51
|
Horst EA, van den Brink LM, Mayorga EJ, Al-Qaisi M, Rodriguez-Jimenez S, Goetz BM, Abeyta MA, Kvidera SK, Caixeta LS, Rhoads RP, Baumgard LH. Evaluating acute inflammation's effects on hepatic triglyceride content in experimentally induced hyperlipidemic dairy cows in late lactation. J Dairy Sci 2020; 103:9620-9633. [PMID: 32773314 DOI: 10.3168/jds.2020-18686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
Inflammation appears to be a predisposing factor and key component of hepatic steatosis in a variety of species. Objectives were to evaluate effects of inflammation [induced via intravenous lipopolysaccharide (LPS) infusion] on metabolism and liver lipid content in experimentally induced hyperlipidemic lactating cows. Cows (765 ± 32 kg of body weight; 273 ± 35 d in milk) were enrolled in 2 experimental periods (P); during P1 (5 d), baseline data were obtained. At the start of P2 (2 d), cows were assigned to 1 of 2 treatments: (1) intralipid plus control (IL-CON; 3 mL of saline; n = 5) or (2) intralipid plus LPS (IL-LPS; 0.375 μg of LPS/kg of body weight; n = 5). Directly following intravenous bolus (saline or LPS) administration, intralipid (20% fat emulsion) was intravenously infused continuously (200 mL/h) for 16 h to induce hyperlipidemia during which feed was removed. Blood samples were collected at -0.5, 0, 4, 8, 12, 16, 24, and 48 h relative to bolus administration, and liver biopsies were obtained on d 1 of P1 and at 16 and 48 h after the bolus. By experimental design (feed was removed during the first 16 h of d 1), dry matter intake decreased in both treatments on d 1 of P2, but the magnitude of reduction was greater in LPS cows. Dry matter intake of IL-LPS remained decreased on d 2 of P2, whereas IL-CON cows returned to baseline. Milk yield decreased in both treatments during P2, but the extent and duration was longer in LPS-infused cows. Administering LPS increased circulating LPS-binding protein (2-fold) at 8 h after bolus, after which it markedly decreased (84%) below baseline for the remainder of P2. Serum amyloid A concentrations progressively increased throughout P2 in IL-LPS cows (3-fold, relative to controls). Lipid infusion gradually increased nonesterified fatty acids and triglycerides in both treatments relative to baseline (3- and 2.5-fold, respectively). Interestingly, LPS infusion blunted the peak in nonesterified fatty acids, such that concentrations peaked (43%) higher in IL-CON compared with IL-LPS cows and heightened the increase in serum triglycerides (1.5-fold greater relative to controls). Liver fat content remained similar in IL-LPS relative to P1 at 16 h; however, hyperlipidemia alone (IL-CON) increased liver fat (36% relative to P1). No treatment differences in liver fat were observed at 48 h. In IL-LPS cows, circulating insulin increased markedly at 4 h after bolus (2-fold relative to IL-CON), and then gradually decreased during the 16 h of lipid infusion. Inducing inflammation with simultaneous hyperlipidemia altered the characteristic patterns of insulin and LPS-binding protein but did not cause fatty liver.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L S Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech University, Blacksburg 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
52
|
Duff AF, Bielke LR, Relling AE. Technical note: fluorescein as an indicator of enteric mucosal barrier function in preruminant lambs. J Anim Sci 2020; 98:skaa198. [PMID: 32564064 PMCID: PMC7333214 DOI: 10.1093/jas/skaa198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 11/14/2022] Open
Abstract
Increased intestinal permeability can be observed during the physiologic stress response and has been linked to suppression of animal health and performance. Previously published data have shown the efficacy of fluorescein isothiocyanate dextran (FITC-d; 4.17 mg/kg) as a marker of enteric inflammation and mucosal barrier function in multiple species. Fluorescein is a smaller, less expensive alternative molecule possessing similar properties. The following two experiments compared FITC-d and fluorescein as potential indicators of intestinal permeability in pre- and postweaned lambs administered daily intramuscular injections of dexamethasone (Dex; 0.1 mg/kg) for 1 wk. Experiment 1 consisted of five preweaned lambs that were placed in one of two treatment groups: fluorescein with Dex (F+Dex) or fluorescein only (F). On day 7, blood was collected before and 1 h after oral administration of fluorescein (50 mg/kg). Experiment 2 included 12 weaned lambs and four treatment groups: F+Dex, F, FITC-d with Dex (Fd+Dex), and FITC-d only (Fd). On day 7, blood was collected before and 2 h after oral administration of FITC-d (4.17 mg/kg) or fluorescein (50 mg/kg). Plasma fluorescence was reported as the ratio between T1h/T0 or T2h/T0 for experiment 1 or 2, respectively. Experiment 1 showed a significant increase in T1h/T0 ratio of F+Dex relative to F lambs (P = 0.05) indicative of increased leaky gut; however, no differences (P = 0.22) were obtained in experiment 2. Results of these experiments suggest fluorescein may serve as a suitable marker of enteric permeability in preruminant lambs, but not in those with functional rumens.
Collapse
Affiliation(s)
- Audrey F Duff
- Department of Animal Sciences, The Ohio State University, Wooster, OH
| | - Lisa R Bielke
- Department of Animal Sciences, The Ohio State University, Wooster, OH
| | | |
Collapse
|
53
|
Horst EA, Mayorga EJ, Al-Qaisi M, Abeyta MA, Portner SL, McCarthy CS, Goetz BM, Kvidera SK, Baumgard LH. Effects of maintaining eucalcemia following immunoactivation in lactating Holstein dairy cows. J Dairy Sci 2020; 103:7472-7486. [PMID: 32448571 DOI: 10.3168/jds.2020-18268] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
Periparturient hypocalcemia is a common metabolic disorder and it is ostensibly associated with negative health and production outcomes. Acute infection also markedly decreases circulating Ca, but the reasons for and consequences of it on physiological and immunological parameters are unknown. Objectives were to evaluate the effects of maintaining eucalcemia on production, metabolic, and immune variables following an intravenous lipopolysaccharide (LPS) challenge. Twelve multiparous lactating Holstein cows (717 ± 20 kg of body weight; 176 ± 34 d in milk; parity 3 ± 0.2) were enrolled in a study containing 2 experimental periods (P); during P1 (3 d), cows consumed feed ad libitum and baseline values were obtained. At the initiation of P2 (4 d), cows were randomly assigned to 1 of 2 treatments: (1) LPS administered (LPS-Con; 0.5 μg/kg of body weight LPS; n = 6) or (2) LPS administered + eucalcemic clamp (LPS-Ca; 0.5 μg/kg of body weight LPS; Ca infusion; n = 6). Cows were fasted for the first 12 h during P2. After LPS administration, ionized Ca was determined every 15 min for 6 h and every 30 min for an additional 6 h and intravenous Ca infusion was adjusted in LPS-Ca cows to maintain eucalcemia. Blood ionized Ca was decreased 23% for the first 12 h postbolus in LPS-Con cows, and by design, Ca infusion prevented hypocalcemia. To maintain eucalcemia for the 12 h, 13.7 g of Ca was infused. The total Ca deficit (including Ca not secreted into milk) accumulated over the 12 h was 10.4 and 20.2 g for the LPS-Con and LPS-Ca treatments, respectively. Mild hyperthermia (0.8°C) occurred for ∼6 h post-LPS administration relative to P1. From 6 to 7 h postbolus rectal temperature from LPS-Ca cows was increased (0.6°C) relative to LPS-Con cows. On d 1 of P2, milk yield decreased (61%) in both treatments relative to P1. Relative to LPS-Con cows, milk yield decreased (15%) in LPS-Ca cows during P2. Overall, circulating LPS-binding protein continuously increased postbolus, and at 24 h LPS-binding protein levels in LPS-Ca cows were increased (80%) relative to LPS-Con cows. During P2, serum amyloid A increased (4-fold) in both treatments relative to P1. Administering LPS initially decreased circulating neutrophils, then cell counts progressively increased with time. Calcium infusion decreased neutrophil counts (40%) from 9 to 12 h postbolus relative to LPS-Con cows. Neutrophil function, as assessed by oxidative burst and myeloperoxidase production, did not differ due to treatment. In summary, maintaining eucalcemia (via intravenous Ca infusion) during an immune challenge appeared to intensify inflammation and adversely affect lactation performance.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - S L Portner
- Department of Animal Science, Iowa State University, Ames 50011
| | - C S McCarthy
- Department of Animal Science, Iowa State University, Ames 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
54
|
McCarthy CS, Dooley BC, Branstad EH, Kramer AJ, Horst EA, Mayorga EJ, Al-Qaisi M, Abeyta MA, Perez-Hernandez G, Goetz BM, Castillo AR, Knobbe MR, Macgregor CA, Russi JP, Appuhamy JADRN, Ramirez-Ramirez HA, Baumgard LH. Energetic metabolism, milk production, and inflammatory response of transition dairy cows fed rumen-protected glucose. J Dairy Sci 2020; 103:7451-7461. [PMID: 32448574 DOI: 10.3168/jds.2020-18151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 11/19/2022]
Abstract
Objectives were to evaluate the effects of rumen-protected glucose (RPG) supplementation on milk production, post-absorptive metabolism, and inflammatory biomarkers in transition dairy cows. Fifty-two multiparous cows were blocked by previous 305-d mature-equivalent milk (305ME) yield and randomly assigned to 1 of 2 iso-energetic and iso-nitrogenous treatments: (1) control diet (CON; n = 26) or (2) a diet containing RPG (pre-fresh 5.3% of dry matter and 6.0% of dry matter postpartum; n = 26). Cows received their respective dietary treatments from d -21 to 28 relative to calving, and dry matter intake was calculated daily during the same period. Weekly body weight, milk composition, and fecal pH were recorded until 28 d in milk (DIM), and milk yield was recorded through 105 DIM. Blood samples were collected on d -7, 3, 7, 14, and 28 relative to calving. Data were analyzed using repeated measures in the MIXED procedure (SAS Institute Inc., Cary, NC) with previous 305ME as a covariate. Fecal pH was similar between treatments and decreased (0.6 units) postpartum. Dry matter intake pre- and postpartum were unaffected by treatment, as was milk yield during the first 28 or 105 DIM. Milk fat, protein, and lactose concentration were similar for both treatments. Blood urea nitrogen and plasma glucose concentrations were unaffected by treatment; however, results showed increased concentration of circulating insulin (27%), lower nonesterified fatty acids (28%), and lower postpartum β-hydroxybutyrate (24%) in RPG-fed cows. Overall, circulating lipopolysaccharide-binding protein and haptoglobin did not differ by treatment, but at 7 DIM, RPG-fed cows had decreased lipopolysaccharide-binding protein and haptoglobin concentrations (31 and 27%, respectively) compared with controls. Supplemental RPG improved some biomarkers of post-absorptive energetics and inflammation during the periparturient period, changes primarily characterized by increased insulin and decreased nonesterified fatty acids concentrations, with a concomitant reduction in acute phase proteins without changing milk production and composition.
Collapse
Affiliation(s)
- C S McCarthy
- Department of Animal Science, Iowa State University, Ames 50011
| | - B C Dooley
- Department of Animal Science, Iowa State University, Ames 50011
| | - E H Branstad
- Department of Animal Science, Iowa State University, Ames 50011
| | - A J Kramer
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - A R Castillo
- University of California, Cooperative Extension, Merced 95340
| | - M R Knobbe
- Grain States Soya Inc., West Point, NE 68788
| | | | - J P Russi
- Rusitec Argentina, General Villegas, Buenos Aires 6230, Argentina
| | | | | | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
55
|
Clinical Ketosis-Associated Alteration of Gene Expression in Holstein Cows. Genes (Basel) 2020; 11:genes11020219. [PMID: 32093082 PMCID: PMC7073836 DOI: 10.3390/genes11020219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Ketosis is one of the most prevalent transition metabolic disorders in dairy cows, and has been intrinsically influenced by both genetic and nutritional factors. However, altered gene expression with respective to dairy cow ketosis has not been addressed yet, especially at the genome-wide level. In this study, we recruited nine Holsteins diagnosed with clinical ketosis and ten healthy controls, for which whole blood samples were collected at both prepartum and postpartum. Four groups of blood samples were defined: from cows with ketosis at prepartum (PCK, N = 9) and postpartum (CK, N = 9), respectively, and controls at prepartum (PHC, N = 10) and postpartum (HC, N = 10). RNA-Seq approach was used for investigating gene expression, by which a total of 27,233 genes were quantified with four billion high-quality reads. Subsequently, we revealed 75 and four differentially expressed genes (DEGs) between sick and control cows at postpartum and prepartum, respectively, which indicated that sick and control cows had similar gene expression patterns at prepartum. Meanwhile, there were 95 DEGs between postpartum and prepartum for sick cows, which showed depressed changes of gene expression during this transition period in comparison with healthy cows (428 DEGs). Functional analyses revealed the associated DEGs with ketosis were mainly involved in biological stress response, ion homeostasis, AA metabolism, energy signaling, and disease related pathways. Finally, we proposed that the expression level of STX1A would be potentially used as a new biomarker because it was the only gene that was highly expressed in sick cows at both prepartum and postpartum. These results could significantly help us to understand the underlying molecular mechanisms for incidence and progression of ketosis in dairy cows.
Collapse
|
56
|
Pascottini OB, LeBlanc SJ. Modulation of immune function in the bovine uterus peripartum. Theriogenology 2020; 150:193-200. [PMID: 31987594 DOI: 10.1016/j.theriogenology.2020.01.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/30/2022]
Abstract
There is a high risk of clinical or subclinical reproductive tract disease in the postpartum period in dairy cows. An integrated process of adaptive events should occur synchronously, including a robust but well-regulated immune response in the uterus. Failure of this process may result in reproductive tract inflammatory disease. Up to half of postpartum dairy cows are affected by metritis, purulent vaginal discharge (PVD), or subclinical endometritis. After parturition there is damage to the birth canal, the superficial layer of the endometrium is naturally wounded, and essentially all dairy cows have bacterial contamination in the uterus. Neutrophils are the most abundant type of inflammatory cell and the main line of defence against infection in the uterus. A prompt influx of neutrophils is associated with uterine health. Avoidance of clinical disease (metritis and PVD) depends in large part on how effective the immune response is at limiting the burden and effects of bacterial pathogens, while the occurrence of subclinical endometritis is more a function of avoiding excessive or persistent inflammation. Glucose supply, hypocalcemia, lipid mobilization from body fat, ketosis, and the flux of pro-inflammatory cytokines influence immune response and change rapidly and variably among individual cows. Effective but well-regulated inflammatory response will be favoured by best management practices for transition cows, but specific interventions to modulate immune response to prevent uterine disease remain developmental.
Collapse
Affiliation(s)
| | - Stephen J LeBlanc
- Department of Population Medicine, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
57
|
Horst EA, Kvidera SK, Abuajamieh M, Mayorga EJ, Al-Qaisi M, Baumgard LH. Short communication: Ketosis, feed restriction, and an endotoxin challenge do not affect circulating serotonin in lactating dairy cows. J Dairy Sci 2019; 102:11736-11743. [PMID: 31606210 DOI: 10.3168/jds.2019-17105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/20/2019] [Indexed: 11/19/2022]
Abstract
Circulating serotonin (5-hydroxytryptamine; 5-HT) appears to be associated with various energetic disorders and hypocalcemia during the transition period. The objective of this study was to evaluate the effects of ketosis, feed restriction (FR), and endotoxin challenge (models in which energetic and calcium metabolism are markedly altered) on circulating 5-HT in lactating Holstein cows. Blood samples were obtained from 3 separate experiments; circulating β-hydroxybutyrate (BHB), nonesterified fatty acids (NEFA), and glucose were measured in all 3 experiments, whereas ionized calcium (iCa2+) was measured only in the endotoxin challenge. In the ketosis study, blood samples from cows clinically diagnosed with ketosis (n = 9) or classified as healthy (n = 9) were obtained from a commercial dairy farm at d -7, 3, and 7 relative to calving. Ketosis was diagnosed using a urine-based test starting at 5 d in milk. There was no effect of health status on circulating 5-HT and no association between 5-HT and BHB, NEFA, or glucose; however, 5-HT concentrations progressively decreased following calving. In the FR experiment, mid-lactation cows were either fed ad libitum (n = 3) or restricted to 20% of their ad libitum intake (n = 5) for 5 d. There were no FR effects on circulating 5-HT, nor was FR correlated with energetic metabolites. In the immune activation model, mid-lactation cows were intravenously challenged with either lipopolysaccharide (LPS; 1.5 µg/kg of BW; n = 6) or sterile saline (control; n = 6). Administering LPS decreased (56%) blood iCa2+ but had no effect on circulating 5-HT, nor was there a correlation between circulating 5-HT and NEFA, BHB, or iCa2+. Circulating 5-HT tended to be positively correlated (r = 0.54) with glucose in Holstein cows administered LPS. In summary, in contrast to expectations, circulating 5-HT was unaffected in models of severely disturbed energetic and Ca2+ homeostasis.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Abuajamieh
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
58
|
Shen T, Li X, Loor JJ, Zhu Y, Du X, Wang X, Xing D, Shi Z, Fang Z, Li X, Liu G. Hepatic nuclear factor kappa B signaling pathway and NLR family pyrin domain containing 3 inflammasome is over-activated in ketotic dairy cows. J Dairy Sci 2019; 102:10554-10563. [PMID: 31495623 DOI: 10.3168/jds.2019-16706] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Ketosis is an important metabolic disease that can negatively affect the production efficiency of dairy cows. Earlier studies have revealed metabolic and inflammatory alterations in the blood associated with ketosis; however, a link between ketosis and hepatic inflammation has not been well documented. The objective of this study was to investigate whether the nuclear factor kappa B (NF-κB) signaling pathway and NLR family pyrin domain containing 3 (NLRP3) inflammasome were activated in the liver of ketotic cows. Liver and blood samples were collected from healthy (n = 15, control group) and ketotic (n = 15, ketosis group) cows that had a similar number of lactations (median = 3, range = 2 to 4) and days in milk (median = 6 d, range = 3 to 9 d). Results showed that serum levels of fatty acids, β-hydroxybutyrate (BHB), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were higher and glucose was lower in ketotic cows. Concentrations of serum proinflammatory cytokines IL18, tumor necrosis factor (TNF)-α, and IL1B were greater and the anti-inflammatory cytokine IL10 was lower in the ketosis group. Cows with ketosis had triacylglycerol accumulation in the liver. Upregulation of phosphorylated (p)-NF-κB and p-inhibitor of κB (IκB)α protein abundance in cows with ketosis indicated that the hepatic NF-κB signaling pathway was overactivated. The mRNA abundance of TNFA, inducible nitric oxide synthase (NOS2), IL18, and IL1B were greater and IL10 was lower in ketotic cows. More importantly, the mRNA and protein abundance of NLRP3 and caspase-1 (CASP1) along with CASP1 activity were greater in the liver of cows with ketosis. Overall, the data indicate that the onset of ketosis is accompanied by activation of the NF-κB signaling pathway and NLRP3 inflammasome, resulting in a state of inflammation.
Collapse
Affiliation(s)
- Taiyu Shen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Yiwei Zhu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiliang Du
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinghui Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Dongmei Xing
- Animal Medicine College, Hunan Agriculture University, Changsha, Hunan, 410128, China
| | - Zhen Shi
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhiyuan Fang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiaobing Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Guowen Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
59
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Amadori M, Bionaz M, Trevisi E. The role of altered immune function during the dry period in promoting the development of subclinical ketosis in early lactation. J Dairy Sci 2019; 102:9241-9258. [PMID: 31378488 DOI: 10.3168/jds.2019-16497] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Subclinical ketosis (SCK) may impair white blood cell (WBC) function and thus contribute to the risk of disease postpartum. This preliminary study investigated changes occurring in the immune system before disease onset to elucidate their role in the occurrence of SCK. A group of 13 Holstein dairy cows were housed in tie-stalls and retrospectively divided into 2 groups based on their levels of β-hydroxybutyrate (BHB) measured in plasma between calving day and 35 d from calving (DFC). Levels of BHB <1.4 mmol/L were found in 7 cows (control cows, CTR group) and levels >1.4 mmol/L were found in 6 cows at ≥1 of 6 time points considered (cows with SCK, KET group). From -48 to 35 DFC, body condition score, body weight, dry matter intake, rumination time, and milk yield were measured, and blood samples were collected regularly to assess the hematochemical profile and test the WBC function by ex vivo challenge assays. Data were submitted for ANOVA testing using a mixed model for repeated measurements that included health status and time and their interactions as fixed effects. Compared with CTR cows, KET cows had more pronounced activation of the immune system (higher plasma concentrations of proinflammatory cytokines, myeloperoxidase, and oxidant species, and greater IFN-γ responses to Mycobacterium avium), higher blood concentrations of γ-glutamyl transferase, and lower plasma concentrations of minerals before calving. Higher levels of nonesterified fatty acids, BHB, and glucose were detected in KET cows than in CTR cows during the dry period. The effect observed during the dry period was associated with a reduced dry matter intake, reduced plasma glucose, and increased fat mobilization (further increases in nonesterified fatty acids and BHB) during early lactation. A reduced milk yield was also detected in KET cows compared with CTR. The KET cows had an accentuated acute-phase response after calving (with greater concentrations of positive acute-phase proteins and lower concentrations of retinol than CTR cows) and impaired liver function (higher blood concentrations of glutamate-oxaloacetate transaminase and bilirubin). The WBC of the KET cows, compared with CTR cows, had a reduced response to an ex vivo stimulation assay, with lower production of proinflammatory cytokines and greater production of lactate. These alterations in the WBC could have been driven by the combined actions of metabolites related to the mobilization of lipids and the occurrence of a transient unresponsive state against stimulation aimed at preventing excessive inflammation. The associations identified here in a small number of cows in one herd should be investigated in larger studies.
Collapse
Affiliation(s)
- M Mezzetti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - F Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Amadori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratory of Cellular Immunology, 25124 Brescia, Italy
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
60
|
Pires JAA, Pawlowski K, Rouel J, Delavaud C, Foucras G, Germon P, Leroux C. Undernutrition modified metabolic responses to intramammary lipopolysaccharide but had limited effects on selected inflammation indicators in early-lactation cows. J Dairy Sci 2019; 102:5347-5360. [PMID: 30904313 DOI: 10.3168/jds.2018-15446] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
Abstract
The objective was to assess effects of experimentally induced undernutrition on responses to an intramammary lipopolysaccharide (LPS) challenge in early-lactation cows. Starting at 24 ± 3 d in milk, multiparous Holstein cows either received a ration containing 48% straw for 96 h to restrict nutrient intake (REST, n = 8) or were allowed ad libitum intake of a lactation diet (CONT, n = 9). After 72 h on diet or after an equivalent period for CONT, 50 µg of LPS (Escherichia coli 0111:B4) was injected into one healthy rear mammary quarter to induce an acute inflammation response. Blood samples were collected weekly until 7 wk of lactation, daily during feed restriction (or control), before and at 1, 2, 4, 6, 10, and 24 h relative to LPS injection. Foremilk quarter samples were collected before and at 4, 6, 10, and 24 h after LPS injection. Dry matter intake, milk yield, energy balance, plasma glucose, nonesterified fatty acids (NEFA), and β-hydroxybutyrate (BHB) concentrations did not differ between CONT and REST immediately before nutrient restriction in REST (least squares means at d -1 were 21.8, 39.0 kg/d, -2.5 MJ/d, and 3.78, 0.415, 0.66 mM, respectively) but were significantly altered at 72 h of nutrient restriction (9.8, 28.3 kg/d, -81.6 MJ/d, and 2.77, 1.672, and 2.98 mM, respectively), when the LPS challenge was performed. The rectal temperature increment from baseline values in response to LPS did not differ, but cortisol increment was greater and cortisol response area under the curve (AUC) tended to be greater [202 vs. 122 (ng/mL) × 10 h] for REST than CONT. No treatment differences were observed in foremilk IL-8, IL-1β, tumor necrosis factor-α, and chemokine (C-X-C motif) ligand 3 concentrations in response to LPS injection. Composite milk somatic cell count per milliliter (6.919 × 106 vs. 1.956 × 106 cells/mL) and total number of somatic cells secreted in milk per day were greater for REST than CONT during the day following LPS. Plasma glucose, urea, and insulin concentrations increased after the LPS challenge, suggesting establishment of insulin resistance and modifications of glucose metabolism to support acute inflammation in both CONT and REST. Nonetheless, nutrient-restricted cows had delayed plasma insulin and glucose responses to LPS, smaller insulin AUC but greater glucose AUC compared with CONT, despite the limited nutrient availability to sustain an inflammation response. Undernutrition altered peripheral metabolic responses to an intramammary LPS challenge but had limited effects on selected indicators of inflammation response in early-lactation cows.
Collapse
Affiliation(s)
- J A A Pires
- INRA, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - K Pawlowski
- INRA, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - J Rouel
- INRA, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - C Delavaud
- INRA, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - G Foucras
- IHAP (Interactions Hôtes-Agents pathognènes), Université de Toulouse, ENVT, INRA, UMR 1225, F-31076 Toulouse cedex 03, France
| | - P Germon
- ISP (Infectiologie et Santé Publique), INRA, Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - C Leroux
- INRA, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Department of Food Science and Technology, University of California Davis, Davis 95616
| |
Collapse
|
61
|
Mansouryar M, Mirzaei-Alamouti H, Dehghan Banadaky M, Sauerwein H, Mielenz M, Nielsen M. Short communication: Relationship between body condition score and plasma adipokines in early-lactating Holstein dairy cows. J Dairy Sci 2018; 101:8552-8558. [DOI: 10.3168/jds.2017-14122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/07/2018] [Indexed: 12/15/2022]
|
62
|
Rodriguez-Jimenez S, Haerr K, Trevisi E, Loor J, Cardoso F, Osorio J. Prepartal standing behavior as a parameter for early detection of postpartal subclinical ketosis associated with inflammation and liver function biomarkers in peripartal dairy cows. J Dairy Sci 2018; 101:8224-8235. [DOI: 10.3168/jds.2017-14254] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/13/2018] [Indexed: 11/19/2022]
|
63
|
Morrison EI, Reinhardt H, Leclerc H, DeVries TJ, LeBlanc SJ. Effect of rumen-protected B vitamins and choline supplementation on health, production, and reproduction in transition dairy cows. J Dairy Sci 2018; 101:9016-9027. [PMID: 30100511 DOI: 10.3168/jds.2018-14663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/25/2018] [Indexed: 01/08/2023]
Abstract
The objectives were to determine the effects of a rumen-protected blend of B vitamins and choline (RPBC) on the incidence of health disorders, milk yield, and reproduction in early lactation and the effects on gene expression and liver fat infiltration. A randomized controlled trial in 3 commercial dairy herds (n = 1,346 cows with group as the experimental unit; experiment 1) and a university research herd (n = 50 cows with cow as the experimental unit; experiment 2) evaluated the use of 100 g/cow per d of commercially available proprietary RPBC supplement (Transition VB, Jefo, St. Hyacinthe, Quebec, Canada), or a placebo, fed 3 wk before to 3 wk after calving. In experiment 2 liver biopsies were taken at 4 and 14 ± 1 d in milk to measure triacylglycerol concentrations and expression of 28 genes selected to represent relevant aspects of liver metabolism. Treatment effects were assessed using multivariable mixed logistic regression models for binary health and reproductive outcomes; linear regression models for milk yield, dry matter intake, and liver outcomes; and survival analysis for time insemination and pregnancy. In experiment 1, treatment did not have an effect on the incidence of hyperketonemia (blood β-hydroxybutyrate ≥ 1.2 mmol/L; cumulative incidence to 3 wk postpartum of 28 to 30%), clinical health disorders, or udder edema. The prevalence of anovulation at 8 wk postpartum was 11% in the treatment group and 23% in the control but did not differ statistically given group-level randomization. Pregnancy at first insemination (33 and 35%) and median time to pregnancy to 200 d in milk (96 and 97 d) were not different between treatment and control, respectively. No difference was observed between treatment groups in milk yield or components through the first 3 Dairy Herd Improvement Association test days (44 kg/d in both groups, accounting for parity and components). In experiment 2, there were no differences between treatment groups in feed intake. Mean blood β-hydroxybutyrate was lower at wk 3 in RPBC (0.6 vs. 0.9 ± 0.12 mmol/L) with no difference between treatments for mean blood concentrations of fatty acids (wk -1 or 1) and β-hydroxybutyrate at wk 1 or 2. The gene for acyl-CoA oxidase 1 (ACOX1) had lower mRNA abundance in RPBC with no difference between treatments for the other genes, but the expression of half of the genes assessed differed with days in milk. Liver triacylglycerol was lower in primiparous cows at 4 d in milk in RPBC (2.0 vs. 4.4 ± 1.2%) but not at 14 d in milk (2.2 vs. 3.2 ± 0.97%) with no treatment effect in multiparous cows (4.6 ± 0.8%). Accounting for parity, days in milk, fat and protein percentages, repeated test days, and a random effect of cow, no significant difference was observed between treatments in milk yield across the first 3 Dairy Herd Improvement Association tests (41.2 ± 1.3 in RPBC vs. 38.0 ± 1.4 kg/d in control). Under the diet and management conditions of the field study including low prevalence of clinical health disorders, in experiment 1 we did not detect a benefit of RPBC, but in experiment 2 liver fat content decreased in primiparous cows.
Collapse
Affiliation(s)
- E I Morrison
- Department of Population Medicine, University of Guelph, Ontario, N1G 2W1 Canada
| | - H Reinhardt
- Department of Population Medicine, University of Guelph, Ontario, N1G 2W1 Canada
| | - H Leclerc
- Jefo, St. Hyacinthe, Quebec, J2S 7B6 Canada
| | - T J DeVries
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - S J LeBlanc
- Department of Population Medicine, University of Guelph, Ontario, N1G 2W1 Canada.
| |
Collapse
|
64
|
Zenobi M, Scheffler T, Zuniga J, Poindexter M, Campagna S, Castro Gonzalez H, Farmer A, Barton B, Santos J, Staples C. Feeding increasing amounts of ruminally protected choline decreased fatty liver in nonlactating, pregnant Holstein cows in negative energy status. J Dairy Sci 2018; 101:5902-5923. [DOI: 10.3168/jds.2017-13973] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/01/2018] [Indexed: 12/18/2022]
|
65
|
Zhang S, Liu G, Xu C, Liu L, Zhang Q, Xu Q, Jia H, Li X, Li X. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes. Front Immunol 2018; 9:467. [PMID: 29593725 PMCID: PMC5854662 DOI: 10.3389/fimmu.2018.00467] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/21/2018] [Indexed: 01/04/2023] Open
Abstract
Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.
Collapse
Affiliation(s)
- Shiqi Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| | - Qiang Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qiushi Xu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Hongdou Jia
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
66
|
Effect of two treatment protocols for ketosis on the resolution, postpartum health, milk yield, and reproductive outcomes of dairy cows. Theriogenology 2018; 106:53-59. [DOI: 10.1016/j.theriogenology.2017.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/05/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
|
67
|
Baumgard L, Collier R, Bauman D. A 100-Year Review: Regulation of nutrient partitioning to support lactation. J Dairy Sci 2017; 100:10353-10366. [DOI: 10.3168/jds.2017-13242] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/12/2017] [Indexed: 01/26/2023]
|
68
|
Wankhade PR, Manimaran A, Kumaresan A, Jeyakumar S, Ramesha KP, Sejian V, Rajendran D, Varghese MR. Metabolic and immunological changes in transition dairy cows: A review. Vet World 2017; 10:1367-1377. [PMID: 29263601 PMCID: PMC5732345 DOI: 10.14202/vetworld.2017.1367-1377] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/23/2017] [Indexed: 01/09/2023] Open
Abstract
Smooth transition from pregnancy to lactation is important for high productive and reproductive performance during later postpartum period in dairy animals. On the other hand, the poor transition often leads to huge economic loss to dairy farmers due to compromised production and reproduction. Therefore, understanding the causes and consequence of metabolic changes during the transition period is very important for postpartum health management. In this review, metabolic changes with reference to negative energy balance in transition cow and its effect on health and reproduction during the later postpartum period in dairy animals are discussed besides the role of metabolic inflammation in postpartum performance in dairy animals.
Collapse
Affiliation(s)
- Pratik Ramesh Wankhade
- Livestock Research Centre, Southern Regional Station, ICAR-National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - A Manimaran
- Livestock Research Centre, Southern Regional Station, ICAR-National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - A Kumaresan
- Livestock Research Centre, Southern Regional Station, ICAR-National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - S Jeyakumar
- Livestock Research Centre, Southern Regional Station, ICAR-National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - K P Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - V Sejian
- Division of Animal Physiology, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - D Rajendran
- Division of Animal Nutrition, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru - 560 030, Karnataka, India
| | - Minu Rachel Varghese
- Dairy Production Section, Southern Regional Station, ICAR-National Dairy Research Institute, Adugodi, Bengaluru - 560 030, Karnataka, India
| |
Collapse
|
69
|
Kvidera S, Horst E, Sanz Fernandez M, Abuajamieh M, Ganesan S, Gorden P, Green H, Schoenberg K, Trout W, Keating A, Baumgard L. Characterizing effects of feed restriction and glucagon-like peptide 2 administration on biomarkers of inflammation and intestinal morphology. J Dairy Sci 2017; 100:9402-9417. [DOI: 10.3168/jds.2017-13229] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
|
70
|
Zhou Z, Trevisi E, Luchini D, Loor J. Differences in liver functionality indexes in peripartal dairy cows fed rumen-protected methionine or choline are associated with performance, oxidative stress status, and plasma amino acid profiles. J Dairy Sci 2017; 100:6720-6732. [DOI: 10.3168/jds.2016-12299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/02/2017] [Indexed: 11/19/2022]
|
71
|
Kvidera S, Dickson M, Abuajamieh M, Snider D, Fernandez MVS, Johnson J, Keating A, Gorden P, Green H, Schoenberg K, Baumgard L. Intentionally induced intestinal barrier dysfunction causes inflammation, affects metabolism, and reduces productivity in lactating Holstein cows. J Dairy Sci 2017; 100:4113-4127. [DOI: 10.3168/jds.2016-12349] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/30/2017] [Indexed: 01/09/2023]
|
72
|
Kvidera S, Horst E, Abuajamieh M, Mayorga E, Fernandez MS, Baumgard L. Glucose requirements of an activated immune system in lactating Holstein cows. J Dairy Sci 2017; 100:2360-2374. [DOI: 10.3168/jds.2016-12001] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/06/2016] [Indexed: 12/31/2022]
|