51
|
Protein-directed self-assembly of a fullerene crystal. Nat Commun 2016; 7:11429. [PMID: 27113637 PMCID: PMC4853425 DOI: 10.1038/ncomms11429] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/23/2016] [Indexed: 01/03/2023] Open
Abstract
Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design. Self-assembly enables complex structures to be fabricated from a few relatively simple components, but requires a detailed understanding of how the constituents may interact. Here, the authors report the rational assembly and crystallographic characterization of a fullerene-protein superstructure.
Collapse
|
52
|
Kim YN, Jung Y. Artificial supramolecular protein assemblies as functional high-order protein scaffolds. Org Biomol Chem 2016; 14:5352-6. [DOI: 10.1039/c6ob00116e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Artificial supramolecular protein assemblies can serve as novel high-order scaffolds that can display various functional proteins with defined valencies and organization, offering unprecedented functional bio-architectures.
Collapse
Affiliation(s)
- Yu-na Kim
- Department of Chemistry
- Korea Advanced Institute of Science and Technology
- Daejeon 305-701
- Korea
| | - Yongwon Jung
- Department of Chemistry
- Korea Advanced Institute of Science and Technology
- Daejeon 305-701
- Korea
| |
Collapse
|
53
|
López-Sagaseta J, Malito E, Rappuoli R, Bottomley MJ. Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J 2015; 14:58-68. [PMID: 26862374 PMCID: PMC4706605 DOI: 10.1016/j.csbj.2015.11.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/10/2015] [Indexed: 01/09/2023] Open
Abstract
For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet preventable by vaccination. This large unmet medical need demands further research and the development of novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to overcome the latter is to design antigen nanoparticles: assemblies of polypeptides that present multiple copies of subunit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness, geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective strength of multiple binding sites (avidity) and can provide improved antigen stability and immunogenicity. Several exciting advances have emerged lately, including preclinical evidence that this strategy may be applicable for the development of innovative new vaccines, for example, protecting against influenza, human immunodeficiency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanoparticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in the rational design of vaccine antigens.
Collapse
Affiliation(s)
| | - Enrico Malito
- GlaxoSmithKline Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - Rino Rappuoli
- GlaxoSmithKline Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | | |
Collapse
|
54
|
Bale JB, Park RU, Liu Y, Gonen S, Gonen T, Cascio D, King NP, Yeates TO, Baker D. Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression. Protein Sci 2015; 24:1695-701. [PMID: 26174163 PMCID: PMC4594668 DOI: 10.1002/pro.2748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022]
Abstract
We recently reported the development of a computational method for the design of coassembling multicomponent protein nanomaterials. While four such materials were validated at high-resolution by X-ray crystallography, low yield of soluble protein prevented X-ray structure determination of a fifth designed material, T33-09. Here we report the design and crystal structure of T33-31, a variant of T33-09 with improved soluble yield resulting from redesign efforts focused on mutating solvent-exposed side chains to charged amino acids. The structure is found to match the computational design model with atomic-level accuracy, providing further validation of the design approach and demonstrating a simple and potentially general means of improving the yield of designed protein nanomaterials.
Collapse
Affiliation(s)
- Jacob B Bale
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Graduate Program in Molecular and Cellular Biology, University of WashingtonSeattle, Washington, 98195
| | - Rachel U Park
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
| | - Yuxi Liu
- Department of Chemistry and Biochemistry, UCLALos Angeles, California, 90095
| | - Shane Gonen
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Janelia Research Campus, Howard Hughes Medical InstituteAshburn, Virginia, 20147
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical InstituteAshburn, Virginia, 20147
| | - Duilio Cascio
- Institute for Genomics and Proteomics, UCLA-DOELos Angeles, California, 90095
| | - Neil P King
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Institute for Protein Design, University of WashingtonSeattle, Washington, 98195
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, UCLALos Angeles, California, 90095
- Institute for Genomics and Proteomics, UCLA-DOELos Angeles, California, 90095
| | - David Baker
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Institute for Protein Design, University of WashingtonSeattle, Washington, 98195
- Howard Hughes Medical Institute, University of WashingtonSeattle, Washington, 98195
| |
Collapse
|
55
|
Lai YT, Jiang L, Chen W, Yeates TO. On the predictability of the orientation of protein domains joined by a spanning alpha-helical linker. Protein Eng Des Sel 2015; 28:491-9. [DOI: 10.1093/protein/gzv035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/14/2022] Open
|
56
|
Kobayashi N, Yanase K, Sato T, Unzai S, Hecht MH, Arai R. Self-Assembling Nano-Architectures Created from a Protein Nano-Building Block Using an Intermolecularly Folded Dimeric de Novo Protein. J Am Chem Soc 2015; 137:11285-93. [PMID: 26120734 DOI: 10.1021/jacs.5b03593] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design of novel proteins that self-assemble into supramolecular complexes is an important step in the development of synthetic biology and nanotechnology. Recently, we described the three-dimensional structure of WA20, a de novo protein that forms an intermolecularly folded dimeric 4-helix bundle (PDB code 3VJF ). To harness the unusual intertwined structure of WA20 for the self-assembly of supramolecular nanostructures, we created a protein nanobuilding block (PN-Block), called WA20-foldon, by fusing the dimeric structure of WA20 to the trimeric foldon domain of fibritin from bacteriophage T4. The WA20-foldon fusion protein was expressed in the soluble fraction in Escherichia coli, purified, and shown to form several homooligomeric forms. The stable oligomeric forms were further purified and characterized by a range of biophysical techniques. Size exclusion chromatography, multiangle light scattering, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS) analyses indicate that the small (S form), middle (M form), and large (L form) forms of the WA20-foldon oligomers exist as hexamer (6-mer), dodecamer (12-mer), and octadecamer (18-mer), respectively. These findings suggest that the oligomers in multiples of 6-mer are stably formed by fusing the interdigitated dimer of WA20 with the trimer of foldon domain. Pair-distance distribution functions obtained from the Fourier inversion of the SAXS data suggest that the S and M forms have barrel- and tetrahedron-like shapes, respectively. These results demonstrate that the de novo WA20-foldon is an effective building block for the creation of self-assembling artificial nanoarchitectures.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Japan Society for the Promotion of Science , Chiyoda, Tokyo 102-8471, Japan
| | | | | | - Satoru Unzai
- Graduate School of Medical Life Science, Yokohama City University , Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Michael H Hecht
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Ryoichi Arai
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University , Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
57
|
Doll TAPF, Neef T, Duong N, Lanar DE, Ringler P, Müller SA, Burkhard P. Optimizing the design of protein nanoparticles as carriers for vaccine applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1705-13. [PMID: 26051652 PMCID: PMC4587294 DOI: 10.1016/j.nano.2015.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 01/19/2023]
Abstract
Successful vaccine development remains a huge challenge for infectious diseases such as malaria, HIV and influenza. As a novel way to present antigenic epitopes to the immune system, we have developed icosahedral self-assembling protein nanoparticles (SAPNs) to serve as a prototypical vaccine platform for infectious diseases. Here we examine some biophysical factors that affect the self-assembly of these nanoparticles, which have as basic building blocks coiled-coil oligomerization domains joined by a short linker region. Relying on in silico computer modeling predictions, we selected five different linker regions from the RCSB protein database that connect oligomerization domains, and then further studied the self-assembly and stability of in vitro produced nanoparticles through biophysical characterization of formed particles. One design in particular, T2i88, revealed excellent self-assembly and homogeneity thus paving the way toward a more optimized nanoparticle for vaccine applications. From the Clinical Editor Despite the widespread use of vaccines worldwide, successful development of vaccines against some diseases remains a challenge still. In this article, the authors investigated the physic-chemical and biological properties of icosahedral self-assembling protein nanoparticles (SAPNs), which mimic viral particles, in order to utilize this technology as potential platform for future design of vaccines.
Collapse
Affiliation(s)
- Tais A P F Doll
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
| | - Tobias Neef
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nha Duong
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - David E Lanar
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, MD, USA
| | - Philippe Ringler
- Center for Cellular Imaging and Nano Analytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, Basel, Switzerland
| | - Shirley A Müller
- Center for Cellular Imaging and Nano Analytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, Basel, Switzerland
| | - Peter Burkhard
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
58
|
Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Nat Commun 2015; 6:7134. [PMID: 25972078 PMCID: PMC4479010 DOI: 10.1038/ncomms8134] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/08/2015] [Indexed: 02/08/2023] Open
Abstract
Supramolecular protein assemblies offer novel nanoscale architectures with molecular precision and unparalleled functional diversity. A key challenge, however, is to create precise nano-assemblies of functional proteins with both defined structures and a controlled number of protein-building blocks. Here we report a series of supramolecular green fluorescent protein oligomers that are assembled in precise polygonal geometries and prepared in a monodisperse population. Green fluorescent protein is engineered to be self-assembled in cells into oligomeric assemblies that are natively separated in a single-protein resolution by surface charge manipulation, affording monodisperse protein (nano)polygons from dimer to decamer. Several functional proteins are multivalently displayed on the oligomers with controlled orientations. Spatial arrangements of protein oligomers and displayed functional proteins are directly visualized by a transmission electron microscope. By employing our functional protein assemblies, we provide experimental insight into multivalent protein–protein interactions and tools to manipulate receptor clustering on live cell surfaces. Supramolecular protein assemblies can provide novel nano-architectures with diverse structures and functions. Here, the authors report a fabrication strategy for a series of monodisperse protein oligomers, which allows valency-controlled display of various functional proteins.
Collapse
|
59
|
Gao X, Zhao C, Yu T, Yang S, Ren Y, Wei D. Construction of a reusable multi-enzyme supramolecular device via disulfide bond locking. Chem Commun (Camb) 2015; 51:10131-3. [DOI: 10.1039/c5cc02544c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy for constructing a reusable multi-enzyme supramolecular device was developed by reprogramming protein–protein interactions and disulfide locking.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chengcheng Zhao
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Ting Yu
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Shengli Yang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
60
|
Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 2014; 6:1065-71. [PMID: 25411884 PMCID: PMC4239666 DOI: 10.1038/nchem.2107] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022]
Abstract
Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of the cage showed atomic level agreement with the designed model, while electron microscopy, native mass spectrometry, and small angle x-ray scattering revealed alternate assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will likely require limiting flexibility to select against alternative forms. These results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences.
Collapse
|
61
|
Gao X, Yang S, Zhao C, Ren Y, Wei D. Artificial Multienzyme Supramolecular Device: Highly Ordered Self-Assembly of Oligomeric Enzymes In Vitro and In Vivo. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
62
|
Gao X, Yang S, Zhao C, Ren Y, Wei D. Artificial Multienzyme Supramolecular Device: Highly Ordered Self-Assembly of Oligomeric Enzymes In Vitro and In Vivo. Angew Chem Int Ed Engl 2014; 53:14027-30. [DOI: 10.1002/anie.201405016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/19/2014] [Indexed: 12/13/2022]
|
63
|
Zhang J, Zheng F, Grigoryan G. Design and designability of protein-based assemblies. Curr Opin Struct Biol 2014; 27:79-86. [DOI: 10.1016/j.sbi.2014.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
|
64
|
Accurate design of co-assembling multi-component protein nanomaterials. Nature 2014; 510:103-8. [PMID: 24870237 DOI: 10.1038/nature13404] [Citation(s) in RCA: 426] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/25/2014] [Indexed: 12/19/2022]
Abstract
The self-assembly of proteins into highly ordered nanoscale architectures is a hallmark of biological systems. The sophisticated functions of these molecular machines have inspired the development of methods to engineer self-assembling protein nanostructures; however, the design of multi-component protein nanomaterials with high accuracy remains an outstanding challenge. Here we report a computational method for designing protein nanomaterials in which multiple copies of two distinct subunits co-assemble into a specific architecture. We use the method to design five 24-subunit cage-like protein nanomaterials in two distinct symmetric architectures and experimentally demonstrate that their structures are in close agreement with the computational design models. The accuracy of the method and the number and variety of two-component materials that it makes accessible suggest a route to the construction of functional protein nanomaterials tailored to specific applications.
Collapse
|
65
|
Production and applications of engineered viral capsids. Appl Microbiol Biotechnol 2014; 98:5847-58. [PMID: 24816622 DOI: 10.1007/s00253-014-5787-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
As biological agents, viruses come in an astounding range of sizes, with varied shapes and surface morphologies. The structures of viral capsids are generally assemblies of hundreds of copies of one or a few proteins which can be harnessed for use in a wide variety of applications in biotechnology, nanotechnology, and medicine. Despite their complexity, many capsid types form as homogenous populations of precise geometrical assemblies. This is important in both medicine, where well-defined therapeutics are critical for drug performance and federal approval, and nanotechnology, where precise placement affects the properties of the desired material. Here we review the production of viruses and virus-like particles with methods for selecting and manipulating the size, surface chemistry, assembly state, and interior cargo of capsid. We then discuss many of the applications used in research today and the potential commercial and therapeutic products from engineered viral capsids.
Collapse
|
66
|
Bellapadrona G, Elbaum M. Supramolecular Protein Assemblies in the Nucleus of Human Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
67
|
Bellapadrona G, Elbaum M. Supramolecular protein assemblies in the nucleus of human cells. Angew Chem Int Ed Engl 2014; 53:1534-7. [PMID: 24453074 DOI: 10.1002/anie.201309163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Indexed: 01/29/2023]
Abstract
Genetically encoded supramolecular protein assemblies (SMPAs) are induced to form in living cells by combination of distinct self-assembly properties. A single fusion construct contains genes encoding the heavy chain (H) of human ferritin and the citrine fluorescent protein, the latter exposing a weak dimerization interface, as well as a nuclear localization signal. Upon expression in HeLa cells, in vivo confocal fluorescence and differential interference contrast imaging revealed extended SMPA structures exclusively in the nuclei. Assemblies were typically round and took alveolar, shell-like, or hybrid structure. Transmission electron microscopy revealed a crystalline packing. Site-specific mutagenesis of the citrine dimerization interface clarified the mechanism of SMPA formation. The constituent proteins retained their activity in iron binding and fluorescence emission, thus suggesting a general strategy for formation of synthetic cellular bodies with specific biochemical function.
Collapse
Affiliation(s)
- Giuliano Bellapadrona
- Dept of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel)
| | | |
Collapse
|
68
|
van Eldijk MB, Pieters BJ, Mikhailov VA, Robinson CV, van Hest JCM, Mecinović J. Catenane versus ring: do both assemblies of CS2 hydrolase exhibit the same stability and catalytic activity? Chem Sci 2014. [DOI: 10.1039/c4sc00059e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|