51
|
Edwards AC, Aliev F, Bierut LJ, Bucholz KK, Edenberg H, Hesselbrock V, Kramer J, Kuperman S, Nurnberger JI, Schuckit MA, Porjesz B, Dick DM. Genome-wide association study of comorbid depressive syndrome and alcohol dependence. Psychiatr Genet 2012; 22:31-41. [PMID: 22064162 PMCID: PMC3241912 DOI: 10.1097/ypg.0b013e32834acd07] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Depression and alcohol dependence (AD) are common psychiatric disorders that often co-occur. Both disorders are genetically influenced, with heritability estimates in the range of 35-60%. In addition, evidence from twin studies suggests that AD and depression are genetically correlated. Herein, we report results from a genome-wide association study of a comorbid phenotype, in which cases meet the Diagnostic and Statistical Manual of Mental Disorders-IV symptom threshold for major depressive symptomatology and the Diagnostic and Statistical Manual of Mental Disorders-IV criteria for AD. METHODS Samples (N=467 cases and N=407 controls) were of European-American descent and were genotyped using the Illumina Human 1M BeadChip array. RESULTS Although no single-nucleotide polymorphism (SNP) meets genome-wide significance criteria, we identified 10 markers with P values less than 1 × 10(-5), seven of which are located in known genes, which have not been previously implicated in either disorder. Genes harboring SNPs yielding P values less than 1 × 10(-5) are functionally enriched for a number of gene ontology categories, notably several related to glutamatergic function. Investigation of expression localization using online resources suggests that these genes are expressed across a variety of tissues, including behaviorally relevant brain regions. Genes that have been previously associated with depression, AD, or other addiction-related phenotypes - such as CDH13, CSMD2, GRID1, and HTR1B - were implicated by nominally significant SNPs. Finally, the degree of overlap of significant SNPs between a comorbid phenotype and an AD-only phenotype is modest. CONCLUSION These results underscore the complex genomic influences on psychiatric phenotypes and suggest that a comorbid phenotype is partially influenced by genetic variants that do not affect AD alone.
Collapse
Affiliation(s)
- Alexis C Edwards
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia 23298-0126, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Yasumura M, Yoshida T, Lee SJ, Uemura T, Joo JY, Mishina M. Glutamate receptor δ1 induces preferentially inhibitory presynaptic differentiation of cortical neurons by interacting with neurexins through cerebellin precursor protein subtypes. J Neurochem 2012; 121:705-16. [PMID: 22191730 DOI: 10.1111/j.1471-4159.2011.07631.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glutamate receptor (GluR) δ1 is widely expressed in the developing forebrain, whereas GluRδ2 is selectively expressed in cerebellar Purkinje cells. Recently, we found that trans-synaptic interaction of postsynaptic GluRδ2 and pre-synaptic neurexins (NRXNs) through cerebellin precursor protein (Cbln) 1 mediates excitatory synapse formation in the cerebellum. Thus, a question arises whether GluRδ1 regulates synapse formation in the forebrain. In this study, we showed that the N-terminal domain of GluRδ1 induced inhibitory presynaptic differentiation of some populations of cultured cortical neurons. When Cbln1 or Cbln2 was added to cultures, GluRδ1 expressed in HEK293T cells induced preferentially inhibitory presynaptic differentiation of cultured cortical neurons. The synaptogenic activity of GluRδ1 was suppressed by the addition of the extracellular domain of NRXN1α or NRXN1β containing splice segment 4. Cbln subtypes directly bound to the N-terminal domain of GluRδ1. The synaptogenic activity of GluRδ1 in the presence of Cbln subtypes correlated well with their binding affinities. When transfected to cortical neurons, GluRδ1 stimulated inhibitory synapse formation in the presence of Cbln1 or Cbln2. These results together with differential interactions of Cbln subtypes with NRXN variants suggest that GluRδ1 induces preferentially inhibitory presynaptic differentiation of cortical neurons by interacting with NRXNs containing splice segment 4 through Cbln subtypes.
Collapse
Affiliation(s)
- Misato Yasumura
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
53
|
Reduced cortical thickness is associated with the glutamatergic regulatory gene risk variant DAOA Arg30Lys in schizophrenia. Neuropsychopharmacology 2011; 36:1747-53. [PMID: 21508934 PMCID: PMC3138664 DOI: 10.1038/npp.2011.56] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In light of current etiological concepts the glutamatergic system plays an essential role for the pathophysiology of the disorder, offering multiple options for new treatment strategies. The D-amino oxidase activator (DAOA) gene is closely connected to the glutamatergic system and its therapeutic and pathophysiological relevance for schizophrenia is therefore intensively debated. In a further step to shed light on the role of DAOA in schizophrenia, we aimed to investigate the association of the functional DAOA Arg30Lys (rs2391191) variant and cortical thickness in schizophrenia. Cortical thickness was computed by an automated surface-based technique (FreeSurfer) in 52 genotyped patients with schizophrenia and 42 healthy controls. Cortical thickness of the entire cortex was compared between risk carriers and non-risk carriers regarding the Arg30Lys polymorphism in patients and healthy controls on the basis of a node-by-node procedure and an automated clustering approach. Risk carriers with schizophrenia show significantly thinner cortex in two almost inversely arranged clusters on the left and right hemisphere comprising middle temporal, inferior parietal, and lateral occipital cortical areas. The clusters encompass an area of 1174 mm(2) (left) and 1156 mm(2) (right). No significant effect was observed in healthy controls.The finding of our study that the Arg30Lys risk variant is associated with a distinct cortical thinning provides new evidence for the pathophysiological impact of DAOA in schizophrenia. The affected areas are mostly confined to cortical regions with a crucial role in the ToM network and visual processing, which both can be influenced by glutamatergic modulation. Our finding thus underlines the importance of DAOA and related glutamatergic processes as a putative target for therapeutic interventions in schizophrenia.
Collapse
|
54
|
van Bon BWM, Balciuniene J, Fruhman G, Nagamani SCS, Broome DL, Cameron E, Martinet D, Roulet E, Jacquemont S, Beckmann JS, Irons M, Potocki L, Lee B, Cheung SW, Patel A, Bellini M, Selicorni A, Ciccone R, Silengo M, Vetro A, Knoers NV, de Leeuw N, Pfundt R, Wolf B, Jira P, Aradhya S, Stankiewicz P, Brunner HG, Zuffardi O, Selleck SB, Lupski JR, de Vries BBA. The phenotype of recurrent 10q22q23 deletions and duplications. Eur J Hum Genet 2011; 19:400-8. [PMID: 21248748 DOI: 10.1038/ejhg.2010.211] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The genomic architecture of the 10q22q23 region is characterised by two low-copy repeats (LCRs3 and 4), and deletions in this region appear to be rare. We report the clinical and molecular characterisation of eight novel deletions and six duplications within the 10q22.3q23.3 region. Five deletions and three duplications occur between LCRs3 and 4, whereas three deletions and three duplications have unique breakpoints. Most of the individuals with the LCR3-4 deletion had developmental delay, mainly affecting speech. In addition, macrocephaly, mild facial dysmorphisms, cerebellar anomalies, cardiac defects and congenital breast aplasia were observed. For congenital breast aplasia, the NRG3 gene, known to be involved in early mammary gland development in mice, is a putative candidate gene. For cardiac defects, BMPR1A and GRID1 are putative candidate genes because of their association with cardiac structure and function. Duplications between LCRs3 and 4 are associated with variable phenotypic penetrance. Probands had speech and/or motor delays and dysmorphisms including a broad forehead, deep-set eyes, upslanting palpebral fissures, a smooth philtrum and a thin upper lip. In conclusion, duplications between LCRs3 and 4 on 10q22.3q23.2 may lead to a distinct facial appearance and delays in speech and motor development. However, the phenotypic spectrum is broad, and duplications have also been found in healthy family members of a proband. Reciprocal deletions lead to speech and language delay, mild facial dysmorphisms and, in some individuals, to cerebellar, breast developmental and cardiac defects.
Collapse
Affiliation(s)
- Bregje W M van Bon
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Strohmaier J, Frank J, Wendland JR, Schumacher J, Jamra RA, Treutlein J, Nieratschker V, Breuer R, Mattheisen M, Herms S, Mühleisen TW, Maier W, Nöthen MM, Cichon S, Rietschel M, Schulze TG. A reappraisal of the association between Dysbindin (DTNBP1) and schizophrenia in a large combined case-control and family-based sample of German ancestry. Schizophr Res 2010; 118:98-105. [PMID: 20083391 PMCID: PMC2856768 DOI: 10.1016/j.schres.2009.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/08/2009] [Accepted: 12/20/2009] [Indexed: 01/14/2023]
Abstract
BACKGROUND Dysbindin (DTNBP1) is a widely studied candidate gene for schizophrenia (SCZ); however, inconsistent results across studies triggered skepticism towards the validity of the findings. In this HapMap-based study, we reappraised the association between Dysbindin and SCZ in a large sample of German ethnicity. METHOD Six hundred thirty-four cases with DSM-IV SCZ, 776 controls, and 180 parent-offspring trios were genotyped for 38 Dysbindin SNPs. We also studied two phenotypically-defined subsamples: 147 patients with a positive family history of SCZ (FH-SCZ+) and SCZ patients characterized for cognitive performance with Trail-Making Tests A and B (TMT-A: n=219; TMT-B: n=247). Given previous evidence of gene-gene interactions in SCZ involving the COMT gene, we also assessed epistatic interactions between Dysbindin markers and 14 SNPs in COMT. RESULTS No association was detected between Dysbindin markers and SCZ, or in the FH-SCZ+ subgroup. Only one marker (rs1047631, previously reported to be part of a risk haplotype), showed a nominally significant association with performance on TMT-A and TMT-B; these findings did not remain significant after correction for multiple comparisons. Similarly, no pair-wise epistatic interactions between Dysbindin and COMT markers remained significant after correction for 504 pair-wise comparisons. CONCLUSIONS Our results, based on one of the largest samples of European Caucasians and using narrowly-defined criteria for SCZ, do not support the etiological involvement of Dysbindin markers in SCZ. Larger samples may be needed in order to unravel Dysbindin's possible role in the genetic basis of proposed intermediate phenotypes of SCZ or to detect epistatic interactions.
Collapse
Affiliation(s)
- Jana Strohmaier
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Josef Frank
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Jens R. Wendland
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
| | - Johannes Schumacher
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jens Treutlein
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Vanessa Nieratschker
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - René Breuer
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Manuel Mattheisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Thomas W. Mühleisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Markus M. Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Marcella Rietschel
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Thomas G. Schulze
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
| |
Collapse
|