumannii strains were estimated by modified broth microdilution method. The components responsible for antimicrobial activity were detected by bioautographic analysis. The potential synergy between the essential oils and antibiotics (ciprofloxacin, gentamicin and polymyxin B) was examined by checkerboard method and time kill curve. RESULTS The dominant components of both essential oils were spatulenol, cryptone, p-cimene, 1,8-cineole, terpinen-4-ol and β-pinene. The detected MICs for the E. camaldulensis essential oils were in range from 0.5 to 2 μl mL(-1). The bioautographic assay confirmed antibacterial activity of polar terpene compounds. In combination with conventional antibiotics (ciprofloxacin, gentamicin and polymyxin B), the examined essential oils showed synergistic antibacterial effect in most of the cases, while in some even re-sensitized MDR A. baumannii strains. The synergistic interaction was confirmed by time-kill curves for E. camaldulensis essential oil and polymyxin B combination which reduced bacterial count under detection limit very fast, i.e. after 6h of incubation. CONCLUSIONS The detected anti-A. baumannii activity of E. camaldulensis essential oils justifies traditional use of this plant. The proven E. camaldulensis essential oil synergistic interactions with conventional antibiotics could lead to the development of new treatment strategies of infections caused by MDR A. baumannii strains in the term of antibiotic dose reduction.
Collapse
Affiliation(s)
- Petar Knezevic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 3, Novi Sad, Serbia.
| | - Verica Aleksic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 3, Novi Sad, Serbia
| | - Natasa Simin
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, Novi Sad, Serbia
| | - Emilija Svircev
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, Novi Sad, Serbia
| | - Aleksandra Petrovic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 3, Novi Sad, Serbia
| | - Neda Mimica-Dukic
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, Novi Sad, Serbia
| |
Collapse
|
98
|
Torres-Barceló C, Hochberg ME. Evolutionary Rationale for Phages as Complements of Antibiotics. Trends Microbiol 2016; 24:249-256. [PMID: 26786863 DOI: 10.1016/j.tim.2015.12.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/15/2015] [Accepted: 12/28/2015] [Indexed: 01/21/2023]
Abstract
Antibiotic-resistant bacterial infections are a major concern to public health. Phage therapy has been proposed as a promising alternative to antibiotics, but an increasing number of studies suggest that both of these antimicrobial agents in combination are more effective in controlling pathogenic bacteria than either alone. We advocate the use of phages in combination with antibiotics and present the evolutionary basis for our claim. In addition, we identify compelling challenges for the realistic application of phage-antibiotic combined therapy.
Collapse
Affiliation(s)
- Clara Torres-Barceló
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France.
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France; Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| |
Collapse
|
99
|
Ronayne EA, Wan YCS, Boudreau BA, Landick R, Cox MM. P1 Ref Endonuclease: A Molecular Mechanism for Phage-Enhanced Antibiotic Lethality. PLoS Genet 2016; 12:e1005797. [PMID: 26765929 PMCID: PMC4713147 DOI: 10.1371/journal.pgen.1005797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/19/2015] [Indexed: 12/11/2022] Open
Abstract
Ref is an HNH superfamily endonuclease that only cleaves DNA to which RecA protein is bound. The enigmatic physiological function of this unusual enzyme is defined here. Lysogenization by bacteriophage P1 renders E. coli more sensitive to the DNA-damaging antibiotic ciprofloxacin, an example of a phenomenon termed phage-antibiotic synergy (PAS). The complementary effect of phage P1 is uniquely traced to the P1-encoded gene ref. Ref is a P1 function that amplifies the lytic cycle under conditions when the bacterial SOS response is induced due to DNA damage. The effect of Ref is multifaceted. DNA binding by Ref interferes with normal DNA metabolism, and the nuclease activity of Ref enhances genome degradation. Ref also inhibits cell division independently of the SOS response. Ref gene expression is toxic to E. coli in the absence of other P1 functions, both alone and in combination with antibiotics. The RecA proteins of human pathogens Neisseria gonorrhoeae and Staphylococcus aureus serve as cofactors for Ref-mediated DNA cleavage. Ref is especially toxic during the bacterial SOS response and the limited growth of stationary phase cultures, targeting aspects of bacterial physiology that are closely associated with the development of bacterial pathogen persistence.
Collapse
Affiliation(s)
- Erin A. Ronayne
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Y. C. Serena Wan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Beth A. Boudreau
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
100
|
Pires DP, Vilas Boas D, Sillankorva S, Azeredo J. Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections. J Virol 2015; 89:7449-56. [PMID: 25972556 PMCID: PMC4505681 DOI: 10.1128/jvi.00385-15] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance constitutes one of the major worldwide public health concerns. Bacteria are becoming resistant to the vast majority of antibiotics, and nowadays, a common infection can be fatal. To address this situation, the use of phages for the treatment of bacterial infections has been extensively studied as an alternative therapeutic strategy. Since Pseudomonas aeruginosa is one of the most common causes of health care-associated infections, many studies have reported the in vitro and in vivo antibacterial efficacy of phage therapy against this bacterium. This review collects data of all the P. aeruginosa phages sequenced to date, providing a better understanding about their biodiversity. This review further addresses the in vitro and in vivo results obtained by using phages to treat or prevent P. aeruginosa infections as well as the major hurdles associated with this therapy.
Collapse
Affiliation(s)
- Diana P Pires
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Diana Vilas Boas
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Sanna Sillankorva
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Joana Azeredo
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|