51
|
Buey B, Bellés A, Latorre E, Abad I, Pérez MD, Grasa L, Mesonero JE, Sánchez L. Comparative effect of bovine buttermilk, whey, and lactoferrin on the innate immunity receptors and oxidative status of intestinal epithelial cells. Biochem Cell Biol 2020; 99:54-60. [PMID: 32538128 DOI: 10.1139/bcb-2020-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Milk contains bioactive molecules with important functions as defensive proteins; among them are the whey protein lactoferrin and proteins of the milk fat globule membrane (MFGM) present in buttermilk. The aim of this study has been to investigate the effects of lactoferrin, whey, and buttermilk as modulators of intestinal innate immunity and oxidative stress on intestinal epithelial cells, to evaluate its potential use for the development of functional foods. The mRNA expression levels of innate immune system Toll-like receptors (TLR2, TLR4, and TLR9), lipid peroxidation (malondialdehyde + 4-hydroxyalkenals) and protein expression levels of carbonyl were analyzed in enterocyte-like Caco-2/TC7 cells treated for 24 h with different concentrations of lactoferrin, whey, or buttermilk. None of the substances analyzed caused oxidative damage; however, whey significantly decreased the levels of lipid peroxidation. Furthermore, both lactoferrin and whey reduced the oxidative stress induced by lipopolysaccharide. With respect to TLR receptors, lactoferrin, whey, and buttermilk specifically altered the expression of TLR2, TLR4, and TLR9 receptors, with a strong decrease in the expression levels of TLR4. These results suggest that lactoferrin, whey, and buttermilk are potentially interesting ingredients for functional foods because they seem to modulate oxidative stress and the inflammatory response induced by the activation of TLRs.
Collapse
Affiliation(s)
- Berta Buey
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Andrea Bellés
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular. Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Inés Abad
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - María Dolores Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - José Emilio Mesonero
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
52
|
Dai Z, Zhang J, Wu Q, Fang H, Shi C, Li Z, Lin C, Tang D, Wang D. Intestinal microbiota: a new force in cancer immunotherapy. Cell Commun Signal 2020; 18:90. [PMID: 32522267 PMCID: PMC7288675 DOI: 10.1186/s12964-020-00599-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer displays high levels of heterogeneity and mutation potential, and curing cancer remains a challenge that clinicians and researchers are eager to overcome. In recent years, the emergence of cancer immunotherapy has brought hope to many patients with cancer. Cancer immunotherapy reactivates the immune function of immune cells by blocking immune checkpoints, thereby restoring the anti-tumor activity of immune cells. However, immune-related adverse events are a common complication of checkpoint blockade, which might be caused by the physiological role of checkpoint pathways in regulating adaptive immunity and preventing autoimmunity. In this context, the intestinal microbiota has shown great potential in the immunotherapy of cancer. The intestinal microbiota not only regulates the immune function of the body, but also optimizes the therapeutic effect of immune checkpoint inhibitors, thus reducing the occurrence of complications. Therefore, manipulating the intestinal microbiota is expected to enhance the effectiveness of immune checkpoint inhibitors and reduce adverse reactions, which will lead to new breakthroughs in immunotherapy and cancer management. Video abstract.
Collapse
Affiliation(s)
- Zhujiang Dai
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Jingqiu Zhang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 P. R. China
| | - Qi Wu
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Huiwen Fang
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Chunfeng Shi
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Zhen Li
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Chaobiao Lin
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 P. R. China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 P. R. China
| |
Collapse
|
53
|
Lv Z, Dai H, Wei Q, Jin S, Wang J, Wei X, Yuan Y, Yu D, Shi F. Dietary genistein supplementation protects against lipopolysaccharide-induced intestinal injury through altering transcriptomic profile. Poult Sci 2020; 99:3411-3427. [PMID: 32616235 PMCID: PMC7597844 DOI: 10.1016/j.psj.2020.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Genistein is abundant in the corn-soybean meal feed. Little information is available about the effect of dietary genistein on the intestinal transcriptome of chicks, especially when suffering from intestinal injury. In this study, 180 one-day-old male ROSS 308 broiler chickens were randomly allocated to 3 groups, with 4 replicates (cages) of 15 birds each. The treatments were as follows: chicks received a basal diet (CON), a basal diet and underwent lipopolysaccharide-challenge (LPS), or a basal diet supplemented with 40 mg/kg genistein and underwent LPS-challenge (GEN). LPS injection induced intestinal injury and inflammatory reactions in the chicks. Transcriptomic analysis identified 7,131 differently expressed genes (3,281 upregulated and 3,851 downregulated) in the GEN group compared with the LPS group (P adjusted value < 0.05, |fold change| > 1.5), which revealed that dietary genistein exposure altered the gene expression profile and signaling pathways in the ileum of LPS-treated chicks. Furthermore, dietary genistein improved intestinal morphology, mucosal immune function, tight junction, antioxidant activity, apoptotic process, and growth performance, which were adversely damaged by LPS injection. Therefore, adding genistein into the diet of chicks can alter RNA expression profile and ameliorate intestinal injury in LPS-challenged chicks, thereby improving the growth performance of chicks with intestinal injury.
Collapse
Affiliation(s)
- Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Jin
- Animal Disease Control Center of Changzhou, Jiangsu 213003, China
| | - Jiao Wang
- Animal Disease Control Center of Changzhou, Jiangsu 213003, China
| | - Xihui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunwei Yuan
- Poultry Production Department, Jiangsu Hesheng Food Limited Company, Taizhou 225300, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
54
|
Comprehensive transcriptional changes in the liver of Kanglang white minnow ( Anabarilius g rahami) in response to the infection of parasite Ichthyophthirius m ultifiliis. Animals (Basel) 2020; 10:ani10040681. [PMID: 32295151 PMCID: PMC7222788 DOI: 10.3390/ani10040681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Kanglang white minnow (KWM, Anabarilius grahami), is a typical “3E” (Endangered, Endemic and Economic) fish species in Yunnan-Guizhou Plateau. As one of the traditional “Four Famous Fishes” in Yunnan province, it has become the major local aquaculture species with increasing demand after the success of artificial breeding. However, this economically important fish is highly susceptible to the infection of a parasite ciliate, Ichthyophthirius multifiliis (Ich), during the practical procedure of artificial breeding. To examine the host immune responses to Ich, we divided the experimental fishes into three groups (including control, early-infected stage, and late-infected stage) for transcriptome sequencing to analyze the differentially expressed genes (DEGs) and immune response mechanisms. Abstract The notorious parasite Ichthyophthirius multifiliis (Ich) has been recorded worldwide in fish species and causes white spot disease, posing major threats and resulting in severe losses to international fish production. Extensively effective strategies for treating Ich are not available yet, and genetic mechanisms of hosts in response to the parasite are still largely unknown. In this study, we selected Kanglang white minnow (KWM, Anabarilius grahami) to examine its liver transcriptional changes after Ich infection, as white spot disease is one bottleneck problem in exploring this economically important species. We divided the experimental fishes into three groups (control, early-infected, and late-infected) to examine differentially expressed genes (DEGs). A total of 831 DEGs were identified and classified into 128 significantly enriched GO (Gene Ontology) terms and 71 significantly enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Most of these terms or pathways were functionally enriched in immunity, inflammatory response, and apoptosis, such as nucleotide-binding oligomerization domain-like (NOD-like) receptor signaling, tumor necrosis factor (TNF) signaling, interleukin-17 (IL-17) signaling, and apoptosis pathways. We also identified 178 putative antimicrobial peptides (AMPs) and AMP precursors based on our previously reported genome assembly of KWM, and revealed that the expressional patterns varied according to different types. In summary, our work reported the first comprehensive transcriptional changes in KWM in response to the exogenous infection of Ich, which would lay a solid foundation for in-depth studies on disease defense or resistant strains selection in this valuable fish.
Collapse
|
55
|
Robinson EK, Covarrubias S, Carpenter S. The how and why of lncRNA function: An innate immune perspective. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194419. [PMID: 31487549 PMCID: PMC7185634 DOI: 10.1016/j.bbagrm.2019.194419] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing has provided a more complete picture of the composition of the human transcriptome indicating that much of the "blueprint" is a vastness of poorly understood non-protein-coding transcripts. This includes a newly identified class of genes called long noncoding RNAs (lncRNAs). The lack of sequence conservation for lncRNAs across species meant that their biological importance was initially met with some skepticism. LncRNAs mediate their functions through interactions with proteins, RNA, DNA, or a combination of these. Their functions can often be dictated by their localization, sequence, and/or secondary structure. Here we provide a review of the approaches typically adopted to study the complexity of these genes with an emphasis on recent discoveries within the innate immune field. Finally, we discuss the challenges, as well as the emergence of new technologies that will continue to move this field forward and provide greater insight into the biological importance of this class of genes. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.
Collapse
Affiliation(s)
- Elektra K Robinson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America.
| |
Collapse
|
56
|
Cao Y, Li Y, Wu M, Song J, Zhang M, Duan Y, Jiang K, Zhou X, Zhang Y. RNA-sequencing analysis of gene expression in a rat model of acute right heart failure. Pulm Circ 2020; 10:2045894019879396. [PMID: 32128157 PMCID: PMC7036519 DOI: 10.1177/2045894019879396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Acute right heart failure (RHF) is the main cause of death in patients with acute pulmonary embolism and emergent pulmonary hypertension. However, the molecular mechanisms underpinning the acute RHF and the interactions between the right (RV) and left ventricles (LVs) under the diseased condition remain unknown. Methods and results: The Sprague Dawley male rats were randomly divided into the normal control, sham, and pulmonary artery banding (PAB) groups. One hour after the PAB operation, after measuring the haemodynamic and anatomical parameters, the free walls of RV and LV were harvested to detect the differential gene expression profiling by high-throughput RNA sequencing. The results showed that the PAB lead to 50-60% obstruction of the main pulmonary artery, which was accompanied by the significant elevation in the positive rate of rise in RV pressure and the maximum RV pressure as compared to the sham group. Moreover, compared with the counterparts in the sham group, the RV and LV in the PAB group exhibited 2057 differentially expressed genes (DEGs, 1159 upregulated and 898 downregulated) and 1196 DEGs (709 upregulated and 487 downregulated), respectively (DEG criteria: |log2 fold change| ≥1, q value ≤0.05). In comparison to the sham group, the enriched pathways in the PAB group include nuclear factor-κB signalling pathway, extracellular matrix-receptor interaction, and nucleotide oligomerization domain-like receptor signalling pathway. Conclusions: The PAB rat model exhibited the haemodynamic and gene expression changes in the RV that lead to acute RHF. Further, the acute RHF induced by pressure overload also caused gene expression changes in the LV, suggesting the molecular interactions between the RV and LV under the diseased condition.
Collapse
Affiliation(s)
- Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou University, Lanzhou, China
| | - Yahong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Mianmian Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jiyang Song
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou University, Lanzhou, China
| | - Min Zhang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou University, Lanzhou, China
| | - Yichao Duan
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou University, Lanzhou, China
| | - Kaiyu Jiang
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou University, Lanzhou, China
| | - Xing Zhou
- Department of Radiology, Gansu Provincial Hospital, Lanzhou University, Lanzhou, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
57
|
Gusev EY, Zotova NV. Cellular Stress and General Pathological Processes. Curr Pharm Des 2020; 25:251-297. [PMID: 31198111 DOI: 10.2174/1381612825666190319114641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
From the viewpoint of the general pathology, most of the human diseases are associated with a limited number of pathogenic processes such as inflammation, tumor growth, thrombosis, necrosis, fibrosis, atrophy, pathological hypertrophy, dysplasia and metaplasia. The phenomenon of chronic low-grade inflammation could be attributed to non-classical forms of inflammation, which include many neurodegenerative processes, pathological variants of insulin resistance, atherosclerosis, and other manifestations of the endothelial dysfunction. Individual and universal manifestations of cellular stress could be considered as a basic element of all these pathologies, which has both physiological and pathophysiological significance. The review examines the causes, main phenomena, developmental directions and outcomes of cellular stress using a phylogenetically conservative set of genes and their activation pathways, as well as tissue stress and its role in inflammatory and para-inflammatory processes. The main ways towards the realization of cellular stress and its functional blocks were outlined. The main stages of tissue stress and the classification of its typical manifestations, as well as its participation in the development of the classical and non-classical variants of the inflammatory process, were also described. The mechanisms of cellular and tissue stress are structured into the complex systems, which include networks that enable the exchange of information with multidirectional signaling pathways which together make these systems internally contradictory, and the result of their effects is often unpredictable. However, the possible solutions require new theoretical and methodological approaches, one of which includes the transition to integral criteria, which plausibly reflect the holistic image of these processes.
Collapse
Affiliation(s)
- Eugeny Yu Gusev
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation
| | - Natalia V Zotova
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation.,Department of Medical Biochemistry and Biophysics, Ural Federal University named after B.N.Yeltsin, Yekaterinburg, Russian Federation
| |
Collapse
|
58
|
Sharma L, Feng J, Britto CJ, Dela Cruz CS. Mechanisms of Epithelial Immunity Evasion by Respiratory Bacterial Pathogens. Front Immunol 2020. [PMID: 32117248 DOI: 10.3389/fimmu.2020.00091/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacterial lung infections are major healthcare challenges killing millions of people worldwide and resulting in a huge economic burden. Both basic and clinical research have elucidated host mechanisms that contribute to the bacterial clearance where an indispensable role of immune cells has been established. However, the role of respiratory epithelial cells in bacterial clearance has garnered limited attention due to their weak inflammatory or phagocytic ability compared to immune cells such as macrophages and neutrophils. These studies often underappreciate the fact that epithelial cells are the most abundant cells in the lung, not only serving as building blocks but also providing immune protection throughout the lung. Epithelial cells function either independently to eradicate the pathogen or communicate with immune cells to orchestrate pathogen clearance. The epithelial cells have multiple mechanisms that include mucus production, antimicrobial peptide production, muco-ciliary clearance, and phagocytosis, all of which contribute to their direct antibacterial function. Secretion of cytokines to recruit immune cells and potentiate their antimicrobial activities is a pathway by which the epithelium contributes to bacterial clearance. Successful pathogens outsmart epithelial resistance and find a way to replicate in sufficient numbers to establish infections in the airway or lung epithelial surfaces. In this mini-review, we discuss evidences that establish important roles for epithelial host defense against invading respiratory bacterial pathogens and demonstrate how pathogens outsmart these epithelial immune mechanisms to successfully establish infection. Finally, we discuss briefly how to boost epithelial immunity to improve outcomes in bacterial lung infections.
Collapse
Affiliation(s)
- Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jingjing Feng
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
59
|
Sharma L, Feng J, Britto CJ, Dela Cruz CS. Mechanisms of Epithelial Immunity Evasion by Respiratory Bacterial Pathogens. Front Immunol 2020; 11:91. [PMID: 32117248 PMCID: PMC7027138 DOI: 10.3389/fimmu.2020.00091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/14/2020] [Indexed: 01/14/2023] Open
Abstract
Bacterial lung infections are major healthcare challenges killing millions of people worldwide and resulting in a huge economic burden. Both basic and clinical research have elucidated host mechanisms that contribute to the bacterial clearance where an indispensable role of immune cells has been established. However, the role of respiratory epithelial cells in bacterial clearance has garnered limited attention due to their weak inflammatory or phagocytic ability compared to immune cells such as macrophages and neutrophils. These studies often underappreciate the fact that epithelial cells are the most abundant cells in the lung, not only serving as building blocks but also providing immune protection throughout the lung. Epithelial cells function either independently to eradicate the pathogen or communicate with immune cells to orchestrate pathogen clearance. The epithelial cells have multiple mechanisms that include mucus production, antimicrobial peptide production, muco-ciliary clearance, and phagocytosis, all of which contribute to their direct antibacterial function. Secretion of cytokines to recruit immune cells and potentiate their antimicrobial activities is a pathway by which the epithelium contributes to bacterial clearance. Successful pathogens outsmart epithelial resistance and find a way to replicate in sufficient numbers to establish infections in the airway or lung epithelial surfaces. In this mini-review, we discuss evidences that establish important roles for epithelial host defense against invading respiratory bacterial pathogens and demonstrate how pathogens outsmart these epithelial immune mechanisms to successfully establish infection. Finally, we discuss briefly how to boost epithelial immunity to improve outcomes in bacterial lung infections.
Collapse
Affiliation(s)
- Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jingjing Feng
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
60
|
Leng F, Yin H, Qin S, Zhang K, Guan Y, Fang R, Wang H, Li G, Jiang Z, Sun F, Wang DC, Xie C. NLRP6 self-assembles into a linear molecular platform following LPS binding and ATP stimulation. Sci Rep 2020; 10:198. [PMID: 31932628 PMCID: PMC6957519 DOI: 10.1038/s41598-019-57043-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
NOD-like receptors (NLRs) localize in the cytosol to recognize intracellular pathogen products and initialize the innate immune response. However, the ligands and ligand specificity of many NLRs remain unclear. One such NLR, NLRP6, plays an important role in maintaining intestinal homeostasis and protecting against various intestinal diseases such as colitis and intestinal tumorigenesis. Here, we show that the major component of the outer membrane of gram-negative bacteria, lipopolysaccharide (LPS), binds NLRP6 directly and induces global conformational change and dimerization. Following stimulation by ATP, the NLRP6 homodimer can further assemble into a linear molecular platform, and ASC is recruited to form higher molecular structures, indicative of a step-by-step activation mechanism. Our study sheds light on the mystery of LPS-induced inflammasome initiation, reveals the architecture and structural basis of potential pre-inflammasome, and suggests a novel molecular assembly pattern for immune receptors.
Collapse
Affiliation(s)
- Fangwei Leng
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hang Yin
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Siying Qin
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Kai Zhang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yukun Guan
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Run Fang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Honglei Wang
- Laboratory of Molecular Modeling and Design, State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, 116023, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, 116023, China
| | - Zhengfan Jiang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Fei Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Da-Cheng Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Can Xie
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China. .,High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
61
|
Zhang Z, Tang Y, Zhuang H, Lin E, Xie L, Feng X, Zeng J, Liu Y, Liu J, Yu Y. Identifying 4 Novel lncRNAs as Potential Biomarkers for Acute Rejection and Graft Loss of Renal Allograft. J Immunol Res 2020; 2020:2415374. [PMID: 33376751 PMCID: PMC7739051 DOI: 10.1155/2020/2415374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023] Open
Abstract
Acute rejection (AR) after kidney transplant is one of the major obstacles to obtain ideal graft survival. Reliable molecular biomarkers for AR and renal allograft loss are lacking. This study was performed to identify novel long noncoding RNAs (lncRNAs) for diagnosing AR and predicting the risk of graft loss. The several microarray datasets with AR and nonrejection specimens of renal allograft downloaded from Gene Expression Omnibus database were analyzed to screen differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs). Univariate and multivariate Cox regression analyses were used to identify optimal prognosis-related DElncRNAs for constructing a risk score model. 39 common DElncRNAs and 185 common DEmRNAs were identified to construct a lncRNA-mRNA regulatory relationship network. DElncRNAs were revealed to regulate immune cell activation and proliferation. Then, 4 optimal DElncRNAs, ATP1A1-AS1, CTD-3080P12.3, EMX2OS, and LINC00645, were selected from 17 prognostic DElncRNAs to establish the 4-lncRNA risk score model. In the training set, the high-risk patients were more inclined to graft loss than the low-risk patients. Time-dependent receiver operating characteristics analysis revealed the model had good sensitivity and specificity in prediction of 1-, 2-, and 3-year graft survival after biopsy (AUC = 0.891, 0.836, and 0.733, respectively). The internal testing set verified the result well. Gene set enrichment analysis which expounded NOD-like receptor, the Toll-like receptor signaling pathways, and other else playing important role in immune response was enriched by the 4 lncRNAs. Allograft-infiltrating immune cells analysis elucidated the expression of 4 lncRNAs correlated with gamma delta T cells and eosinophils, etc. Our study identified 4 novel lncRNAs as potential biomarkers for AR of renal allograft and constructed a lncRNA-based model for predicting the risk of graft loss, which would provide new insights into mechanisms of AR.
Collapse
Affiliation(s)
- Zedan Zhang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Yanlin Tang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Hongkai Zhuang
- Shantou University Medical College, Shantou 515041, China
| | - Enyu Lin
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Lu Xie
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaoqiang Feng
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
62
|
Tripodi GL, Prieto MB, Abdalla DSP. Inflammasome Activation in Human Macrophages Induced by a LDL (-) Mimetic Peptide. Inflammation 2019; 43:722-730. [PMID: 31858317 DOI: 10.1007/s10753-019-01159-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The inflammasome is responsible for maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18) contributing to the inflammatory process in atherosclerosis. It is shown here that an electronegative low-density lipoprotein [LDL (-)] apoB-100 mimetic peptide can activate the transcriptional and posttranslational signs needed for complete inflammasome activation. This peptide, named p2C7, can activate the Toll-like receptor 4 (TLR4) that induces NF-κB activation and the transcription of inflammasome components. After blocking TLR4 with a neutralizing antibody, inflammasome component (NLRP3, CASP1, and ASC) and IL1b and IL18 gene downregulation occurred in human-derived macrophages stimulated with p2C7 or LDL (-). Moreover, the posttranslational signal was activated by the interaction between p2C7 and the lectin-type oxidized LDL receptor 1 (LOX-1), as demonstrated by the induction of caspase-1 cleavage in macrophages. The blockage of either TLR4 or LOX-1 decreased IL-1β and IL-18 secretion by human-derived macrophages as both pathways are necessary for complete inflammasome activation. These findings suggest a mechanism by which macrophages transduce the pro-inflammatory signal provided by LDL (-) ApoB-100 and its mimetic peptides to activate the inflammasome protein complex what may be relevant for the inflammatory process in atherosclerosis.
Collapse
Affiliation(s)
- Gustavo Luis Tripodi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Marcela Bach Prieto
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Dulcineia Saes Parra Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
63
|
Yu X, Wang H, Shao H, Zhang C, Ju X, Yang J. PolyI:C Upregulated CCR5 and Promoted THP-1-Derived Macrophage Chemotaxis via TLR3/JMJD1A Signalling. CELL JOURNAL 2019; 22:325-333. [PMID: 31863658 PMCID: PMC6947015 DOI: 10.22074/cellj.2020.6713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 12/03/2022]
Abstract
Objective This study aimed to evaluate the specific roles of polyinosinic:polycytidylic acid (polyI:C) in macrophage
chemotaxis and reveal the potential regulatory mechanisms related to chemokine receptor 5 (CCR5).
Materials and Methods In this experimental study, THP-1-derived macrophages (THP1-Mφs) induced from THP-
1 monocytes were treated with 25 μg/mL polyI:C. Toll-like receptor 3 (TLR3), Jumonji domain-containing protein
(JMJD)1A, and JMJD1C small interfering RNA (siRNAs) were transfected into THP1-Mφs. Quantitative real-time
reverse transcriptase polymerase chain reaction (qRT-PCR) was used to detect the expression levels of TLR3, CCR5,
23 Jumonji C domain-containing histone demethylase family members, JMJD1A, and JMJD1C in THP1-Mφs with
different siRNAs transfections. Western blot was performed to detect JMJD1A, JMJD1C, H3K9me2, and H3K9me3
expressions. A transwell migration assay was conducted to detect THP1-Mφ chemotaxis toward chemokine ligand 3
(CCL3). A chromatin immunoprecipitation (ChIP) assay was performed to detect H3K9me2-CCR5 complexes in THP1-
Mφs.
Results PolyI:C significantly upregulated CCR5 in THP1-Mφs and promoted chemotaxis toward CCL3 (P<0.05);
these effects were significantly inhibited by TLR3 siRNA (P<0.01). JMJD1A and JMJD1C expression was significantly
upregulated in polyI:C-stimulated THP1-Mφs, while only JMJD1A siRNA decreased CCR5 expression (P<0.05).
JMJD1A siRNA significantly increased H3K9me2 expression in THP1-Mφs but not in polyI:C-stimulated THP1-Mφs.
The ChIP result revealed that polyI:C significantly downregulated H3K9me2 in the promoter region of CCR5 in THP1-
Mφs.
Conclusion PolyI:C can enhance THP1-Mφ chemotaxis toward CCL3 regulated by TLR3/JMJD1A signalling and
activate CCR5 expression by reducing H3K9me2 in the promoter region of CCR5.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Department of Paediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huayang Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongjia Shao
- Department of Paediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cuijuan Zhang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Ju
- Department of Paediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jie Yang
- Department of Paediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China. Electronic Address
| |
Collapse
|
64
|
Gao M, Zhang P, Huang L, Shao H, Duan S, Li C, Zhang Q, Wang W, Wu Y, Wang J, Liu H, Feng F. Is NLRP3 or NLRP6 inflammasome activation associated with inflammation-related lung tumorigenesis induced by benzo(a)pyrene and lipopolysaccharide? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109687. [PMID: 31561077 DOI: 10.1016/j.ecoenv.2019.109687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Chronic inflammation has been shown to play a vital role in lung tumorigenesis. Recently, we have successfully developed a C57BL/6 mouse model of inflammation-related lung tumorigenesis induced by benzo(a)pyrene [B(a)p] and lipopolysaccharide (LPS), which will contribute to better understand the association between pulmonary inflammation and cancer. In this study, we aim to explore the role of NLRP3 and NLRP6 inflammasome in lung tumorigenesis in the animal model that we set up previously. Levels of NLRP3, NLRP6, interleukin-1β (IL-1β) and IL-18 protein in lung tissues were detected by using immunohistochemistry. The co-localization of NLRP3 or NLRP6 with caspase-1 was examined using immunofluorescence and confocal. Western blotting was used to evaluate the levels of caspase-1 p10 and cleaved-IL-1β protein. The expression of IL-18 in bronchoalveolar lavage fluid (BALF) was measured using ELISA kit. The expression of NLRP3, NLRP6 and IL-18 protein in the lung tissues of mice exposed to B(a)p plus LPS was upregulated significantly compared with those in Vehicle control group. Immunofluorescent results indicated the co-localization of NLRP3 with caspase-1 was increased in the lung tissues of LPS-, B(a)p- or B(a)p plus LPS-exposed mice than that in Vehicle control group, but no co-localization of NLRP6 with caspase-1. Additionally, caspase-1 activation was induced, cleaved-IL-1β in lung tissues and IL-18 protein in BALF were increased in B(a)p plus LPS-exposed mice compared with those in B(a)p group. In conclusion, our results from this study demonstrate that NLRP3 inflammasome, not NLRP6 inflammasome, activation is involved in B(a)p plus LPS-induced inflammation-related lung tumorigenesis in mice, but the mechanisms of NLRP6 participate in the development of lung cancer should be further investigated.
Collapse
Affiliation(s)
- Min Gao
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, China
| | - Li Huang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Shao
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuyin Duan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyang Li
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongjun Wu
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Wang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Liu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
65
|
Emami J, Ansarypour Z. Receptor targeting drug delivery strategies and prospects in the treatment of rheumatoid arthritis. Res Pharm Sci 2019; 14:471-487. [PMID: 32038727 PMCID: PMC6937749 DOI: 10.4103/1735-5362.272534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory disease, is characterized by cartilage damage, bone tissue destruction, morphological changes in synovial fluids, and synovial joint inflammation. The inflamed synovial tissue has potential for passive and active targeting because of enhanced permeability and retention effect and the existence of RA synovial macrophages and fibroblasts that selectively express surface receptors such as folate receptor β, CD44 and integrin αVβ. Although there are numerous interventions in RA treatment, they are not safe and effective. Therefore, it is important to develop new drug or drug delivery systems that specifically targets inflamed/swollen joints but attenuates other possible damages to healthy tissues. Recently some receptors such as toll-like receptors (TLRs), the nucleotide-binding oligomerization domain-like receptors, and Fc-γ receptor have been identified in synovial tissue and immune cells that are involved in induction or suppression of arthritis. Analysis of the TLR pathway has moreover suggested new insights into the pathogenesis of RA. In the present paper, we have reviewed drug delivery strategies based on receptor targeting with novel ligand-anchored carriers exploiting CD44, folate and integrin αVβ as well as TLRs expressed on synovial monocytes and macrophages and antigen presenting cells, for possible active targeting in RA. TLRs could not only open a new horizon for developing new drugs but also their antagonists or humanized monoclonal antibodies that block TLRS specially TLR4 and TLR9 signaling could be used as targeting agents to antigen presenting cells and dendritic cells. As a conclusion, common conventional receptors and multifunctional ligands that arte involved in targeting receptors or developing nanocarriers with appropriate ligands for TLRs can provide profoundly targeting drug delivery systems for the effective treatment of RA.
Collapse
Affiliation(s)
- Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Zahra Ansarypour
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
66
|
Collins FL, Rios-Arce ND, Schepper JD, Jones AD, Schaefer L, Britton RA, McCabe LR, Parameswaran N. Beneficial effects of Lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes. Sci Rep 2019; 9:14708. [PMID: 31605025 PMCID: PMC6789011 DOI: 10.1038/s41598-019-51293-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023] Open
Abstract
Oral treatment with probiotic bacteria has been shown to prevent bone loss in multiple models of osteoporosis. In previous studies we demonstrated that oral administration of Lactobacillus reuteri in healthy male mice increases bone density. The host and bacterial mechanisms of these effects however are not well understood. The objective of this study was to understand the role of lymphocytes in mediating the beneficial effects of L. reuteri on bone health in male mice. We administered L. reuteri in drinking water for 4 weeks to wild type or Rag knockout (lack mature T and B lymphocytes) male mice. While L. reuteri treatment increased bone density in wild type, no significant increases were seen in Rag knockout mice, suggesting that lymphocytes are critical for mediating the beneficial effects of L. reuteri on bone density. To understand the effect of L. reuteri on lymphocytes in the intestinal tissues, we isolated mesenteric lymph node (MLN) from naïve wild type mice. In ex vivo studies using whole mesenteric lymph node (MLN) as well as CD3+ T-cells, we demonstrate that live L. reuteri and its secreted factors have concentration-dependent effects on the expression of cytokines, including anti-inflammatory cytokine IL-10. Fractionation studies identified that the active component of L. reuteri is likely water soluble and small in size (<3 kDa) and its effects on lymphocytes are negatively regulated by a RIP2 inhibitor, suggesting a role for NOD signaling. Finally, we show that T-cells from MLNs treated with L. reuteri supernatants, secrete factors that enhance osterix (transcription factor involved in osteoblast differentiation) expression in MC3T3-E1 osteoblasts. Together, these data suggest that L. reuteri secreted factors regulate T-lymphocytes which play an important role in mediating the beneficial effects of L. reuteri on bone density.
Collapse
Affiliation(s)
- Fraser L Collins
- Department of Physiology, Michigan State University, East Lansing, USA
| | - Naiomy Deliz Rios-Arce
- Department of Physiology, Michigan State University, East Lansing, USA
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan, USA
| | | | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
- Department of Chemistry, Michigan State University, East Lansing, USA
| | - Laura Schaefer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, USA.
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, USA.
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
67
|
The Bacterial Product Violacein Exerts an Immunostimulatory Effect Via TLR8. Sci Rep 2019; 9:13661. [PMID: 31541142 PMCID: PMC6754391 DOI: 10.1038/s41598-019-50038-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Violacein, an indole-derived, purple-colored natural pigment isolated from Chromobacterium violaceum has shown multiple biological activities. In this work, we studied the effect of violacein in different immune cell lines, namely THP-1, MonoMac 6, ANA-1, Raw 264.7 cells, as well as in human peripheral blood mononuclear cells (PBMCs). A stimulation of TNF-α production was observed in murine macrophages (ANA-1 and Raw 264.7), and in PBMCs, IL-6 and IL-1β secretion was detected. We obtained evidence of the molecular mechanism of activation by determining the mRNA expression pattern upon treatment with violacein in Raw 264.7 cells. Incubation with violacein caused activation of pathways related with an immune and inflammatory response. Our data utilizing TLR-transfected HEK-293 cells indicate that violacein activates the human TLR8 (hTLR8) receptor signaling pathway and not human TLR7 (hTLR7). Furthermore, we found that the immunostimulatory effect of violacein in PBMCs could be suppressed by the specific hTLR8 antagonist, CU-CPT9a. Finally, we studied the interaction of hTLR8 with violacein in silico and obtained evidence that violacein could bind to hTLR8 in a similar fashion to imidazoquinoline compounds. Therefore, our results indicate that violacein may have some potential in contributing to future immune therapy strategies.
Collapse
|
68
|
Li C, Wang X, Kuang M, Li L, Wang Y, Yang F, Wang G. UFL1 modulates NLRP3 inflammasome activation and protects against pyroptosis in LPS-stimulated bovine mammary epithelial cells. Mol Immunol 2019; 112:1-9. [DOI: 10.1016/j.molimm.2019.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/15/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
|
69
|
Nascimento LFMD, Moura LDD, Lima RT, Cruz MDSPE. Novos adjuvantes vacinais: importante ferramenta para imunoterapia da leishmaniose visceral. HU REVISTA 2019. [DOI: 10.34019/1982-8047.2018.v44.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atualmente, muitas das vacinas em desenvolvimento são aquelas compostas de proteínas antigênicas individuais de parasitas ou uma combinação de vários antígenos individuais que são produzidos como produtos recombinantes obtidos por técnicas de biologia molecular. Dentre elas a Leish-111f e sua variação Leish-110f tem ganhado destaque na proteção contra a LV e LC e alcançaram estudos de fase II em seres humanos. A eficácia de uma vacina é otimizada pela adição de adjuvantes imunológicos. No entanto, embora os adjuvantes tenham sido usados por mais de um século, até o momento, apenas alguns adjuvantes são aprovados para o uso em humanos, a maioria destinada a melhorar a eficácia da vacina e a produção de anticorpos protetores específicos do antígeno. Os mecanismos de ação dos adjuvantes imunológicos são diversos, dependendo da sua natureza química e molecular sendo capazes de ativar células imunes especificas que conduzem a respostas imunes inatas e adaptativas melhoradas. Embora o mecanismo de ação molecular detalhado de muitos adjuvantes ainda seja desconhecido, a descoberta de receptores Toll-like (TLRs) forneceu informações críticas sobre o efeito imunoestimulador de numerosos componentes bacterianos que envolvem interação com receptores TLRs, mostrando que estes ligantes melhoram tanto a qualidade como a quantidade de respostas imunes adaptativas do hospedeiro quando utilizadas em formulações de vacinais direcionadas para doenças. O potencial desses adjuvantes de TLR em melhorar o design e os resultados de várias vacinas está em constante evolução, à medida que novos agonistas são descobertos e testados em modelos experimentais e estudos clínicos de vacinação. Nesta revisão, é apresentado um resumo do progresso recente no desenvolvimento de proteínas recombinantes de segunda geração e adjuvantes de TLR, sendo o foco principal nos TLR4 e suas melhorias.
Collapse
|
70
|
Jansen JE, Gaffney EA, Wagg J, Coles MC. Combining Mathematical Models With Experimentation to Drive Novel Mechanistic Insights Into Macrophage Function. Front Immunol 2019; 10:1283. [PMID: 31244837 PMCID: PMC6563075 DOI: 10.3389/fimmu.2019.01283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
This perspective outlines an approach to improve mechanistic understanding of macrophages in inflammation and tissue homeostasis, with a focus on human inflammatory bowel disease (IBD). The approach integrates wet-lab and in-silico experimentation, driven by mechanistic mathematical models of relevant biological processes. Although wet-lab experimentation with genetically modified mouse models and primary human cells and tissues have provided important insights, the role of macrophages in human IBD remains poorly understood. Key open questions include: (1) To what degree hyperinflammatory processes (e.g., gain of cytokine production) and immunodeficiency (e.g., loss of bacterial killing) intersect to drive IBD pathophysiology? and (2) What are the roles of macrophage heterogeneity in IBD onset and progression? Mathematical modeling offers a synergistic approach that can be used to address such questions. Mechanistic models are useful for informing wet-lab experimental designs and provide a knowledge constrained framework for quantitative analysis and interpretation of resulting experimental data. The majority of published mathematical models of macrophage function are based either on animal models, or immortalized human cell lines. These experimental models do not recapitulate important features of human gastrointestinal pathophysiology, and, therefore are limited in the extent to which they can fully inform understanding of human IBD. Thus, we envision a future where mechanistic mathematical models are based on features relevant to human disease and parametrized by richer human datasets, including biopsy tissues taken from IBD patients, human organ-on-a-chip systems and other high-throughput clinical data derived from experimental medicine studies and/or clinical trials on IBD patients.
Collapse
Affiliation(s)
- Joanneke E Jansen
- Mathematical Institute, University of Oxford, Oxford, United Kingdom.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Eamonn A Gaffney
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | | - Mark C Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
71
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cells for Transplant Tolerance. Front Immunol 2019; 10:1287. [PMID: 31231393 PMCID: PMC6559333 DOI: 10.3389/fimmu.2019.01287] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
In solid organ transplantation lifelong immunosuppression exposes transplant recipients to life-threatening complications, such as infections and malignancies, and to severe side effects. Cellular therapy with mesenchymal stromal cells (MSC) has recently emerged as a promising strategy to regulate anti-donor immune responses, allowing immunosuppressive drug minimization and tolerance induction. In this review we summarize preclinical data on MSC in solid organ transplant models, focusing on potential mechanisms of action of MSC, including down-regulation of effector T-cell response and activation of regulatory pathways. We will also provide an overview of available data on safety and feasibility of MSC therapy in solid organ transplant patients, highlighting the issues that still need to be addressed before establishing MSC as a safe and effective tolerogenic cell therapy in transplantation.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
72
|
Xi J, Yan M, Li S, Song H, Liu L, Shen Z, Cai JZ. NOD1 activates autophagy to aggravate hepatic ischemia-reperfusion injury in mice. J Cell Biochem 2019; 120:10605-10612. [PMID: 30644583 DOI: 10.1002/jcb.28349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023]
Abstract
Hepatic ischemia/reperfusion injury (IRI) is tissue damage resulting from return of the blood supply to the tissue after a period of ischemia or lack of oxygen. Much of the morbidity associated with liver transplantation and major hepatic resections is, in part, due to IRI. Both innate immunity and autophagy play important roles in hepatic IRI. With regard to innate immunity, one factor that plays a key role is NOD1, an intracellular pattern recognition receptor. NOD1 has recently been shown to be associated with autophagy, but the mechanisms involved with this process remain obscure. This relationship between NOD1 and autophagy prompted us to examine the role and potential mechanisms of NOD1 in regulating autophagy as related to hepatic IRI. We found that NOD1 was upregulated during hepatic IRI and was associated with an activation of the autophagic signaling pathway. Moreover, levels of Atg5, a critical protein associated with autophagy, were decreased when NOD1 was inhibited by NOD1 small interfering RNA. We conclude that NOD1 appears to exert a pivotal role in hepatic IRI by activating autophagy to aggravate hepatic IRI, and Atg5 was required for this process. The identification of this novel pathway, that links expression levels of NOD1 with Atg5-mediated autophagy, may provide new insights for the generation of novel protective therapies directed against hepatic IRI.
Collapse
Affiliation(s)
- Jiri Xi
- Department of Liver Transplantion, Oriental Organ Transplant Center, Tianjin First Central Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Meiling Yan
- Department of Pharmacy, Oriental Organ Transplant Center, Tianjin First Central Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shipeng Li
- Department of General Surgery, Jiaozuo People's Hospital, Xinxiang Medical University, Jiaozuo, People's Republic of China
| | - Hu Song
- Department of Liver Transplantion, First Central Clinical College of Tianjin Medical University, Tianjin, People's Republic of China
| | - Lei Liu
- Department of Liver Transplantion, Oriental Organ Transplant Center, Tianjin First Central Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhongyang Shen
- Department of Liver Transplantion, Oriental Organ Transplant Center, Tianjin First Central Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jin-Zhen Cai
- Department of Liver Transplantion, Oriental Organ Transplant Center, Tianjin First Central Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
73
|
Domínguez MA, Landi V, Morera L, Martínez A, Jiménez-Marín Á, Garrido JJ. Identification and functional characterization of polymorphisms in promoter sequences of porcine NOD1 and NOD2 genes. Res Vet Sci 2019; 124:310-316. [PMID: 31030118 DOI: 10.1016/j.rvsc.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/17/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
NOD-like receptors (NLRs) play a key role in the innate immune system, acting as a second line of surveillance against pathogens. NLRs detect particular bacteria that have gained access to the cytoplasm, evading recognition by other pattern recognition receptors, such as Toll-like receptors. It has been demonstrated that coding sequence-single nucleotide polymorphisms may alter the ligand recognition ability of NLRs, affecting their pathogen-sensing function. However, there have been no data relating to the identification and functional analysis of SNPs in porcine NLR promoters. We examined the promoter sequences of the porcine NOD1 and NOD2 genes with the aim to identify and to evaluate the effect of genetic variations on promoter activity. Six SNPs in NOD1 and three SNPs in NOD2 were identified. Luciferase reporter gene assays showed significant differences in promoter activity between allele variants of NOD1 -920G>A (NC_010460.4:g.42431413G>A) and NOD2 -1670G>A (NC_010448.4:g.34169122T>C) SNPs. The results suggest that promoter polymorphisms could modify the expression levels of porcine NOD1 and NOD2 genes.
Collapse
Affiliation(s)
- Miguel A Domínguez
- Laboratorio de Genética Molecular y Zoonosis, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma Benito Juárez de Oaxaca, Mexico; Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Vincenzo Landi
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Luis Morera
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Amparo Martínez
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Juan J Garrido
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
74
|
Biguetti CC, Cavalla F, Silveira EV, Tabanez AP, Francisconi CF, Taga R, Campanelli AP, Trombone APF, Rodrigues DC, Garlet GP. HGMB1 and RAGE as Essential Components of Ti Osseointegration Process in Mice. Front Immunol 2019; 10:709. [PMID: 31024546 PMCID: PMC6461067 DOI: 10.3389/fimmu.2019.00709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
The release of the prototypic DAMP High Mobility Group Box 1 (HMGB1) into extracellular environment and its binding to the Receptor for Advanced Glycation End Products (RAGE) has been described to trigger sterile inflammation and regulate healing outcome. However, their role on host response to Ti-based biomaterials and in the subsequent osseointegration remains unexplored. In this study, HMGB1 and RAGE inhibition in the Ti-mediated osseointegration were investigated in C57Bl/6 mice. C57Bl/6 mice received a Ti-device implantation (Ti-screw in the edentulous alveolar crest and a Ti-disc in the subcutaneous tissue) and were evaluated by microscopic (microCT [bone] and histology [bone and subcutaneous]) and molecular methods (ELISA, PCR array) during 3, 7, 14, and 21 days. Mice were divided into 4 groups: Control (no treatment); GZA (IP injection of Glycyrrhizic Acid for HMGB1 inhibition, 4 mg/Kg/day); RAP (IP injection of RAGE Antagonistic Peptide, 4 mg/Kg/day), and vehicle controls (1.5% DMSO solution for GZA and 0.9% saline solution for RAP); treatments were given at all experimental time points, starting 1 day before surgeries. HMGB1 was detected in the Ti-implantation sites, adsorbed to the screws/discs. In Control and vehicle groups, osseointegration was characterized by a slight inflammatory response at early time points, followed by a gradual bone apposition and matrix maturation at late time points. The inhibition of HMGB1 or RAGE impaired the osseointegration, affecting the dynamics of mineralized and organic bone matrix, and resulting in a foreign body reaction, with persistence of macrophages, necrotic bone, and foreign body giant cells until later time points. While Control samples were characterized by a balance between M1 and M2-type response in bone and subcutaneous sites of implantation, and also MSC markers, the inhibition of HMGB1 or RAGE caused a higher expression M1 markers and pro-inflammatory cytokines, as well chemokines and receptors for macrophage migration until later time points. In conclusion, HMGB1 and RAGE have a marked role in the osseointegration, evidenced by their influence on host inflammatory immune response, which includes macrophages migration and M1/M2 response, MSC markers expression, which collectively modulate bone matrix deposition and osseointegration outcome.
Collapse
Affiliation(s)
- Claudia Cristina Biguetti
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Franco Cavalla
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil.,Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - Elcia Varize Silveira
- Department of Biological and Allied Health Sciences, Universidade Sagrado Coração, Bauru, Brazil
| | - André Petenuci Tabanez
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Rumio Taga
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Danieli C Rodrigues
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX, United States
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
75
|
Kim WH, Lillehoj HS. Immunity, immunomodulation, and antibiotic alternatives to maximize the genetic potential of poultry for growth and disease response. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2018.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
76
|
Gaudino SJ, Kumar P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front Immunol 2019; 10:360. [PMID: 30894857 PMCID: PMC6414782 DOI: 10.3389/fimmu.2019.00360] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022] Open
Abstract
Innate immunity is maintained in part by antigen presenting cells (APCs) including dendritic cells, macrophages, and B cells. APCs interact with T cells to link innate and adaptive immune responses. By displaying bacterial and tumorigenic antigens on their surface via major histocompatibility complexes, APCs can directly influence the differentiation of T cells. Likewise, T cell activation, differentiation, and effector functions are modulated by APCs utilizing multiple mechanisms. The objective of this review is to describe how APCs interact with and influence the activation of T cells to maintain innate immunity during exposure to microbial infection and malignant cells. How bacteria and cancer cells take advantage of some of these interactions for their own benefit will also be discussed. While this review will cover a broad range of topics, a general focus will be held around pathogens, cancers, and interactions that typically occur within the gastrointestinal tract.
Collapse
Affiliation(s)
- Stephen J Gaudino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Pawan Kumar
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
77
|
Ben-David H, Livneh A, Lidar M, Feld O, Haj Yahia S, Grossman C, Ben-Zvi I. Toll-like receptor 2 is overexpressed in Familial Mediterranean fever patients and is inhibited by colchicine treatment. Best Pract Res Clin Rheumatol 2019; 32:651-661. [PMID: 31203923 DOI: 10.1016/j.berh.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM To study the role of Toll-like receptor (TLR) 2 in Familial Mediterranean fever (FMF) inflammatory process. METHODS TLR2 expression on monocytes of FMF attack-free patients (n = 20) and the effect of sera of FMF patients with an acute attack (n = 9) on TLR2 expression on monocytes of healthy donors were studied by flow cytometry (FACS). TLR2 expression was also studied in THP-1 cells, and TLR2 downstream signaling was studied by ELISA for the secretion of IL-1β and pro-inflammatory cytokines or by western blotting to measure nuclear factor (NF)-κB. RESULTS FMF attack-free patients had increased CD14 + TLR2+ cell count as compared to healthy donors. High-dose colchicine treatment (≥2 mg/d) inhibited this increased expression in FMF patients. Colchicine in vitro also inhibited TLR2 expression on THP-1 cells. Sera from FMF patients with an acute attack induced TLR2 expression by both monocytes of healthy donors and THP-1 cells as well as pro-inflammatory cytokine secretion by healthy monocytes, while colchicine inhibited this induction. Pam2CSK4 increased interleukin-1β (IL-1β) secretion by peripheral blood mononuclear cells (PBMCs) of healthy donors, and this activation was inhibited by colchicine. THP-1 cells presented elevated NF-κB expression when cultured with Pam2CSK4, whereas colchicine inhibited this elevation. CONCLUSIONS TLR2 activation was upregulated in monocytes of FMF patients, and colchicine inhibited this upregulation both in -vitro and in -vivo. This indicates that elevated expression of TLR2 promotes the production of pro-inflammatory cytokines, which may contribute to uncontrolled inflammation in FMF.
Collapse
Affiliation(s)
- Hava Ben-David
- Heller Institute of Medical Research, Tel-Aviv University, Tel-Aviv, Israel; Department of Internal Medicine F, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Avi Livneh
- Heller Institute of Medical Research, Tel-Aviv University, Tel-Aviv, Israel; Rheumatology Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Israel; Department of Internal Medicine F, The Chaim Sheba Medical Center, Tel-Hashomer, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Merav Lidar
- Rheumatology Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Olga Feld
- Department of Internal Medicine F, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Souad Haj Yahia
- Department of Internal Medicine F, The Chaim Sheba Medical Center, Tel-Hashomer, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Chagai Grossman
- Rheumatology Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Israel; Department of Internal Medicine F, The Chaim Sheba Medical Center, Tel-Hashomer, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ilan Ben-Zvi
- Heller Institute of Medical Research, Tel-Aviv University, Tel-Aviv, Israel; Rheumatology Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Israel; Department of Internal Medicine F, The Chaim Sheba Medical Center, Tel-Hashomer, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; The Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
78
|
UFL1 Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF- κB Pathway in Bovine Mammary Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6505373. [PMID: 30881595 PMCID: PMC6387704 DOI: 10.1155/2019/6505373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022]
Abstract
In recent studies, UFL1 (ubiquitin-like modifier 1 ligating enzyme 1) has been identified as a significant regulator of NF-κB signaling and cellular stress response, yet its physiological function in LPS-stimulated bovine mammary epithelial cells (BMECs) remains unknown. In this study, we investigated the modulating effect of UFL1 on the regulation of LPS-induced inflammation and cell damage, with a focus on apoptosis, ER stress, autophagy, oxidative stress, and the TLR4/NF-κB signaling pathway. The results showed that UFL1 depletion aggravated the LPS-induced inflammatory response and cell damage by positively regulating the TLR4/NF-κB pathway (increased the expression of TLR4, NF-κB P65 in nuclear, and phospho-IκBα), exacerbating LPS-induced ER stress (increased the expression of CHOP, Hsp70, and GRP78), apoptosis (increased the expression of Bax/Bcl-2 and activity of caspase-3), autophagy (increased LC3-II and decreased P62 expression), and oxidative stress (decreased SOD and CAT levels and increased MDA levels). Overexpression of UFL1 suppressed the activation of the TLR4/NF-κB pathway and relieved the LPS-induced ER stress, apoptosis, autophagy, and oxidative stress, thereby alleviating the inflammatory response and cell damage. Collectively, UFL1 may play an important role during the inflammatory response and thereby acts as a potential therapeutic target for bovine mastitis.
Collapse
|
79
|
Li Y, Han H, Yin J, He X, Tang Z, Li T, Yao K, Yin Y. d- andl-Aspartate regulates growth performance, inflammation and intestinal microbial community in young pigs. Food Funct 2019; 10:1028-1037. [DOI: 10.1039/c8fo01410h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dietary 1%d-Asp andl-Asp affect the growth performance and inflammation in young pigs, which might be associated with gut microbiota.
Collapse
Affiliation(s)
- Yuying Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Hui Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Xingguo He
- Changsha LvYe Bio-technology Co
- Ltd
- Changsha
- China
| | - Zhiyi Tang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Kang Yao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| |
Collapse
|
80
|
Leite FRM, Enevold C, Bendtzen K, Baelum V, López R. Pattern recognition receptor polymorphisms in early periodontitis. J Periodontol 2018; 90:647-654. [DOI: 10.1002/jper.18-0547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/06/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Fábio R. M. Leite
- Section of PeriodontologyDepartment of Dentistry and Oral HealthFaculty of Health SciencesAarhus University Aarhus Denmark
| | - Christian Enevold
- Institute for Inflammation ResearchCenter for Rheumatology and Spine DiseasesCopenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | - Klaus Bendtzen
- Institute for Inflammation ResearchCenter for Rheumatology and Spine DiseasesCopenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | - Vibeke Baelum
- Section of Epidemiology and Public HealthDepartment of Dentistry and Oral Health, Faculty of Health SciencesAarhus University Aarhus Denmark
| | - Rodrigo López
- Section of PeriodontologyDepartment of Dentistry and Oral HealthFaculty of Health SciencesAarhus University Aarhus Denmark
| |
Collapse
|
81
|
Ahechu P, Zozaya G, Martí P, Hernández-Lizoáin JL, Baixauli J, Unamuno X, Frühbeck G, Catalán V. NLRP3 Inflammasome: A Possible Link Between Obesity-Associated Low-Grade Chronic Inflammation and Colorectal Cancer Development. Front Immunol 2018; 9:2918. [PMID: 30619282 PMCID: PMC6297839 DOI: 10.3389/fimmu.2018.02918] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence reveals that adipose tissue-associated inflammation is a main mechanism whereby obesity promotes colorectal cancer risk and progression. Increased inflammasome activity in adipose tissue has been proposed as an important mediator of obesity-induced inflammation and insulin resistance development. Chronic inflammation in tumor microenvironments has a great impact on tumor development and immunity, representing a key factor in the response to therapy. In this context, the inflammasomes, main components of the innate immune system, play an important role in cancer development showing tumor promoting or tumor suppressive actions depending on the type of tumor, the specific inflammasome involved, and the downstream effector molecules. The inflammasomes are large multiprotein complexes with the capacity to regulate the activation of caspase-1. In turn, caspase-1 enhances the proteolytic cleavage and the secretion of the inflammatory cytokines interleukin (IL)-1β and IL-18, leading to infiltration of more immune cells and resulting in the generation and maintenance of an inflammatory microenvironment surrounding cancer cells. The inflammasomes also regulate pyroptosis, a rapid and inflammation-associated form of cell death. Recent studies indicate that the inflammasomes can be activated by fatty acids and high glucose levels linking metabolic danger signals to the activation of inflammation and cancer development. These data suggest that activation of the inflammasomes may represent a crucial step in the obesity-associated cancer development. This review will also focus on the potential of inflammasome-activated pathways to develop new therapeutic strategies for the prevention and treatment of obesity-associated colorectal cancer development.
Collapse
Affiliation(s)
- Patricia Ahechu
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gabriel Zozaya
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pablo Martí
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
82
|
Dou X, Han J, Ma Q, Cheng B, Shan A, Gao N, Yang Y. TLR2/4-mediated NF-κB pathway combined with the histone modification regulates β-defensins and interleukins expression by sodium phenyl butyrate in porcine intestinal epithelial cells. Food Nutr Res 2018; 62:1493. [PMID: 30574051 PMCID: PMC6294838 DOI: 10.29219/fnr.v62.1493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background Host defense peptides (HDPs) possess direct antibacterial, antineoplastic, and immunomodulatory abilities, playing a vital role in innate immunity. Dietary-regulated HDP holds immense potential as a novel pathway for preventing infection. Objective In this study, we examined the regulation mechanism of HDPs (pEP2C, pBD-1, and pBD-3) and cytokines (IL-8 and IL-18) expression by sodium phenylbutyrate (PBA). Design The effects of PBA on HDP induction and the mechanism involved were studied in porcine intestinal epithelial cell lines (IPEC J2). Results In this study, the results showed that HDPs (pEP2C, pBD-1, and pBD-3) and cytokines (IL-8 and IL-18) expression was increased significantly upon stimulation with PBA in IPEC J2 cells. Furthermore, toll-like receptor 2 (TLR2) and TLR4 were required for the PBA-mediated upregulation of the HDPs. This process occurred and further activated the NF-κB pathway via the phosphorylation of p65 and an IκB α synthesis delay. Meanwhile, histone deacetylase (HDAC) inhibition and an increased phosphorylation of histone H3 on serine S10 also occurred in PBA-induced HDP expression independently with TLR2 and TLR4. Furthermore, p38-MAPK suppressed PBA-induced pEP2C, pBD-1 pBD-3, IL-8, and IL-18 expression, but ERK1/2 failed to abolish the regulation of pBD-3, IL-8, and IL-18. Moreover, epidermal growth factor receptor (EGFR) is involved in PBA-mediated HDP regulation. Conclusions We concluded that PBA induced HDP and cytokine increases but did not cause an excessive pro-inflammatory response, which proceeded through the TLR2 and TLR4-NF-κB pathway and histone modification in IPEC J2 cells.
Collapse
Affiliation(s)
- Xiujing Dou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Junlan Han
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Qiuyuan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baojing Cheng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yu Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
83
|
Yang S, Zhao Z, Zhang A, Jia F, Song M, Huang Z, Fu J, Li G, Lin S. Proteomics analysis of chicken peripheral blood lymphocyte in Taishan Pinus massoniana pollen polysaccharide regulation. PLoS One 2018; 13:e0208314. [PMID: 30496273 PMCID: PMC6264863 DOI: 10.1371/journal.pone.0208314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022] Open
Abstract
The natural polysaccharides extracted from the pollen of Pinus massoniana (TPPPS) have been shown to be a promising immune adjuvant against several viral chicken diseases. However, the exact mechanism through which TPPPS enhances the host immune response in chicken remains poorly understood. In the current study, chicken peripheral blood lymphocytes were treated with varying concentrations of TPPPS and pro-inflammatory cytokines such as IFN-γ, iIL-2 and IL-6 were measured to determine the optimal dose of the polysaccharide. A comparative analysis was subsequently performed between the proteome of lymphocytes subjected to the best treatment conditions and that of untreated cells. Protein identification and quantitation revealed a panel of three up-regulated and seven down-regulated candidates in TPPPS-treated chicken peripheral blood lymphocytes. Further annotation and functional analysis suggested that a number of those protein candidates were involved in the regulation of host innate immune response, inflammation and other immune-related pathways. We believe that our results could serve as a stepping stone for further research on the immune-enhancing properties of TPPPS and other polysaccharide-based immune adjuvants.
Collapse
Affiliation(s)
- Shifa Yang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, Shandong, China
| | - Zengcheng Zhao
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Anyuan Zhang
- Institute of Veterinary Drug Qualily Inspection of Shandong Province, Jinan, Shandong, China
| | - Fengjuan Jia
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, Shandong, China
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Minxun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Zhongli Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jian Fu
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Guiming Li
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, Shandong, China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| |
Collapse
|
84
|
Gomes Torres ACMB, Leite N, Tureck LV, de Souza RLR, Titski ACK, Milano-Gai GE, Lazarotto L, da Silva LR, Furtado-Alle L. Association between Toll-like receptors (TLR) and NOD-like receptor (NLR) polymorphisms and lipid and glucose metabolism. Gene 2018; 685:211-221. [PMID: 30481552 DOI: 10.1016/j.gene.2018.11.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/31/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Recent evidences had shown activation of TLR (toll-like receptors) and NLR (nod-like receptors) in response to imbalance in nutrients intake, such as lipid and glucose. The main aim of this study was to investigate possible associations between 11 SNPs in TLR2, TLR4, NLRC4, CARD8 and NEK7 genes and lipid and glucose metabolism. Sample was composed by healthy children and adolescents (n = 158) and adults (n = 115). DNA extraction was obtained by salting-out and sample genotyping by matrix-assisted laser desorption ionization time-of-flight mass spectrometry based system. LDL-cholesterol, HDL-cholesterol, triglycerides, total cholesterol, glucose and insulin were measured by standard automated methods. Means were compared by t-test or Mann-Whitney test. Univariate and multivariate logistic regression were used to verify association between polymorphisms and lipid and glucose markers. Seven polymorphisms in 5 genes were associated with lipid and glucose parameters. For lipid parameters, the following associations were found: higher LDL-C levels and C allele of rs1554973 (TLR4) and G allele of rs6671879 (NEK7); higher HDL-cholesterol levels and A allele of rs13105517 (TLR2); higher total cholesterol and TT genotype of rs3804099 (TLR2) and G allele of rs6671879 (NEK7); higher triglycerides levels and G allele of rs455060 (NLRC4). For glucose parameters associations were found between C allele of rs7258674 (CARD8) and higher glucose levels, and between C allele of rs212704 (NLRC4) and G allele of rs455060 (NLRC4) and insulin levels. These findings indicate a relationship between polymorphisms of TLRs and NLRs genes and markers of lipid and glucose metabolism.
Collapse
Affiliation(s)
- Ana Cláudia M B Gomes Torres
- Department of Genetics, Federal University of Paraná, Francisco H. dos Santos, 210 Jardim das Américas, 81531-970 Curitiba, Paraná, Brazil.
| | - Neiva Leite
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, Paraná, Brazil
| | - Luciane Viater Tureck
- Department of Genetics, Federal University of Paraná, Francisco H. dos Santos, 210 Jardim das Américas, 81531-970 Curitiba, Paraná, Brazil
| | | | - Ana Cláudia Kapp Titski
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, Paraná, Brazil
| | - Gerusa Eisfeld Milano-Gai
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, Paraná, Brazil
| | - Leilane Lazarotto
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, Paraná, Brazil
| | - Larissa Rosa da Silva
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, Paraná, Brazil
| | - Lupe Furtado-Alle
- Department of Genetics, Federal University of Paraná, Francisco H. dos Santos, 210 Jardim das Américas, 81531-970 Curitiba, Paraná, Brazil
| |
Collapse
|
85
|
Bonaventura A, Montecucco F. Inflammation and pericarditis: Are neutrophils actors behind the scenes? J Cell Physiol 2018; 234:5390-5398. [PMID: 30417336 DOI: 10.1002/jcp.27436] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
The morbidity of acute pericarditis is increasing over time impacting on patient quality of life. Recent clinical trials focused especially on clinical aspects, with a modest interest in pathophysiological mechanisms. This narrative review, based on papers in English language obtained via PubMed up to April 2018, aims at focusing on the role of the innate immunity in pericarditis and discussing future potential therapeutic strategies impacting on disease pathophysiology. In developed countries, most cases of pericarditis are referred to as idiopathic, although etiological causes have been described, with autoreactive/lymphocytic, malignant, and infectious ones as the most frequent causes. Apart the known impairment of the adaptive immunity, recently a large body evidence indicated the central role of the innate immune system in the pathogenesis of recurrent pericarditis, starting from similarities with autoinflammatory diseases. Accordingly, the "inflammasome" has been shown to behave as an important player in pericarditis development. Similarly, the beneficial effect of colchicine in recurrent pericarditis confirms that neutrophils are important effectors as colchicine, which can block neutrophil chemotaxis, interferes with neutrophil adhesion and recruitment to injured tissues and abrogate superoxide production. Anyway, the role of the adaptive immune system in pericarditis cannot be reduced to a black or white issue as mechanisms often overlap. Therefore, we believe that more efficient therapeutic strategies have to be investigated by targeting neutrophil-derived mediators (such as metalloproteinases) and disentangling the strict interplay between neutrophils and platelets. In this view, some progress has been done by using the recombinant human interleukin-1 receptor antagonist anakinra.
Collapse
Affiliation(s)
- Aldo Bonaventura
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
86
|
Touzani F, Pozdzik A. New insights into immune cells cross-talk during IgG4-related disease. Clin Immunol 2018; 198:1-10. [PMID: 30419354 DOI: 10.1016/j.clim.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/25/2018] [Accepted: 11/09/2018] [Indexed: 12/24/2022]
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is a newly acknowledged entity, characterized by an immune-mediated fibro-inflammatory process affecting virtually all organs, with infiltration of IgG4+ bearing plasma cells. Until today the pathogenesis of IgG4-RD remains unknown. Treatment with anti-CD20 monoclonal antibodies efficiently induced remission and attenuated the secretory phenotype of myofibroblasts responsible of uncontrolled collagen deposition. This supports the pathogenic role of the adaptive immunity, particularly B cell compartment and B cell/T cell interaction. Latest studies have also highlighted the importance of innate immune system that has been underestimated before and the key role of a specific T cell subset, T follicular helper cells that are involved in IgG4-class-switching and plasmablast differentiation. In this review, we aim to review the most recent knowledge of innate immunity, T and B cells involvement in IgG4-RD, and introduce tertiary lymphoid organs (TLO) as a potential marker of relapse in this condition.
Collapse
Affiliation(s)
- Fahd Touzani
- Internal medicine department, Hospital Brugmann, Brussels, Belgium; Nephrology and dialysis clinic, Hospital Brugmann, Brussels, Belgium.
| | - Agnieszka Pozdzik
- Nephrology and dialysis clinic, Hospital Brugmann, Brussels, Belgium; Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
87
|
Khalil R. Ubiquitin-Proteasome Pathway and Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:235-248. [DOI: 10.1007/978-981-13-1435-3_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
88
|
Kalva S, Bindusree G, Alexander V, Madasamy P. Interactome based biomarker discovery for irritable bowel syndrome—A systems biology approach. Comput Biol Chem 2018; 76:218-224. [DOI: 10.1016/j.compbiolchem.2018.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/12/2017] [Accepted: 07/04/2018] [Indexed: 02/07/2023]
|
89
|
Giordano DM, Pinto C, Maroni L, Benedetti A, Marzioni M. Inflammation and the Gut-Liver Axis in the Pathophysiology of Cholangiopathies. Int J Mol Sci 2018; 19:E3003. [PMID: 30275402 PMCID: PMC6213589 DOI: 10.3390/ijms19103003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022] Open
Abstract
Cholangiocytes, the epithelial cells lining the bile ducts, represent the unique target of a group of progressive diseases known as cholangiopathies whose pathogenesis remain largely unknown. In normal conditions, cholangiocytes are quiescent and participate to the final bile volume and composition. Following exogenous or endogenous stimuli, cholangiocytes undergo extensive modifications of their phenotype. Reactive cholangiocytes actively proliferate and release a set of proinflammatory molecules, which act in autocrine/paracrine manner mediating the cross-talk with other liver cell types and innate and adaptive immune cells. Cholangiocytes themselves activate innate immune responses against gut-derived microorganisms or bacterial products that reach the liver via enterohepatic circulation. Gut microbiota has been implicated in the development and progression of the two most common cholangiopathies, i.e., primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), which have distinctive microbiota composition compared to healthy individuals. The impairment of intestinal barrier functions or gut dysbiosis expose cholangiocytes to an increasing amount of microorganisms and may exacerbate inflammatory responses thus leading to fibrotic remodeling of the organ. The present review focuses on the complex interactions between the activation of innate immune responses in reactive cholangiocytes, dysbiosis, and gut permeability to bacterial products in the pathogenesis of PSC and PBC.
Collapse
Affiliation(s)
- Debora Maria Giordano
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Claudio Pinto
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Luca Maroni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Antonio Benedetti
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| |
Collapse
|
90
|
Song C, Liu B, Xu P, Xie J, Ge X, Zhou Q, Sun C, Zhang H, Shan F, Yang Z. Oxidized fish oil injury stress in Megalobrama amblycephala: Evaluated by growth, intestinal physiology, and transcriptome-based PI3K-Akt/NF-κB/TCR inflammatory signaling. FISH & SHELLFISH IMMUNOLOGY 2018; 81:446-455. [PMID: 30064020 DOI: 10.1016/j.fsi.2018.07.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Lipids are essential nutrients for animal. Oxidized lipid might induce injury stress for fish. Here we conducted a 12-week rearing experiment with diets containing 0, 2, 4, and 6% oxidized fish oil (6F, 4F2OF, 2F4OF, and 6OF) to describe the oxidative impairment mechanism on teleost fish blunt snout bream, Megalobrama amblycephala. Results were evaluated by growth performance, intestinal physiology, and transcriptome-based PI3K-Akt/NF-κB/TCR inflammatory signaling. From the results, 6OF reduced growth performance with increased FCR and reduced FBW, WGR and SGR compare with 6 F. Meanwhile, oxidized fish oil treatments also increased antioxidant enzyme activity, suggesting an impaired physiological condition. The plasmatic antioxidant enzyme activity of T-SOD, GSH-Px, ASAFR, concentration of MDA and cortisol were significantly increased in 6OF, while GSH concentration was decreased. Histological ultrastructure revealed the integrity of mid-intestinal cells and villus were destroyed in 6OF. Moreover, transcriptomic analysis revealed PI3K-Akt/NF-κB/TCR inflammatory signaling were active to oxidized fish oil stress. We verified the expression of twelve key genes related to this signaling by RT-PCR, which revealed TLR2, PI3K, Akt, NF-κB, MHCII-β, TCR-α, TGF-β, TNF-α, IL-6, IL-1β, GPx1 and GSTm were all activated under 6OF stimulation. We found that oxidized fish oil may induce oxidative stress, destroy intestinal integrity, produce free radical, dysregulate lipid metabolism and oxidative balance, reversely affect the physiological adaptation, and eventually lead to growth inhibition. This study revealed the mechanism of PI3K-Akt/NF-κB/TCR inflammatory signaling in M. amblycephala under oxidized fish oil stress, which may help to understand the complex regulation involved in lipid oxidative stress resistance.
Collapse
Affiliation(s)
- Changyou Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Huimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Fan Shan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Zhenfei Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| |
Collapse
|
91
|
Xu F, Sang W, Li L, He X, Wang F, Wen T, Zeng N. Protective effects of ethyl acetate extracts of Rimulus Cinnamon on systemic inflammation and lung injury in endotoxin-poisoned mice. Drug Chem Toxicol 2018; 42:309-316. [PMID: 30257565 DOI: 10.1080/01480545.2018.1509987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rimulus cinnamon is the dried twig of Cinnamomum cassia Presl. It is widely used in China for the treatment of inflammatory processes, amenorrhea, and other diseases. We aimed to study the protective effects of ethyl acetate extracts of R. cinnamon (EAE) on systemic inflammation and lung injury in endotoxin-poisoned mice. EAE was administered 5 d prior to lipopolysaccharide (LPS) challenge with 15 mg/kg LPS. The administration of EAE increased the levels of interferon-γ (IFN-γ) and decreased the levels of interleukin-18 (IL-18) and tumor necrosis factor-α (TNF-α) in the serum. Additionally, EAE relieved the pathological changes in the tissues of the lungs and spleen, and significantly reduced the number of neutrophils in the lung tissues. In addition, treatment with EAE decreased the mRNA expression of the NLR family, pyrin domain-containing protein 3 (NLRP3), caspase-1, and interleukin-1β (IL-1β) in the lungs, as well as the expression of NLRP3, caspase-1 (p20), and pro-IL-1β proteins. These results demonstrated the promising anti-inflammatory effects of EAE in endotoxin-poisoned mice. Furthermore, EAE could alleviate the lung injury of endotoxin-poisoned mice by antagonizing the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Feng Xu
- a Department of Pharmacology, College of Pharmacy , Chengdu University of TCM , Chengdu , Sichuan , P.R. China
| | - Wentao Sang
- a Department of Pharmacology, College of Pharmacy , Chengdu University of TCM , Chengdu , Sichuan , P.R. China
| | - Ling Li
- a Department of Pharmacology, College of Pharmacy , Chengdu University of TCM , Chengdu , Sichuan , P.R. China
| | - Xinyu He
- a Department of Pharmacology, College of Pharmacy , Chengdu University of TCM , Chengdu , Sichuan , P.R. China
| | - Feng Wang
- a Department of Pharmacology, College of Pharmacy , Chengdu University of TCM , Chengdu , Sichuan , P.R. China
| | - Taoqun Wen
- a Department of Pharmacology, College of Pharmacy , Chengdu University of TCM , Chengdu , Sichuan , P.R. China
| | - Nan Zeng
- a Department of Pharmacology, College of Pharmacy , Chengdu University of TCM , Chengdu , Sichuan , P.R. China
| |
Collapse
|
92
|
Li D, Wang H, Li Z, Wang C, Xiao F, Gao Y, Zhang X, Wang P, Peng J, Cai G, Zuo B, Shen Y, Qi J, Qian N, Deng L, Song W, Zhang X, Shen L, Chen X. The inhibition of RANKL expression in fibroblasts attenuate CoCr particles induced aseptic prosthesis loosening via the MyD88-independent TLR signaling pathway. Biochem Biophys Res Commun 2018; 503:1115-1122. [DOI: 10.1016/j.bbrc.2018.06.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023]
|
93
|
Sahni A, Fang R, Sahni SK, Walker DH. Pathogenesis of Rickettsial Diseases: Pathogenic and Immune Mechanisms of an Endotheliotropic Infection. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:127-152. [PMID: 30148688 DOI: 10.1146/annurev-pathmechdis-012418-012800] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obligately intracytosolic rickettsiae that cycle between arthropod and vertebrate hosts cause human diseases with a spectrum of severity, primarily by targeting microvascular endothelial cells, resulting in endothelial dysfunction. Endothelial cells and mononuclear phagocytes have important roles in the intracellular killing of rickettsiae upon activation by the effector molecules of innate and adaptive immunity. In overwhelming infection, immunosuppressive effects contribute to the severity of illness. Rickettsia-host cell interactions involve host cell receptors for rickettsial ligands that mediate cell adhesion and, in some instances, trigger induced phagocytosis. Rickettsiae interact with host cell actin to effect both cellular entry and intracellular actin-based mobility. The interaction of rickettsiae with the host cell also involves rickettsial evasion of host defense mechanisms and exploitation of the intracellular environment. Signal transduction events exemplify these effects. An intriguing frontier is the array of rickettsial noncoding RNA molecules and their potential effects on the pathogenesis and transmission of rickettsial diseases.
Collapse
Affiliation(s)
- Abha Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Rong Fang
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Sanjeev K Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - David H Walker
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| |
Collapse
|
94
|
Pu J, Chen D, Tian G, He J, Zheng P, Mao X, Yu J, Huang Z, Zhu L, Luo J, Luo Y, Yu B. Protective Effects of Benzoic Acid, Bacillus Coagulans, and Oregano Oil on Intestinal Injury Caused by Enterotoxigenic Escherichia coli in Weaned Piglets. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1829632. [PMID: 30225247 PMCID: PMC6129782 DOI: 10.1155/2018/1829632] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
The use of antibiotics as growth promoters in feed has been fully or partially banned in several countries. The objective of this study was to investigate the effects of benzoic acid (A), bacillus coagulans (B) and oregano oil (O) combined supplementation on growth performance and intestinal barrier in piglets challenged with enterotoxigenic Escherichia coli (ETEC). Thirty piglets were randomly assigned to 6 treatments: (1) nonchallenged control (CON); (2) ETEC-challenged control (ETEC); (3) antibiotics + ETEC (AT); (4) A + B + ETEC (AB); (5) A + O + ETEC (AO); (6) A + B + O + ETEC (ABO). On day 22, piglets were orally challenged with ETEC or saline. The trial lasted 26 days. Dietary AO and ABO inhibited the reduction of growth performance and the elevation of diarrhoea incidence in piglets induced by ETEC (P<0.05). AB, AO, and ABO prevented the elevation of serum TNF-α and LPS concentrations in piglets induced by ETEC (P<0.05). ABO alleviated the elevation of TNF-α and IL-1β concentrations and the reduction of sIgA level in jejunal mucosa induced by ETEC (P<0.05). Furthermore, ABO upregulated mRNA expressions of Claudin-1 and Mucin2 (P<0.05), downregulated mRNA abundances of TLR4 and NOD2 signaling pathways related genes in jejunal mucosa (P<0.05), and improved the microbiota in jejunal and cecal digesta (P<0.05) compared with ETEC group. These results indicated that benzoic acid, bacillus coagulans, and oregano oil combined supplementation could improve growth performance and alleviate diarrhoea of piglets challenged with ETEC via improving intestinal mucosal barrier integrity, which was possibly associated with the improvement of intestinal microbiota and immune status. The combination of 3000 g/t benzoic acid + 400 g/t bacillus coagulans + 400 g/t oregano oil showed better effects than other treatments in improving growth performance and intestinal health of piglets, which could be used as a viable substitute for antibiotic.
Collapse
Affiliation(s)
- Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Ling Zhu
- Key Laboratory of Animal Biotechnology Center of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611134, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| |
Collapse
|
95
|
Bortolotti P, Faure E, Kipnis E. Inflammasomes in Tissue Damages and Immune Disorders After Trauma. Front Immunol 2018; 9:1900. [PMID: 30166988 PMCID: PMC6105702 DOI: 10.3389/fimmu.2018.01900] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/31/2018] [Indexed: 01/15/2023] Open
Abstract
Trauma remains a leading cause of death worldwide. Hemorrhagic shock and direct injury to vital organs are responsible for early mortality whereas most delayed deaths are secondary to complex pathophysiological processes. These processes result from imbalanced systemic reactions to the multiple aggressions associated with trauma. Trauma results in the uncontrolled local and systemic release of endogenous mediators acting as danger signals [damage-associated molecular patterns (DAMPs)]. Their recognition by the innate immune system triggers a pro-inflammatory immune response paradoxically associated with concomitant immunosuppression. These responses, ranging in intensity from inappropriate to overwhelming, promote the propagation of injuries to remote organs, leading to multiple organ failure and death. Some of the numerous DAMPs released after trauma trigger the assembly of intracellular multiprotein complexes named inflammasomes. Once activated by a ligand, inflammasomes lead to the activation of a caspase. Activated caspases allow the release of mature forms of interleukin-1β and interleukin-18 and trigger a specific pro-inflammatory cell death termed pyroptosis. Accumulating data suggest that inflammasomes, mainly NLRP3, NLRP1, and AIM2, are involved in the generation of tissue damage and immune dysfunction after trauma. Following trauma-induced DAMP(s) recognition, inflammasomes participate in multiple ways in the development of exaggerated systemic and organ-specific inflammatory response, contributing to organ damage. Inflammasomes are involved in the innate responses to traumatic brain injury and contribute to the development of acute respiratory distress syndrome. Inflammasomes may also play a role in post-trauma immunosuppression mediated by dysregulated monocyte functions. Characterizing the involvement of inflammasomes in the pathogenesis of post-trauma syndrome is a key issue as they may be potential therapeutic targets. This review summarizes the current knowledge on the roles of inflammasomes in trauma.
Collapse
Affiliation(s)
- Perrine Bortolotti
- Meakins-Christie Laboratories, Department of Medicine, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Emmanuel Faure
- Meakins-Christie Laboratories, Department of Medicine, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Eric Kipnis
- Surgical Critical Care Unit, Department of Anesthesiology and Critical Care, Centre Hospitalier Regional et Universitaire de Lille, Lille, France.,Host-Pathogen Translational Research, Faculté de Médecine, Université Lille 2 Droit et Santé, Lille, France
| |
Collapse
|
96
|
Chen H, Li Y, Gu J, Yin L, Bian F, Su L, Hong Y, Deng Y, Chi W. TLR4-MyD88 pathway promotes the imbalanced activation of NLRP3/NLRP6 via caspase-8 stimulation after alkali burn injury. Exp Eye Res 2018; 176:59-68. [PMID: 30008389 DOI: 10.1016/j.exer.2018.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/12/2018] [Accepted: 07/01/2018] [Indexed: 01/17/2023]
Abstract
Alkali burn (AB) is one of the most serious ocular traumas in the world, characterized by extreme ocular surface disorders, critical secondary dry eye and irreversible vision loss. The exact mechanisms involved are unknown. Innate immunity, including the involvement of Toll-like receptors (TLRs) and NOD-like receptors (NLRs), is believed to participate in the pathogenesis of the epithelia, but the exact mechanisms by which TLRs transduce signals to NLRs and downstream molecules to initiate innate immunity remain poorly defined. In this present study, we used murine models of AB and AB concomitant desiccating stress (DS) to investigate the potential functions and mechanisms of TLR4 in regulating NLRP3 and NLRP6 during AB injury and secondary dry eye. We demonstrated that AB injury induced activation of the TLR4-MyD88 pathway, leading to imbalanced NLRP3 and NLRP6 via the activation of caspase-8 signaling. DS worsened ocular surface disorders post-AB injury by magnifying this phenomenon. Caspase-8 signaling promoted NLRP3 upregulation via the nuclear factor (NF)-κB pathway, while NLRP6 suppressed NF-κB activation. Our findings also revealed that TLR4-MyD88 knockout can alleviate AB-induced or DS-worsened ocular surface disorders, shedding light on the potential therapeutic strategies in the future for AB injury. Taken together, our findings demonstrate that AB promotes the TLR4-MyD88-caspase-8 axis to cause imbalanced NLRP3/NLRP6, and DS exacerbates ocular surface damage via magnifying this imbalance.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yonghao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jianjun Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lin Yin
- Department of Information, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Fang Bian
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Lishi Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yanhua Hong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yang Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
97
|
Khatami M. Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and 'Dark Energy': loss of biorhythms (Anabolism v. Catabolism). Clin Transl Med 2018; 7:20. [PMID: 29961900 PMCID: PMC6026585 DOI: 10.1186/s40169-018-0193-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of health involves a synchronized network of catabolic and anabolic signals among organs/tissues/cells that requires differential bioenergetics from mitochondria and glycolysis (biological laws or biorhythms). We defined biological circadian rhythms as Yin (tumoricidal) and Yang (tumorigenic) arms of acute inflammation (effective immunity) involving immune and non-immune systems. Role of pathogens in altering immunity and inducing diseases and cancer has been documented for over a century. However, in 1955s decision makers in cancer/medical establishment allowed public (current baby boomers) to consume million doses of virus-contaminated polio vaccines. The risk of cancer incidence and mortality sharply rose from 5% (rate of hereditary/genetic or innate disease) in 1900s, to its current scary status of 33% or 50% among women and men, respectively. Despite better hygiene, modern detection technologies and discovery of antibiotics, baby boomers and subsequent 2–3 generations are sicker than previous generations at same age. American health status ranks last among other developed nations while America invests highest amount of resources for healthcare. In this perspective we present evidence that cancer is an induced disease of twentieth century, facilitated by a great deception of cancer/medical establishment for huge corporate profits. Unlike popularized opinions that cancer is 100, 200 or 1000 diseases, we demonstrate that cancer is only one disease; the severe disturbances in biorhythms (differential bioenergetics) or loss of balance in Yin and Yang of effective immunity. Cancer projects that are promoted and funded by decision makers are reductionist approaches, wrong and unethical and resulted in loss of millions of precious lives and financial toxicity to society. Public vaccination with pathogen-specific vaccines (e.g., flu, hepatitis, HPV, meningitis, measles) weakens, not promotes, immunity. Results of irresponsible projects on cancer sciences or vaccines are increased population of drug-dependent sick society. Outcome failure rates of claimed ‘targeted’ drugs, ‘precision’ or ‘personalized’ medicine are 90% (± 5) for solid tumors. We demonstrate that aging, frequent exposures to environmental hazards, infections and pathogen-specific vaccines and ingredients are ‘antigen overload’ for immune system, skewing the Yin and Yang response profiles and leading to induction of ‘mild’, ‘moderate’ or ‘severe’ immune disorders. Induction of decoy or pattern recognition receptors (e.g., PRRs), such as IRAK-M or IL-1dRs (‘designer’ molecules) and associated genomic instability and over-expression of growth promoting factors (e.g., pyruvate kinases, mTOR and PI3Ks, histamine, PGE2, VEGF) could lead to immune tolerance, facilitating cancer cells to hijack anabolic machinery of immunity (Yang) for their increased growth requirements. Expression of constituent embryonic factors would negatively regulate differentiation of tumor cells through epithelial–mesenchymal-transition and create “dual negative feedback loop” that influence tissue metabolism under hypoxic conditions. It is further hypothesized that induction of tolerance creates ‘dark energy’ and increased entropy and temperature in cancer microenvironment allowing disorderly cancer proliferation and mitosis along with increased glucose metabolism via Crabtree and Pasteur Effects, under mitophagy and ribophagy, conditions that are toxic to host survival. Effective translational medicine into treatment requires systematic and logical studies of complex interactions of tumor cells with host environment that dictate clinical outcomes. Promoting effective immunity (biological circadian rhythms) are fundamental steps in correcting host differential bioenergetics and controlling cancer growth, preventing or delaying onset of diseases and maintaining public health. The author urges independent professionals and policy makers to take a closer look at cancer dilemma and stop the ‘scientific/medical ponzi schemes’ of a powerful group that control a drug-dependent sick society before all hopes for promoting public health evaporate.
Collapse
Affiliation(s)
- Mahin Khatami
- Inflammation, Aging and Cancer, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
98
|
Kimber I, Poole A, Basketter DA. Skin and respiratory chemical allergy: confluence and divergence in a hybrid adverse outcome pathway. Toxicol Res (Camb) 2018; 7:586-605. [PMID: 30090609 PMCID: PMC6060610 DOI: 10.1039/c7tx00272f] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
Sensitisation of the respiratory tract to chemicals resulting in respiratory allergy and allergic asthma is an important occupational health problem, and presents toxicologists with no shortage of challenges. A major issue is that there are no validated or, even widely recognised, methods available for the identification and characterisation of chemical respiratory allergens, or for distinguishing respiratory allergens from contact allergens. The first objective here has been review what is known (and what is not known) of the mechanisms through which chemicals induce sensitisation of the respiratory tract, and to use this information to construct a hybrid Adverse Outcome Pathway (AOP) that combines consideration of both skin and respiratory sensitisation. The intention then has been to use the construction of this hybrid AOP to identify areas of commonality/confluence, and areas of departure/divergence, between skin sensitisation and sensitisation of the respiratory tract. The hybrid AOP not only provides a mechanistic understanding of how the processes of skin and respiratory sensitisation differ, buy also a means of identifying areas of uncertainty about chemical respiratory allergy that benefit from a further investment in research.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology , Medicine and Health , University of Manchester , Oxford Road , Manchester M13 9PT , UK . ; Tel: +44 (0) 161 275 1587
| | - Alan Poole
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) , 2 Av E Van Nieuwenhuyse , 1160 Brussels , Belgium
| | | |
Collapse
|
99
|
Takeda T, Morita H, Saito H, Matsumoto K, Matsuda A. Recent advances in understanding the roles of blood platelets in the pathogenesis of allergic inflammation and bronchial asthma. Allergol Int 2018; 67:326-333. [PMID: 29242144 DOI: 10.1016/j.alit.2017.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/12/2017] [Accepted: 11/19/2017] [Indexed: 12/28/2022] Open
Abstract
Platelets play an essential role in hemostasis to minimize blood loss due to traumatic injury. In addition, they contain various immune-associated molecules and contribute to immunological barrier formation at sites of vascular injury, thereby protecting against invading pathogens. Platelets are also crucially involved in development of allergic diseases, including bronchial asthma. Platelets in asthmatics are more activated than those in healthy individuals. By using a murine asthma model, platelets were shown to be actively involved in progression of the disease, including in airway eosinophilia and airway remodeling. In the asthmatic airway, pathological microvascular angiogenesis, a component of airway remodeling, is commonly observed, and the degree of abnormality is significantly associated with disease severity. Therefore, in order to repair the newly formed and structurally fragile blood vessels under inflammatory conditions, platelets may be continuously activated in asthmatics. Importantly, platelets constitutively express IL-33 protein, an alarmin cytokine that is essential for development of bronchial asthma. Meanwhile, the concept of development of allergic diseases has recently changed dramatically, and allergy researchers now share a belief in the centrality of epithelial barrier functions. In particular, IL-33 released from epithelial barrier tissue at sites of eczema can activate the antigen-non-specific innate immune system as an alarmin that is believed to be necessary for subsequent antigen-specific acquired immunological responses. From this perspective, we propose in this review a possible mechanism for how activated platelets act as an alarmin in development of bronchial asthma.
Collapse
Affiliation(s)
- Tomohiro Takeda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Health Sciences, Kansai University of Health Sciences, Osaka, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akio Matsuda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
100
|
Kawahara T, Hanzawa N, Sugiyama M. Effect of Lactobacillus strains on thymus and chemokine expression in keratinocytes and development of atopic dermatitis-like symptoms. Benef Microbes 2018; 9:643-652. [PMID: 29798706 DOI: 10.3920/bm2017.0162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lactobacillus strains, a major group of lactic acid bacteria, are representative food microorganisms that have many potential beneficial effects via their interactions with immune and intestinal epithelial cells. However, little is known about the effect of Lactobacillus strains on atopic dermatitis via keratinocytes, which comprise the physical barrier of the skin. In this study, we report that Lactobacillus strains have a significant suppressive effect on tumour necrosis factor (TNF)-α-induced expression and production of thymus and activation-regulated chemokine (TARC), a T helper 2 cell chemokine responsible for atopic dermatitis, in human keratinocytes. An RNA interference study showed that the effect of Lactobacillus reuteri strain Japan Collection of Microorganisms (JCM) 1112, the most suppressive strain, depended on the presence of Toll-like receptor 2 and the induction of A20 (also known as TNF-α-induced protein 3) and cylindromatosis in HaCaT cells. Topical application of a water-soluble extract of homogenised JCM 1112 cells significantly suppressed the development of house dust mite-induced atopic skin lesions and TARC expression at the lesion sites in NC/Nga mice. Our study provides new insights into the use of Lactobacillus strains as suppressive agents against keratinocyte-involved atopic inflammation of the skin.
Collapse
Affiliation(s)
- T Kawahara
- 1 Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.,2 Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research (IBS-ICCER) Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| | - N Hanzawa
- 1 Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| | - M Sugiyama
- 1 Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|