51
|
|
52
|
Evaluation of Lignocellulosic Wastewater Valorization with the Oleaginous Yeasts R. kratochvilovae EXF7516 and C. oleaginosum ATCC 20509. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During the conversion of lignocellulose, phenolic wastewaters are generated. Therefore, researchers have investigated wastewater valorization processes in which these pollutants are converted to chemicals, i.e., lipids. However, wastewaters are lean feedstocks, so these valorization processes in research typically require the addition of large quantities of sugars and sterilization, which increase costs. This paper investigates a repeated batch fermentation strategy with Rhodotorula kratochvilovae EXF7516 and Cutaneotrichosporon oleaginosum ATCC 20509, without these requirements. The pollutant removal and its conversion to microbial oil were evaluated. Because of the presence of non-monomeric substrates, the ligninolytic enzyme activity was also investigated. The repeated batch fermentation strategy was successful, as more lipids accumulated every cycle, up to a total of 5.4 g/L (23% cell dry weight). In addition, the yeasts consumed up to 87% of monomeric substrates, i.e., sugars, aromatics, and organics acids, and up to 23% of non-monomeric substrates, i.e., partially degraded xylan, lignin, cellulose. Interestingly, lipid production was only observed during the harvest phase of each cycle, as the cells experienced stress, possibly due to oxygen limitation. This work presents the first results on the feasibility of valorizing non-sterilized lignocellulosic wastewater with R. kratochvilovae and C. oleaginosum using a cost-effective repeated batch strategy.
Collapse
|
53
|
Singh AK, Bilal M, Iqbal HMN, Raj A. In silico analytical toolset for predictive degradation and toxicity of hazardous pollutants in water sources. CHEMOSPHERE 2022; 292:133250. [PMID: 34922975 DOI: 10.1016/j.chemosphere.2021.133250] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Different phenolic compounds, including multimeric lignin derivatives in the β-O-4 form, are among the most prevalent compounds in wastewater, often generated from paper industries. Relatively small concentrations of lignin are hazardous to aquatic organisms and can trigger severe environmental hazards. Herein, we present a predictive toolset to insight the induced toxic hazards prediction, and their Lignin peroxidase (LiP)-assisted degradation mechanism of selected multimeric lignin model compounds. T.E.ST and Toxtree toolset were deployed for toxic hazards estimation in different endpoints. To minimize the concerning hazards, we screened multimeric compounds for binding affinity with LiP. The binding affinity was found to be significantly lower than the reference compound. An Extra precision (XP) Glide score of -6.796 kcal/mol was found for dimer (guaiacyl 4-O-5 guaiacyl) complex as lowest compared to reference compound (-4.007 kcal/mol). The active site residues ASP-153, HIP-226, VAL-227, ARG-244, GLU-215, 239, PHE-261 were identified as site-specific key binding AA residues actively involved with corresponding ligands, forming Hydrophobic, H-Bond, π-Stacking, π-π type interactions. The DESMOND-assisted molecular dynamics simulation's (MDS) trajectories of protein-ligand revealed the considerable binding behavior and attained stability and system equilibrium state. Such theoretical and predictive conclusions indicted the feasibility of LiP assisted sustainable mitigation of lignin-based compounds, and such could be used to protect the environment from the potential hazards posed by recognized similar pollutants.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
54
|
Bai X, Nie M, Diwu Z, Wang L, Nie H, Wang Y, Yin Q, Zhang B. Simultaneous biodegradation of phenolics and petroleum hydrocarbons from semi-coking wastewater: Construction of bacterial consortium and their metabolic division of labor. BIORESOURCE TECHNOLOGY 2022; 347:126377. [PMID: 34801719 DOI: 10.1016/j.biortech.2021.126377] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Phenols and petroleum hydrocarbons were the main contributors to COD in semi-coking wastewater, and their removal was urgent and worthwhile. The microbial strains were selected to construct microbial community for the wastewater treatment. The concentration of phenols was decreased from 2450 ± 1.2 mg/L to 200 ± 0.9 mg/L, and the removal rate of petroleum hydrocarbons was up to 97.08 ± 0.09 % by microorganisms. After phenolic compounds with high toxicity were removed by bioaugmentation, the treated semi-coking wastewater was more biodegradable, and its water quality has been significantly improved. Through GC-MS and high-through sequencing technology, the metabolic division of labor in degradation of phenols, ring-cleavage of aromatic compounds, mineralization of metabolites was further revealed. The microbial community consisting of Pseudomonas stutzeri N2 and Rhodococcus qingshengii FF could effectively and simultaneously remove phenols and petroleum hydrocarbons, and these two strains possess great potential of being applied in aerobic biological treatment process of large-scale semi-coking wastewater.
Collapse
Affiliation(s)
- Xuerui Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an 710055, China.
| | - Zhenjun Diwu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an 710055, China
| | - Hongyun Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Wang
- Microbiology Institute of Shaanxi Province, Xi'an 710043, China
| | - Qiuyue Yin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Bo Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
55
|
Li M, Wang Y, Liu Y, Wang H, Song H. Preparation of active carbon through one-step NaOH activation of coconut shell biomass for phenolic wastewater treatment. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04650-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
56
|
Ali SS, Al-Tohamy R, Sun J. Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150665. [PMID: 34597540 DOI: 10.1016/j.scitotenv.2021.150665] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
For hazardous toxic pollutants such as textile wastewater and azo dyes, microbial-based and peroxidase-assisted remediation represents a highly promising and environmentally friendly alternative. Under this scope, gut symbionts of the wood-feeding termites Coptotermes formosanus and Reticulitermes chinenesis were used for the screening of manganese peroxidase (MnP) producing yeasts intended for decolorization and detoxification of textile azo dyes, such as Acid Orange 7 (AO7). To this end, nine out of 38 yeast isolates exhibited high levels of extracellular MnP activity ranging from 23 to 27 U/mL. The isolate PPY-27, which had the highest MnP activity, was able to decolorize various azo dyes with an efficiency ranging from 87.2 to 98.8%. This isolate, which represents the molecularly identified species Meyerozyma caribbica, was successfully characterized in terms of morphological and physiological traits, as well as enzymatic activities. Almost complete decolorization was achieved by the MnP-producing M. caribbica strain SSA1654 after 6 h of incubation with 50 mg/L of the sulfonated azo dye AO7 at 28 °C with an agitation speed of 150 rpm. The maximum decolorization efficiency of AO7 reached 93.8% at 400 mg/L. The decolorization of AO7 was confirmed by Fourier transform infrared (FTIR) and UV-Vis spectral analysis. High performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) were used to identify AO7 decomposition intermediates. Based on UV-Vis spectra, FTIR, HPLC, and GC-MS analyses, a plausible AO7 biodegradation mechanism pathway was explored, showing azo bond (-N=N-) cleavage and toxic aromatic amines mineralization CO2 and H2O. Microtox® and phytotoxicity assays confirmed that the AO7 metabolites produced by the strain SSA1654 were almost non-toxic compared to the original sulfonated azo dye.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
57
|
Bilal M, Lam SS, Iqbal HMN. Biocatalytic remediation of pharmaceutically active micropollutants for environmental sustainability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118582. [PMID: 34856243 DOI: 10.1016/j.envpol.2021.118582] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
The discharge of an alarming number of recalcitrant pollutants from various industrial activities presents a serious threat to environmental sustainability and ecological integrity. Bioremediation has gained immense interest around the world due to its environmentally friendly and cost-effective nature. In contrast to physical and chemical methods, the use of microbial enzymes, particularly immobilized biocatalysts, has been demonstrated as a versatile approach for the sustainable mitigation of environmental pollution. Considerable attention is now devoted to developing novel enzyme engineering approaches and state-of-the-art bioreactor design for ameliorating the overall bio-catalysis and biodegradation performance of enzymes. This review discusses the contemporary and state of the art technical and scientific progress regarding applying oxidoreductase enzyme-based biocatalytic systems to remediate a vast number of pharmaceutically active compounds from water and wastewater bodies. A comprehensive insight into enzyme immobilization, the role of mediators, bioreactors designing, and transformation products of pharmaceuticals and their associated toxicity is provided. Additional studies are necessary to elucidate enzymatic degradation mechanisms, monitor the toxicity levels of the resulting degraded metabolites and optimize the entire bio-treatment strategy for technical and economical affordability.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
58
|
Gan J, Li X, Rizwan K, Adeel M, Bilal M, Rasheed T, Iqbal HMN. Covalent organic frameworks-based smart materials for mitigation of pharmaceutical pollutants from aqueous solution. CHEMOSPHERE 2022; 286:131710. [PMID: 34343918 DOI: 10.1016/j.chemosphere.2021.131710] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Covalent organic frameworks (COFs) are an emergent group of crystalline porous materials that have gained incredible interest in recent years. With foreseeable controllable functionalities and structural configurations, the constructions and catalytic properties of these organic polymeric materials can be controlled to fabricate targeted materials. The specified monomer linkers and pre-designed architecture of COFs facilitate the post-synthetic modifications for introducing novel functions and useful properties. By virtue of inherent porosity, robust framework, well-ordered geometry, functionality, higher stability, and amenability to functionalization, COFs and COFs-based composites are regarded as prospective nanomaterials for environmental clean-up and remediation. This report spotlights the state-of-the-art advances and progress in COFs-based materials to efficiently mitigate pharmaceutical-based environmental pollutants from aqueous solutions. Synthesis approaches, structure, functionalization, and sustainability aspects of COFs are discussed. Moreover, the adsorptive and photocatalytic potential of COFs and their derived nanocomposites for removal and degradation of pharmaceuticals are thoroughly vetted. In addition to deciphering adsorption mechanism/isotherms, the stability, regeneratability and reproducibility are also delineated. Lastly, the outcomes are summed up, and new directions are proposed to widen the promise of COF-based smart materials in diverse fields.
Collapse
Affiliation(s)
- JianSong Gan
- School of Food and Drug, Jiangsu Vocational College of Finance & Economics, Huaian, 223003, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China.
| | - XiaoBing Li
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Muhammad Adeel
- Faculty of Applied Engineering, iPRACS, University of Antwerp, 2020, Antwerp, Belgium
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
59
|
Guo WJ, Xu JK, Wu ST, Gao SQ, Wen GB, Tan X, Lin YW. Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion. Int J Mol Sci 2021; 23:ijms23010413. [PMID: 35008837 PMCID: PMC8745427 DOI: 10.3390/ijms23010413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022] Open
Abstract
The treatment of environmental pollutants such as synthetic dyes and lignin has received much attention, especially for biotechnological treatments using both native and artificial metalloenzymes. In this study, we designed and engineered an efficient peroxidase using the O2 carrier myoglobin (Mb) as a protein scaffold by four mutations (F43Y/T67R/P88W/F138W), which combines the key structural features of natural peroxidases such as the presence of a conserved His-Arg pair and Tyr/Trp residues close to the heme active center. Kinetic studies revealed that the quadruple mutant exhibits considerably enhanced peroxidase activity, with the catalytic efficiency (kcat/Km) comparable to that of the most efficient natural enzyme, horseradish peroxidase (HRP). Moreover, the designed enzyme can effectively decolorize a variety of synthetic organic dyes and catalyze the bioconversion of lignin, such as Kraft lignin and a model compound, guaiacylglycerol-β-guaiacyl ether (GGE). As analyzed by HPLC and ESI-MS, we identified several bioconversion products of GGE, as produced via bond cleavage followed by dimerization or trimerization, which illustrates the mechanism for lignin bioconversion. This study indicates that the designed enzyme could be exploited for the decolorization of textile wastewater contaminated with various dyes, as well as for the bioconversion of lignin to produce more value-added products.
Collapse
Affiliation(s)
- Wen-Jie Guo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
| | - Jia-Kun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China;
| | - Sheng-Tao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
| | - Shu-Qin Gao
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
| | - Ge-Bo Wen
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China;
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
- Correspondence: ; Tel.: +86-734-8282375
| |
Collapse
|
60
|
Enzymatic Bioprospecting of Fungi Isolated from a Tropical Rainforest in Mexico. J Fungi (Basel) 2021; 8:jof8010022. [PMID: 35049962 PMCID: PMC8780421 DOI: 10.3390/jof8010022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
The humid tropical environment provides an ideal place for developing a high diversity of plants; this is why it is an interesting site for the enzymatic bioprospecting of fungi that are responsible for the recycling of organic matter in an efficient and accelerated way and whose enzymes could have multiple biotechnological applications. For this study, 1250 isolates of macroscopic and microscopic fungal morphotypes were collected from soil, leaf litter, and wood. One hundred and fifty strains (50 from each source) were selected for the enzymatic screening. From the first phase, 51 strains with positive activity for laccase, protease, amylase, xylanase, and lipase enzymes were evaluated, of which 20 were isolated from leaf litter, 18 from the soil, and 13 from wood. The 10 best strains were selected for the enzymatic quantification, considering the potency index and the production of at least two enzymes. High laccase activity was detected for Trametes villosa FE35 and Marasmius sp. CE25 (1179 and 710.66 U/mg, respectively), while Daedalea flavida PE47 showed laccase (521.85 U/mg) and protease activities (80.66 U/mg). Fusarium spp. PH79 and FS400 strains had amylase (14.0 U/mg, 49.23 U/mg) and xylanase activities (40.05 U/mg, 36.03 U/mg) respectively. These results confirm the enzymatic potential of fungi that inhabit little-explored tropical rainforests with applications in industry.
Collapse
|
61
|
Bilal M, Qamar SA, Yadav V, Cheng H, Khan M, Adil SF, Taherzadeh MJ, Iqbal HM. Exploring the potential of ligninolytic armory for lignin valorization – A way forward for sustainable and cleaner production. JOURNAL OF CLEANER PRODUCTION 2021. [DOI: 10.1016/j.jclepro.2021.129420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
62
|
Yadav A, Yadav P, Kumar Singh A, Kumar V, Chintaman Sonawane V, Naresh Bharagava R, Raj A. Decolourisation of textile dye by laccase: Process evaluation and assessment of its degradation bioproducts. BIORESOURCE TECHNOLOGY 2021; 340:125591. [PMID: 34325390 DOI: 10.1016/j.biortech.2021.125591] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Biodegradation of environmentally hazardous synthetic dyes by enzymes has been achieved the highest interest in recent years. In this work, we optimized Remazol Brilliant Blue R (RBBR) dye biodegradation by Arthrographis kalrae derived laccase via the Box-Behnken design (BBD) approach of the surface response methodology (RSM). Optimization of dye decolourisation by one variable at a time (OVAT) approach resulted in optimal dye decolourisation at laccase dose (2 IU mL-1), pH (7.0), temperature (35 °C), incubation time (240 min), and initial dye concentration (100 mg L-1). The optimized process through BBD enhanced dye decolourisation (97.18%). Fourier Transform Infrared Spectroscopy and UV-Visible Spectrophotometry have proven biodegradation. In addition, in comparison to untreated samples, the laccase-treated dye sample showed relatively less phyto- and cytotoxic effect on Allium cepa L. Extra Precision Glide docking exhibited the binding affinity score of -5.355 kcal mol-1, between laccase-RBBR complex.
Collapse
Affiliation(s)
- Ashutosh Yadav
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow-226 001, Uttar Pradesh, India
| | - Pooja Yadav
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow-226 001, Uttar Pradesh, India
| | - Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, Uttar Pradesh, India
| | - Vyas Kumar
- BERPDC, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | - Ram Naresh Bharagava
- Laboratory of Bioremediation and Metagenomics Research(LBMR), Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidhya Bihar, Raebareli Road, Lucknow 226025 U.P, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, Uttar Pradesh, India.
| |
Collapse
|
63
|
Fabrication of MIL-53(Al) based composites from biomass activated carbon (AC) for efficient p-nitrophenol adsorption from aqueous solution. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
64
|
Poly(vinyl Alcohol)-Alginate Immobilized Trametes versicolor IBL-04 Laccase as Eco-friendly Biocatalyst for Dyes Degradation. Catal Letters 2021. [DOI: 10.1007/s10562-021-03778-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
65
|
Textile Dye Biodecolorization by Manganese Peroxidase: A Review. Molecules 2021; 26:molecules26154403. [PMID: 34361556 PMCID: PMC8348190 DOI: 10.3390/molecules26154403] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 11/25/2022] Open
Abstract
Wastewater emissions from textile factories cause serious environmental problems. Manganese peroxidase (MnP) is an oxidoreductase with ligninolytic activity and is a promising biocatalyst for the biodegradation of hazardous environmental contaminants, and especially for dye wastewater decolorization. This article first summarizes the origin, crystal structure, and catalytic cycle of MnP, and then reviews the recent literature on its application to dye wastewater decolorization. In addition, the application of new technologies such as enzyme immobilization and genetic engineering that could improve the stability, durability, adaptability, and operating costs of the enzyme are highlighted. Finally, we discuss and propose future strategies to improve the performance of MnP-assisted dye decolorization in industrial applications.
Collapse
|
66
|
Yanbo J, Jianyi J, Xiandong W, Wei L, Lincheng J. Bioaugmentation Technology for Treatment of Toxic and Refractory Organic Waste Water Based on Artificial Intelligence. Front Bioeng Biotechnol 2021; 9:696166. [PMID: 34277590 PMCID: PMC8283819 DOI: 10.3389/fbioe.2021.696166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
With the development of modern chemical synthesis technology, toxic and harmful compounds increase sharply. In order to improve the removal efficiency of refractory organic matter in waste water, the method of adding powdered activated carbon (PAC) to the system for adsorption was adopted. Through the analysis of organic matter removal rule before and after waste water treatment, it can be found that PAC is easy to adsorb hydrophobic organic matter, while activated sludge is easy to remove hydrophilic and weakly hydrophobic neutral organic matter. Powdered activated carbon-activated sludge SBR system (PAC-AS) system is obviously superior to AS and PAC system in removing organic matter of hydrophilic and hydrophobic components, that is, biodegradation and PAC adsorption are additive. Compared with the control system, the Chemical Oxygen Demand (COD) removal rate of refractory substances increased by 8.36%, and PAC had a good adsorption effect on small molecular weight organic compounds, but with the increase of molecular weight of organic compounds, the adsorption effect of PAC gradually weakened, and it had no adsorption effect on macromolecular organic compounds. Based on the research of fuzzy control theory, an Agent control system for ozone oxidation process of industrial waste water based on Mobile Agent Server (MAS) theory was established, which was realized by fuzzy control method. The simulation results showed strong stability and verified the feasibility and adaptability of the distributed intelligent waste water treatment system based on MAS theory in the actual control process.
Collapse
Affiliation(s)
- Jiang Yanbo
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China.,Institute of Ecological Engineering, Guangxi University, Nanning, China
| | - Jiang Jianyi
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China
| | - Wei Xiandong
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China
| | - Ling Wei
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China
| | | |
Collapse
|
67
|
Singh AK, Katari SK, Umamaheswari A, Raj A. In silico exploration of lignin peroxidase for unraveling the degradation mechanism employing lignin model compounds. RSC Adv 2021; 11:14632-14653. [PMID: 35423962 PMCID: PMC8697836 DOI: 10.1039/d0ra10840e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Lignin peroxidase is a heme-containing biocatalyst, well-known for its diverse applications in the fields from environmental chemistry to biotechnology. LiP-mediated oxidative catalysis is H2O2-dependent, and can oxidize phenolic, and non-phenolic substrates by oxidative cleavage of the C-C and C-O bonds of lignin. In contrast to fungi-derived LiP, the binding affinity of bacterial-derived LiP to lignin at the molecular level is poorly known to date. Tremendous wet-lab studies have been unveiled that provide degradation and biotransformation information on kraft lignin, whilst studies on the completely transformed compounds and the degradation of each transformed compounds simultaneously during degradation are scarce. To gain an understanding of the degradation process using docking, and MDS based studies, we assessed the binding affinity of selected lignin model compounds with bacterial origin LiP and validated such docked complexes exploiting 30 ns molecular dynamics simulations. We selected and picked a total of 12 lignin model compounds for molecular modeling analysis, namely two chlorinated lignin model compounds (monomer) (2-chlorosyringaldehyde and 5-chlorovanillin), eight standard lignin model compounds (veratryl alcohol, syringyl alcohol, sinapyl alcohol, methyl hydroquinone, guaiacol, coniferyl alcohol, catechol, and 4-methoxy phenol), while, two 4-O-5, and β-O-4 linkage-based multimeric model compounds (dimer: 2-methoxy-6-(2-methoxy-4-methylphenoxy)-4-methylphenol; trimer: syringyl β-O-4 syringyl β-O-4 sinapyl alcohol). Far more specific binding residues were observed from XP-Glide docking, as TYR, HIP (protonated histidine), PHE, VAL, ASP, THR, LYS and GLN. The binding affinity was confirmed by the Gibbs free energy or binding energy (ΔG) score; furthermore, it is found that the maximum binding energy seems to be observed for 4-methoxyphenol with a Glide score of -3.438 with Pi-Pi stacking and H-bond type bonding interactions, whilst the lowest XP Gscore as -8.136 with Pi-Pi stacking and H-bond (side chain) type bonding interactions were found for the trimer model compound. The docked complexes were further evaluated for deep rigorous structural and functional fluctuation analyses through high-performance molecular dynamics simulations-DESMOND, after a post simulation run of 30 ns. The RMSD trajectory analyses of the protein-ligands were found to be in the equilibrium state at the end of simulation run for multimeric lignin model compounds. In addition, ionic ligand-protein interaction occurs among chlorinated compounds, while hydrophobic and H-bond contacts have frequently been observed in all lignin-model compounds. The findings herein demonstrate that bacterial LiP can effectively catalyze multiple lignin model compounds, and it might further be used as an effective tool for sustainable mitigation of diverse environmental contaminants.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, 31, Mahatma Gandhi Marg Lucknow 226001 Uttar Pradesh India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sudheer Kumar Katari
- Department of Bioinformatics, Sri Venkateswara Institute of Medical Sciences (SVIMS) University Tirupati 517507 Andhra Pradesh India
| | - Amineni Umamaheswari
- Department of Bioinformatics, Sri Venkateswara Institute of Medical Sciences (SVIMS) University Tirupati 517507 Andhra Pradesh India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, 31, Mahatma Gandhi Marg Lucknow 226001 Uttar Pradesh India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|