51
|
Tan Z, Li W, Cheng X, Zhu Q, Zhang X. Non-Coding RNAs in the Regulation of Hippocampal Neurogenesis and Potential Treatment Targets for Related Disorders. Biomolecules 2022; 13:biom13010018. [PMID: 36671403 PMCID: PMC9855933 DOI: 10.3390/biom13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, circRNAs, and piRNAs, do not encode proteins. Nonetheless, they have critical roles in a variety of cellular activities-such as development, neurogenesis, degeneration, and the response to injury to the nervous system-via protein translation, RNA splicing, gene activation, silencing, modifications, and editing; thus, they may serve as potential targets for disease treatment. The activity of adult neural stem cells (NSCs) in the subgranular zone of the hippocampal dentate gyrus critically influences hippocampal function, including learning, memory, and emotion. ncRNAs have been shown to be involved in the regulation of hippocampal neurogenesis, including proliferation, differentiation, and migration of NSCs and synapse formation. The interaction among ncRNAs is complex and diverse and has become a major topic within the life science. This review outlines advances in research on the roles of ncRNAs in modulating NSC bioactivity in the hippocampus and discusses their potential applications in the treatment of illnesses affecting the hippocampus.
Collapse
Affiliation(s)
- Zhengye Tan
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong 226001, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Central Lab, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224001, China
- Correspondence:
| |
Collapse
|
52
|
Wang L, Shui X, Zhang M, Mei Y, Xia Y, Lan G, Hu L, Gan CL, Tian Y, Li R, Gu X, Zhang T, Chen D, Lee TH. MiR-191-5p Attenuates Tau Phosphorylation, Aβ Generation, and Neuronal Cell Death by Regulating Death-Associated Protein Kinase 1. ACS Chem Neurosci 2022; 13:3554-3566. [PMID: 36454178 DOI: 10.1021/acschemneuro.2c00423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Dysregulation of microRNAs has been implicated in diverse diseases, including Alzheimer's disease (AD). MiR-191-5p in plasma/serum has been identified as a novel and promising noninvasive diagnostic biomarker for AD. However, whether miR-191-5p is involved in AD pathogenesis is largely unknown, and its levels in human AD brains are undetermined. Herein, we demonstrated that miR-191-5p downregulated tau phosphorylation at multiple AD-related sites and promoted neurite outgrowth using immunoblotting, immunofluorescence, and neurite outgrowth assays. Moreover, immunoblotting and enzyme-linked immunosorbent assays indicated that miR-191-5p decreased amyloid precursor protein phosphorylation levels and beta-amyloid (Aβ) generation. Furthermore, miR-191-5p reduced ceramide-induced neuronal cell death analyzed by trypan blue staining, the in situ cell death detection kit, and Annexin V-FITC/PI flow cytometry. Next, we verified that death-associated protein kinase 1 (DAPK1) was a direct target of miR-191-5p through the dual luciferase reporter assay and confirmed that the effects of miR-191-5p were antagonized by restoration of DAPK1 expression. Finally, the hippocampal miR-191-5p level was found to be decreased in humans with AD compared with controls and was inversely correlated with the DAPK1 expression level. Collectively, these findings suggest that miR-191-5p might exert inhibitory effects on tau phosphorylation, Aβ secretion, and neuronal cell death by directly targeting DAPK1, providing an attractive therapeutic option for AD.
Collapse
Affiliation(s)
- Long Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Xindong Shui
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Mi Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Yingxue Mei
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Yongfang Xia
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Guihua Lan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Li Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Chen-Ling Gan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Yuan Tian
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Ruomeng Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Xi Gu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Dongmei Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| |
Collapse
|
53
|
Zhang Z, Wu H, Qi S, Tang Y, Qin C, Liu R, Zhang J, Cao Y, Gao X. 5-Methyltetrahydrofolate Alleviates Memory Impairment in a Rat Model of Alzheimer's Disease Induced by D-Galactose and Aluminum Chloride. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16426. [PMID: 36554305 PMCID: PMC9779170 DOI: 10.3390/ijerph192416426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The effects of 5-methyltetrahydrofolate (5-MTHF) on a rat model of Alzheimer's disease (AD) induced by D-galactose (D-gal) and aluminum chloride (AlCl3) were investigated. Wistar rats were given an i.p. injection of 60 mg/kg D-gal and 10 mg/kg AlCl3 to induce AD and three doses of 1 mg/kg, 5 mg/kg or 10 mg/kg 5-MTHF by oral gavage. A positive control group was treated with 1 mg/kg donepezil by gavage. Morris water maze performance showed that 5 and 10 mg/kg 5-MTHF significantly decreased escape latency and increased the number of platform crossings and time spent in the target quadrant for AD rats. The administration of 10 mg/kg 5-MTHF decreased the brain content of amyloid β-protein 1-42 (Aβ1-42) and phosphorylated Tau protein (p-Tau) and decreased acetylcholinesterase and nitric oxide synthase activities. Superoxide dismutase activity, vascular endothelial growth factor level and glutamate concentration were increased, and malondialdehyde, endothelin-1, interleukin-6, tumor necrosis factor-alpha and nitric oxide decreased. The administration of 10 mg/kg 5-MTHF also increased the expression of disintegrin and metallopeptidase domain 10 mRNA and decreased the expression of β-site amyloid precursor protein cleavage enzyme 1 mRNA. In summary, 5-MTHF alleviates memory impairment in a D-gal- and AlCl3-exposed rat model of AD. The inhibition of Aβ1-42 and p-Tau release, reduced oxidative stress, the regulation of amyloid precursor protein processing and the release of excitatory amino acids and cytokines may be responsible.
Collapse
Affiliation(s)
- Zhengduo Zhang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hong Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shaojun Qi
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanjin Tang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chuan Qin
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Rui Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiacheng Zhang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yiyao Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
54
|
Lissek T. Activity-Dependent Induction of Younger Biological Phenotypes. Adv Biol (Weinh) 2022; 6:e2200119. [PMID: 35976161 DOI: 10.1002/adbi.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Indexed: 01/28/2023]
Abstract
In several mammalian species, including humans, complex stimulation patterns such as cognitive and physical exercise lead to improvements in organ function, organism health and performance, as well as possibly longer lifespans. A framework is introduced here in which activity-dependent transcriptional programs, induced by these environmental stimuli, move somatic cells such as neurons and muscle cells toward a state that resembles younger cells to allow remodeling and adaptation of the organism. This cellular adaptation program targets several process classes that are heavily implicated in aging, such as mitochondrial metabolism, cell-cell communication, and epigenetic information processing, and leads to functional improvements in these areas. The activity-dependent gene program (ADGP) can be seen as a natural, endogenous cellular reprogramming mechanism that provides deep insight into the principles of inducible improvements in cell and organism function and can guide the development of therapeutic approaches for longevity. Here, these ADGPs are analyzed, exemplary critical molecular nexus points such as cAMP response element-binding protein, myocyte enhancer factor 2, serum response factor, and c-Fos are identified, and it is explored how one may leverage them to prevent, attenuate, and reverse human aging-related decline of body function.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| |
Collapse
|
55
|
Research Progress on Exosomes and MicroRNAs in the Microenvironment of Postoperative Neurocognitive Disorders. Neurochem Res 2022; 47:3583-3597. [DOI: 10.1007/s11064-022-03785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 12/04/2022]
|
56
|
Zhong W, Wang X, Yang L, Wang Y, Xiao Q, Yu S, Cannon RD, Bai Y, Zhang C, Chen D, Ji P, Gao X, Song J. Nanocarrier-Assisted Delivery of Metformin Boosts Remodeling of Diabetic Periodontal Tissue via Cellular Exocytosis-Mediated Regulation of Endoplasmic Reticulum Homeostasis. ACS NANO 2022; 16:19096-19113. [PMID: 36259964 DOI: 10.1021/acsnano.2c08146] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Endoplasmic reticulum (ER) dysfunction is a potential contributor to the impaired repair capacity of periodontal tissue in diabetes mellitus (DM) patients. Restoring ER homeostasis is thus critical for successful regenerative therapy of diabetic periodontal tissue. Recent studies have shown that metformin can modulate DM-induced ER dysfunction, yet its mechanism remains unclear. Herein, we show that high glucose elevates the intracellular miR-129-3p level due to exocytosis-mediated release failure and subsequently perturbs ER calcium homeostasis via downregulating transmembrane and coiled-coil domain 1 (TMCO1), an ER Ca2+ leak channel, in periodontal ligament stem cells (PDLSCs). This results in the degradation of RUNX2 via the ubiquitination-dependent pathway, in turn leading to impaired PDLSCs osteogenesis. Interestingly, metformin could upregulate P2X7R-mediated exosome release and decrease intracellular miR-129-3p accumulation, which restores ER homeostasis and thereby rescues the impaired PDLSCs. To further demonstrate the in vivo effect of metformin, a nanocarrier for sustained local delivery of metformin (Met@HALL) in periodontal tissue is developed. Our results demonstrate that compared to controls, Met@HALL with enhanced cytocompatibility and pro-osteogenic activity could boost the remodeling of diabetic periodontal tissue in rats. Collectively, our findings unravel a mechanism of metformin in restoring cellular ER homeostasis, enabling the development of a nanocarrier-mediated ER targeting strategy for remodeling diabetic periodontal tissue.
Collapse
Affiliation(s)
- Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xinyan Wang
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Lanxin Yang
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Simin Yu
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Richard D Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Yan Bai
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Duanjing Chen
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
57
|
Fauser AM, Stidham E, Cady C, Gupta A. Role of microRNA-132 in Opioid Addiction through Modification of Neural Stem Cell Differentiation. J Pers Med 2022; 12:jpm12111800. [PMID: 36579528 PMCID: PMC9696313 DOI: 10.3390/jpm12111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
In this editorial, we focused on the article, "MicroRNA-132 in the Adult Dentate Gyrus is Involved in Opioid Addiction Via Modifying the Differentiation of Neural Stem Cells" by Jia and colleagues [...].
Collapse
Affiliation(s)
- Anne-Marie Fauser
- Bohlander Stem Cell Research Laboratory, Biology Department, Bradley University, Peoria, IL 61625, USA
| | - Emily Stidham
- Bohlander Stem Cell Research Laboratory, Biology Department, Bradley University, Peoria, IL 61625, USA
| | - Craig Cady
- Bohlander Stem Cell Research Laboratory, Biology Department, Bradley University, Peoria, IL 61625, USA
| | - Ashim Gupta
- Regenerative Orthopaedics, Noida 201301, India
- Future Biologics, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Correspondence:
| |
Collapse
|
58
|
Sidenkova AP, Myakotnykh VS, Voroshilina ES, Melnik AA, Borovkova TA, Proshchenko DA. Mechanisms of Influence of Intestinal Microbiota on the Processes of Aging of the CNS and the Formation of Cognitive Disorders in Alzheimer’s Disease. PSIKHIATRIYA 2022; 20:98-111. [DOI: 10.30629/2618-6667-2022-20-3-98-111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2024]
Abstract
Background: the increase in the life expectancy of a modern person is accompanied by an increase in the prevalence of neurocognitive disorders. Various indicators associated with biological age are consistent with neurocognitive deficits. In the process of ontogeny, a complex symbiotic relationship develops between the host and the microbe. Presumably, they are realized along the microbiota-gut-brain axis. The participation of the intestinal microbiota in the ontogeny of the brain is assumed. The purpose of review: based on a systematic review of the scientific literature, to summarize research data on the mechanisms of the influence of the intestinal microbiota on the aging processes of the central nervous system and the formation of cognitive disorders in Alzheimer’s disease.Materials and methods: 27 Russian-language and 257 English-language articles were selected from MedLine/PubMed and eLibrary from 2000 to 2022 by the keywords “gut microbiota”, “neurocognitive disorders”, “aging”, “neurodegeneration”, “Alzheimer’s disease”. The hypothesis about the participation of the microbiota in cerebral ontogeny made it possible to select 110 articles for analysis.Conclusion: this scientific review reflects the authors’ ideas about the systemic mechanisms of normal and pathological aging of the CNS and the multifactorial nature of the pathogenesis of neurocognitive disorders.
Collapse
Affiliation(s)
- A. P. Sidenkova
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| | - V. S. Myakotnykh
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| | - E. S. Voroshilina
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| | - A. A. Melnik
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| | - T. A. Borovkova
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| | - D. A. Proshchenko
- Federal State Budgetary Educational Institution of Higher Education Ural State Medical University
| |
Collapse
|
59
|
Liu Q, Zhang J, Xiao C, Su D, Li L, Yang C, Zhao Z, Jiang W, You Z, Zhou T. Akebia saponin D protects hippocampal neurogenesis from microglia-mediated inflammation and ameliorates depressive-like behaviors and cognitive impairment in mice through the PI3K-Akt pathway. Front Pharmacol 2022; 13:927419. [PMID: 36110522 PMCID: PMC9468712 DOI: 10.3389/fphar.2022.927419] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Given the ability of akebia saponin D (ASD) to protect various types of stem cells, in the present study, we hypothesized that ASD could promote the proliferation, differentiation, and survival of neural stem/precursor cells (NSPCs), even in a microglia-mediated inflammatory environment, thereby mitigating inflammation-related neuropsychopathology. We established a mouse model of chronic neuroinflammation by exposing animals to low-dose lipopolysaccharide (LPS, 0.25 mg/kg/d) for 14 days. The results showed that chronic exposure to LPS strikingly reduced hippocampal levels of PI3K and pAkt and neurogenesis in mice. In the presen of a microglia-mediated inflammatory niche, the PI3K-Akt signaling in cultured NSPCs was inhibited, promoting their apoptosis and differentiation into astrocytes, while decreasing neurogenesis. Conversely, ASD strongly increased the levels of PI3K and pAkt and stimulated NSPC proliferation, survival and neuronal differentiation in the microglia-mediated inflammatory niche in vitro and in vivo. ASD also restored the synaptic function of hippocampal neurons and ameliorated depressive- and anxiety-like behaviors and cognitive impairment in mice chronically exposed to LPS. The results from network pharmacology analysis showed that the PI3K-AKT pathway is one of the targets of ASD to against major depressive disorder (MDD), anxiety and Alzheimer’s disease (AD). And the results from molecular docking based on computer modeling showed that ASD is bound to the interaction interface of the PI3K and AKT. The PI3K-Akt inhibitor LY294002 blocked the therapeutic effects of ASD in vitro and in vivo. These results suggested that ASD protects NSPCs from the microglia-mediated inflammatory niche, promoting their proliferation, survival and neuronal differentiation, as well as ameliorating depressive- and anxiety-like behaviors and cognitive impairment by activating the PI3K-AKT pathway. Our work suggests the potential of ASD for treating Alzheimer’s disease, depression and other cognitive disorders involving impaired neurogenesis by microglia-mediated inflammation.
Collapse
Affiliation(s)
- Qin Liu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jinqiang Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- *Correspondence: Jinqiang Zhang, Tao Zhou,
| | - Chenghong Xiao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dapeng Su
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liangyuan Li
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Changgui Yang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhihuang Zhao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zili You
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- *Correspondence: Jinqiang Zhang, Tao Zhou,
| |
Collapse
|
60
|
Jia Y, He YF, Tian Y, Wang YZ, Zhao RT, Li XC, Sun J, Wei YS, An S, Yuan HJ, Wan CX, Jiang RC. MicroRNA alteration in cerebrospinal fluid from comatose patients with traumatic brain injury after right median nerve stimulation. Exp Brain Res 2022; 240:2459-2470. [DOI: 10.1007/s00221-022-06414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
|
61
|
Wang L, Shui X, Mei Y, Xia Y, Lan G, Hu L, Zhang M, Gan CL, Li R, Tian Y, Wang Q, Gu X, Chen D, Zhang T, Lee TH. miR-143-3p Inhibits Aberrant Tau Phosphorylation and Amyloidogenic Processing of APP by Directly Targeting DAPK1 in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23147992. [PMID: 35887339 PMCID: PMC9317260 DOI: 10.3390/ijms23147992] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 01/25/2023] Open
Abstract
The neuropathology of Alzheimer’s disease (AD) is characterized by intracellular aggregation of hyperphosphorylated tau and extracellular accumulation of beta-amyloid (Aβ). Death-associated protein kinase 1 (DAPK1), as a novel therapeutic target, shows promise for the treatment of human AD, but the regulatory mechanisms of DAPK1 expression in AD remain unclear. In this study, we identified miR-143-3p as a promising candidate for targeting DAPK1. miR-143-3p directly bound to the 3′ untranslated region of human DAPK1 mRNA and inhibited its translation. miR-143-3p decreased tau phosphorylation and promoted neurite outgrowth and microtubule assembly. Moreover, miR-143-3p attenuated amyloid precursor protein (APP) phosphorylation and reduced the generation of Aβ40 and Aβ42. Furthermore, restoring DAPK1 expression with miR-143-3p antagonized the effects of miR-143-3p in attenuating tau hyperphosphorylation and Aβ production. In addition, the miR-143-3p levels were downregulated and correlated inversely with the expression of DAPK1 in the hippocampus of AD patients. Our results suggest that miR-143-3p might play critical roles in regulating both aberrant tau phosphorylation and amyloidogenic processing of APP by targeting DAPK1 and thus offer a potential novel therapeutic strategy for AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tae Ho Lee
- Correspondence: or ; Tel.: +86-591-2286-2498
| |
Collapse
|
62
|
MicroRNA-22-3p ameliorates Alzheimer's disease by targeting SOX9 through the NF-κB signaling pathway in the hippocampus. J Neuroinflammation 2022; 19:180. [PMID: 35821145 PMCID: PMC9277852 DOI: 10.1186/s12974-022-02548-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Studies have suggested that many down-regulated miRNAs identified in the brain tissue or serum of Alzheimer’s disease (AD) patients were involved in the formation of senile plaques and neurofibrillary tangles. Specifically, our previous study revealed that microRNA-22-3p (miR-22-3p) was significantly down-regulated in AD patients. However, the molecular mechanism underlying the down-regulation of miR-22-3p has not been comprehensively investigated. Methods The ameliorating effect of miR-22-3p on apoptosis of the Aβ-treated HT22 cells was detected by TUNEL staining, flow cytometry, and western blotting. The cognition of mice with stereotaxic injection of agomir or antagomir of miR-22-3p was assessed by Morris water maze test. Pathological changes in the mouse hippocampus were analyzed using hematoxylin and eosin (HE) staining, Nissl staining, and immunohistochemistry. Proteomics analysis was performed to identify the targets of miR-22-3p, which were further validated using dual-luciferase reporter analysis and western blotting analysis. Results The miR-22-3p played an important role in ameliorating apoptosis in the Aβ-treated HT22 cells. Increased levels of miR-22-3p in the mouse hippocampus improved the cognition in mice. Although the miR-22-3p did not cause the decrease of neuronal loss in the hippocampus, it reduced the Aβ deposition. Proteomics analysis revealed Sox9 protein as the target of miR-22-3p, which was verified by the luciferase reporter experiments. Conclusion Our study showed that miR-22-3p could improve apoptosis and reduce Aβ deposition by acting on Sox9 through the NF-κB signaling pathway to improve the cognition in AD mice. We concluded that miR-22-3p ameliorated AD by targeting Sox9 through the NF-κB signaling pathway in the hippocampus. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02548-1.
Collapse
|
63
|
Yan X, Yang P, Liu H, Zhao Y, Wu Z, Zhang B. miR-4461 inhibits the progression of Gallbladder carcinoma via regulating EGFR/AKT signaling. Cell Cycle 2022; 21:1166-1177. [PMID: 35196196 PMCID: PMC9103642 DOI: 10.1080/15384101.2022.2042775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Increasing evidence has demonstrated that microRNAs (miRNAs) participated in the tumorigenesis, progression and recurrence of various malignancies including Gallbladder carcinoma (GBC). miR-4461 was reported to work as a tumor suppressor gene in renal cell carcinoma. However, the role of miR-4461 in GBC remains unknown. Herein, we show that miR-4461 is downregulated in gallbladder cancer stem cells (CSCs). Forced miR-4461 expression attenuates the self-renewal, tumorigenicity of gallbladder CSCs, and inhibits proliferation and metastasis of GBC cells. Conversely, miR-4461 knockdown promotes the self-renewal of gallbladder CSCs, and facilities proliferation and metastasis of GBC cells. Mechanistically, miR-4461 inhibits GBC progression via downregulating EGFR/AKT pathway. Special EGFR siRNA or AKT overexpression virus abolishes the discrepancy of self-renewal, tumorigenesis, growth, and metastasis between miR-4461 overexpression GBC cells and their control cells. In conclusion, miR-4461 suppresses GBC cells self-renewal, tumorigenicity, proliferation, and metastasis by inactivating EGFR/AKT signaling, and may therefore prove to be a potential therapeutic target for GBC patients.
Collapse
Affiliation(s)
- Xingzhou Yan
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Pinghua Yang
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,Zhixiong Wu Department of Critical Care Medicine, Huadong Hospital, Shanghai, 200040, China
| | - Hu Liu
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,CONTACT Baohua Zhang Department of Biliary Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Yongyang Zhao
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,Zhixiong Wu Department of Critical Care Medicine, Huadong Hospital, Shanghai, 200040, China
| | - Zhixiong Wu
- Department of Critical Care Medicine, Huadong Hospital, Shanghai, China
| | - Baohua Zhang
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,CONTACT Baohua Zhang Department of Biliary Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| |
Collapse
|
64
|
Kim TA, Syty MD, Wu K, Ge S. Adult hippocampal neurogenesis and its impairment in Alzheimer's disease. Zool Res 2022; 43:481-496. [PMID: 35503338 PMCID: PMC9113964 DOI: 10.24272/j.issn.2095-8137.2021.479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
Adult neurogenesis is the creation of new neurons which integrate into the existing neural circuit of the adult brain. Recent evidence suggests that adult hippocampal neurogenesis (AHN) persists throughout life in mammals, including humans. These newborn neurons have been implicated to have a crucial role in brain functions such as learning and memory. Importantly, studies have also found that hippocampal neurogenesis is impaired in neurodegenerative and neuropsychiatric diseases. Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people. Cognitive dysfunction is a common symptom of AD patients and progressive memory loss has been attributed to the degeneration of the hippocampus. Therefore, there has been growing interest in identifying how hippocampal neurogenesis is affected in AD. However, the link between cognitive decline and changes in hippocampal neurogenesis in AD is poorly understood. In this review, we summarized the recent literature on AHN and its impairments in AD.
Collapse
Affiliation(s)
- Thomas A Kim
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at SUNY, Stony Brook, Stony Brook, NY 11794, USA
| | - Michelle D Syty
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Kaitlyn Wu
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA. E-mail:
| |
Collapse
|
65
|
Dysregulated miRNAs as Biomarkers and Therapeutical Targets in Neurodegenerative Diseases. J Pers Med 2022; 12:jpm12050770. [PMID: 35629192 PMCID: PMC9143965 DOI: 10.3390/jpm12050770] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are representative neurodegenerative diseases (NDs) characterized by degeneration of selective neurons, as well as the lack of effective biomarkers and therapeutic treatments. In the last decade, microRNAs (miRNAs) have gained considerable interest in diagnostics and therapy of NDs, owing to their aberrant expression and their ability to target multiple molecules and pathways. Here, we provide an overview of dysregulated miRNAs in fluids (blood or cerebrospinal fluid) and nervous tissue of AD, PD, and ALS patients. By emphasizing those that are commonly dysregulated in these NDs, we highlight their potential role as biomarkers or therapeutical targets and describe the use of antisense oligonucleotides as miRNA therapies.
Collapse
|
66
|
Xu X, Gu D, Xu B, Yang C, Wang L. Circular RNA circ_0005835 promotes promoted neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-3p in Alzheimer's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35934-35943. [PMID: 35060046 DOI: 10.1007/s11356-021-17478-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disease and it is difficult to have an effective and simple method for AD early diagnosis. CircRNAs (circular RNAs) are novel discovered non-coding endogenous RNAs that affect cell apoptosis, differentiation, growth, metabolism, and metastasis. Recently, it has reported that circ_0005835 was one upregulated circRNA in the AD patients. However, the function role of circ_0005835 remains unknown. In our study, we found that circ_0005835 was upregulated in AD patients and cell models. Knockdown of circ_0005835 could downregulate neuroinflammation in BV2 cells. Moreover, knockdown of circ_0005835 promoted neural stem cells (NSC) proliferation and differentiate to neuron. These data mean that circ_0005835 plays important role in the development of AD. The miR-576-3p expression in serum was downregulated in the AD group compared to the health control group. Consistently, the level of circ_0005835 was overexpressed in the Aβ-treated in both SH-SY5Y and BV2 cells. Moreover, the expression of miR-576-3p was negatively correlated with circ_0005835 in AD patients. In addition, we performed the rescued experiments to show that knockdown of circ_0005835 could downregulate neuroinflammation through sponging miR-576-3p in BV2 cells. Inhibition of circ_0005835 promoted NSC proliferation and differentiate to neuron via sponging miR-576-3p. These data suggested that circ_0005835 promoted AD development through regulating miR-576-3p expression.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Neurology, Qingdao Central Hospital, 127 Siliunan Road, Qingdao, Shandong, 266000, People's Republic of China
| | - Dean Gu
- Department of Neurology, Qingdao Central Hospital, 127 Siliunan Road, Qingdao, Shandong, 266000, People's Republic of China
| | - Bing Xu
- Department of Neurology, Qingdao Central Hospital, 127 Siliunan Road, Qingdao, Shandong, 266000, People's Republic of China
| | - Chenli Yang
- Department of Neurology, Qingdao Central Hospital, 127 Siliunan Road, Qingdao, Shandong, 266000, People's Republic of China
| | - Ling Wang
- Department of Neurology, Qingdao Central Hospital, 127 Siliunan Road, Qingdao, Shandong, 266000, People's Republic of China.
| |
Collapse
|
67
|
Crisafulli L, Ficara F. Micro-RNAs: A safety net to protect hematopoietic stem cell self-renewal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1693. [PMID: 34532984 PMCID: PMC9285953 DOI: 10.1002/wrna.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
The hematopoietic system is sustained over time by a small pool of hematopoietic stem cells (HSCs). They reside at the apex of a complex hierarchy composed of cells with progressively more restricted lineage potential, regenerative capacity, and with different proliferation characteristics. Like other somatic stem cells, HSCs are endowed with long-term self-renewal and multipotent differentiation ability, to sustain the high turnover of mature cells such as erythrocytes or granulocytes, and to rapidly respond to acute peripheral stresses including bleeding, infections, or inflammation. Maintenance of both attributes over time, and of the proper balance between these opposite features, is crucial to ensure the homeostasis of the hematopoietic system. Micro-RNAs (miRNAs) are short non-coding RNAs that regulate gene expression posttranscriptionally upon binding to specific mRNA targets. In the past 10 years they have emerged as important players for preserving the HSC pool by acting on several biological mechanisms, such as maintenance of the quiescent state while preserving proliferation ability, prevention of apoptosis, premature differentiation, lineage skewing, excessive expansion, or retention within the BM niche. miRNA-mediated posttranscriptional fine-tuning of all these processes constitutes a safety mechanism to protect HSCs, by complementing the action of transcription factors and of other regulators and avoiding unwanted expansion or aplasia. The current knowledge of miRNAs function in different aspects of HSC biology, including consequences of aberrant miRNA expression, will be reviewed; yet unsolved issues will be discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Laura Crisafulli
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Francesca Ficara
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
68
|
Bazrgar M, Khodabakhsh P, Dargahi L, Mohagheghi F, Ahmadiani A. MicroRNA modulation is a potential molecular mechanism for neuroprotective effects of intranasal insulin administration in amyloid βeta oligomer induced Alzheimer's like rat model. Exp Gerontol 2022; 164:111812. [PMID: 35476966 DOI: 10.1016/j.exger.2022.111812] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Substantial evidence indicates that imbalance in the expression of miR-132-3p, miR-181b-5p, miR-125b-5p, miR-26a-5p, miR-124-3p, miR-146a-5p, miR-29a-3p, and miR-30a-5p in the AD brain are associated with amyloid-beta (Aβ) aggregation, tau pathology, neuroinflammation, and synaptic dysfunction, the major pathological hallmarks of Alzheimer's disease)AD(. Several studies have reported that intranasal insulin administration ameliorates memory in AD patients and animal models. However, the underlying molecular mechanisms are not yet completely elucidated. Therefore, the aim of this study was to determine whether insulin is involved in regulating the expression of AD-related microRNAs. Pursuing this objective, we first investigated the therapeutic effect of intranasal insulin on Aβ oligomer (AβO)-induced memory impairment in male rats using the Morris water maze task. Then, molecular and histological changes in response to AβO and/or insulin time course were assessed in the extracted hippocampi on days 1, 14, and 21 of the study using congo red staining, western blot and quantitative real-time PCR analyses. We observed memory impairment, Aβ aggregation, tau hyper-phosphorylation, neuroinflammation, insulin signaling dys-regulation, and down-regulation of miR-26a, miR-124, miR-29a, miR-181b, miR-125b, miR-132, and miR-146a in the hippocampus of AβO-exposed rats 21 days after AβO injection. Intranasal insulin treatment ameliorated memory impairment and concomitantly increased miR-132, miR-181b, and miR-125b expression, attenuated tau phosphorylation levels, Aβ aggregation, and neuroinflammation, and regulated the insulin signaling as well. In conclusion, our study suggest that the neuroprotective effects of insulin on memory observed in AD-like rats could be partially due to the restoration of miR-132, miR-181b, and miR-125b expression in the brain.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Fatemeh Mohagheghi
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
69
|
Zhang S, Zhao J, Quan Z, Li H, Qing H. Mitochondria and Other Organelles in Neural Development and Their Potential as Therapeutic Targets in Neurodegenerative Diseases. Front Neurosci 2022; 16:853911. [PMID: 35450015 PMCID: PMC9016280 DOI: 10.3389/fnins.2022.853911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The contribution of organelles to neural development has received increasing attention. Studies have shown that organelles such as mitochondria, endoplasmic reticulum (ER), lysosomes, and endosomes play important roles in neurogenesis. Specifically, metabolic switching, reactive oxygen species production, mitochondrial dynamics, mitophagy, mitochondria-mediated apoptosis, and the interaction between mitochondria and the ER all have roles in neurogenesis. Lysosomes and endosomes can regulate neurite growth and extension. Moreover, metabolic reprogramming represents a novel strategy for generating functional neurons. Accordingly, the exploration and application of mechanisms underlying metabolic reprogramming will be beneficial for neural conversion and regenerative medicine. There is adequate evidence implicating the dysfunction of cellular organelles—especially mitochondria—in neurodegenerative disorders, and that improvement of mitochondrial function may reverse the progression of these diseases through the reinforcement of adult neurogenesis. Therefore, these organelles have potential as therapeutic targets for the treatment of neurodegenerative diseases. In this review, we discuss the function of these organelles, especially mitochondria, in neural development, focusing on their potential as therapeutic targets in neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- *Correspondence: Hui Li,
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Hong Qing,
| |
Collapse
|
70
|
Daswani R, Gilardi C, Soutschek M, Nanda P, Weiss K, Bicker S, Fiore R, Dieterich C, Germain PL, Winterer J, Schratt G. microRNA-138 controls hippocampal interneuron function and short-term memory in mice. eLife 2022; 11:74056. [PMID: 35290180 PMCID: PMC8963876 DOI: 10.7554/elife.74056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/13/2022] [Indexed: 11/21/2022] Open
Abstract
The proper development and function of neuronal circuits rely on a tightly regulated balance between excitatory and inhibitory (E/I) synaptic transmission, and disrupting this balance can cause neurodevelopmental disorders, for example, schizophrenia. MicroRNA-dependent gene regulation in pyramidal neurons is important for excitatory synaptic function and cognition, but its role in inhibitory interneurons is poorly understood. Here, we identify miR138-5p as a regulator of short-term memory and inhibitory synaptic transmission in the mouse hippocampus. Sponge-mediated miR138-5p inactivation specifically in mouse parvalbumin (PV)-expressing interneurons impairs spatial recognition memory and enhances GABAergic synaptic input onto pyramidal neurons. Cellular and behavioral phenotypes associated with miR138-5p inactivation are paralleled by an upregulation of the schizophrenia (SCZ)-associated Erbb4, which we validated as a direct miR138-5p target gene. Our findings suggest that miR138-5p is a critical regulator of PV interneuron function in mice, with implications for cognition and SCZ. More generally, they provide evidence that microRNAs orchestrate neural circuit development by fine-tuning both excitatory and inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Reetu Daswani
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Carlotta Gilardi
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Soutschek
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Pakruti Nanda
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Kerstin Weiss
- Institute for Physiological Chemistry, Philipp University of Marburg, Marberg, Germany
| | - Silvia Bicker
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Roberto Fiore
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Christoph Dieterich
- Department of Internal Medicine III, Heidelberg University, Heidelberg, Germany
| | - Pierre-Luc Germain
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Jochen Winterer
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Gerhard Schratt
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
71
|
The Influence of Gut Microbiota on Neurogenesis: Evidence and Hopes. Cells 2022; 11:cells11030382. [PMID: 35159192 PMCID: PMC8834402 DOI: 10.3390/cells11030382] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Adult neurogenesis (i.e., the life-long generation of new neurons from undifferentiated neuronal precursors in the adult brain) may contribute to brain repair after damage, and participates in plasticity-related processes including memory, cognition, mood and sensory functions. Among the many intrinsic (oxidative stress, inflammation, and ageing), and extrinsic (environmental pollution, lifestyle, and diet) factors deemed to impact neurogenesis, significant attention has been recently attracted by the myriad of saprophytic microorganismal communities inhabiting the intestinal ecosystem and collectively referred to as the gut microbiota. A growing body of evidence, mainly from animal studies, reveal the influence of microbiota and its disease-associated imbalances on neural stem cell proliferative and differentiative activities in brain neurogenic niches. On the other hand, the long-claimed pro-neurogenic activity of natural dietary compounds endowed with antioxidants and anti-inflammatory properties (such as polyphenols, polyunsaturated fatty acids, or pro/prebiotics) may be mediated, at least in part, by their action on the intestinal microflora. The purpose of this review is to summarise the available information regarding the influence of the gut microbiota on neurogenesis, analyse the possible underlying mechanisms, and discuss the potential implications of this emerging knowledge for the fight against neurodegeneration and brain ageing.
Collapse
|
72
|
Penning A, Tosoni G, Abiega O, Bielefeld P, Gasperini C, De Pietri Tonelli D, Fitzsimons CP, Salta E. Adult Neural Stem Cell Regulation by Small Non-coding RNAs: Physiological Significance and Pathological Implications. Front Cell Neurosci 2022; 15:781434. [PMID: 35058752 PMCID: PMC8764185 DOI: 10.3389/fncel.2021.781434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Amber Penning
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Giorgia Tosoni
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Caterina Gasperini
- Neurobiology of miRNAs Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Carlos P. Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
73
|
Wei R, Hu Q, Lu Y, Wang X. ceRNA Network Analysis Reveals AP-1 Transcription Factor Components as Potential Biomarkers for Alzheimer’s Disease. Curr Alzheimer Res 2022; 19:387-406. [PMID: 35702791 DOI: 10.2174/1567205019666220613142303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting the elderly, characterized by decreased cognitive function. Non-coding RNAs contribute to AD pathogenesis. OBJECTIVE To identify potential therapeutic targets for AD, competing endogenous RNA (ceRNA) networks were constructed using the hippocampus of 6-month-old amyloid precursor protein/ presenilin 1 double transgenic (APP/PS1) and wild-type mice. METHODS RNA-seq data (GSE158995), generated from the hippocampus of APP/PS1 and wild-type mice, were analyzed with the limma R package to identify significantly differentially expressed mRNAs and circRNAs (DEMs and DECs, respectively). DEM Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using Enrichr (https://maayanlab.cloud/Enrichr/). Correlations between DEMs and DECs were determined using the ggcorrplot R package. Main clusters and hub DEMs were selected using the STRING database and Cytoscape software. ceRNA interactions were predicted with the miRTarbase and Starbase tools and constructed with the ggalluvial R package and Cytoscape software. ceRNA networks were validated using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. RESULTS 198 DEMs and 90 DECs were differentially expressed in APP/PS1 vs. wild-type hippocampus. DEM GO analysis revealed significant enrichment in transcription regulation, which was subdivided into three main clusters: transcription regulation, synaptic plasticity, and protein refolding. Within the transcription regulation cluster, AP-1 transcription factor components serve as hub genes. The mmu_circ_0001787(circGLCE)/miR-339-5p/Junb and mmu_circ_0001899(circFAM120C)/ miR-181a-5p/Egr1 ceRNA networks were established based on qRT-PCR and Western blot analysis. CONCLUSION Two AP-1 transcription factor component-related ceRNA networks, circGLCE/miR- 339-5p/Junb and circFAM120C/miR-181a-5p/Egr1, were constructed using a mouse model of AD. These ceRNA networks may contribute to transcription regulation in AD and provide potential biomarkers for AD diagnosis and treatment.
Collapse
Affiliation(s)
- Rui Wei
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 China
| | - Qi Hu
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 China
| |
Collapse
|
74
|
Sheehy RN, Quintanilla LJ, Song J. Epigenetic regulation in the neurogenic niche of the adult dentate gyrus. Neurosci Lett 2022; 766:136343. [PMID: 34774980 PMCID: PMC8691367 DOI: 10.1016/j.neulet.2021.136343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
The adult dentate gyrus (DG) of the hippocampal formation is a specialized region of the brain that creates new adult-born neurons from a pool of resident adult neural stem and progenitor cells (aNSPCs) throughout life. These aNSPCs undergo epigenetic and epitranscriptomic regulation, including 3D genome interactions, histone modifications, DNA modifications, noncoding RNA mechanisms, and RNA modifications, to precisely control the neurogenic process. Furthermore, the specialized neurogenic niche also uses epigenetic mechanisms in mature neurons and glial cells to communicate signals to direct the behavior of the aNSPCs. Here, we review recent advances of epigenetic regulation in aNSPCs and their surrounding niche cells within the adult DG.
Collapse
Affiliation(s)
- Ryan N. Sheehy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis J. Quintanilla
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
75
|
Nguyen LD, Chau RK, Krichevsky AM. Small Molecule Drugs Targeting Non-Coding RNAs as Treatments for Alzheimer's Disease and Related Dementias. Genes (Basel) 2021; 12:2005. [PMID: 34946953 PMCID: PMC8701955 DOI: 10.3390/genes12122005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the enormous burden of Alzheimer's disease and related dementias (ADRD) on patients, caregivers, and society, only a few treatments with limited efficacy are currently available. While drug development conventionally focuses on disease-associated proteins, RNA has recently been shown to be druggable for therapeutic purposes as well. Approximately 70% of the human genome is transcribed into non-protein-coding RNAs (ncRNAs) such as microRNAs, long ncRNAs, and circular RNAs, which can adopt diverse structures and cellular functions. Many ncRNAs are specifically enriched in the central nervous system, and their dysregulation is implicated in ADRD pathogenesis, making them attractive therapeutic targets. In this review, we first detail why targeting ncRNAs with small molecules is a promising therapeutic strategy for ADRD. We then outline the process from discovery to validation of small molecules targeting ncRNAs in preclinical studies, with special emphasis on primary high-throughput screens for identifying lead compounds. Screening strategies for specific ncRNAs will also be included as examples. Key challenges-including selecting appropriate ncRNA targets, lack of specificity of small molecules, and general low success rate of neurological drugs and how they may be overcome-will be discussed throughout the review.
Collapse
Affiliation(s)
- Lien D Nguyen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel K Chau
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
76
|
Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer's disease: challenges and perspectives. Mol Neurodegener 2021; 16:76. [PMID: 34742333 PMCID: PMC8572071 DOI: 10.1186/s13024-021-00496-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/17/2021] [Indexed: 02/06/2023] Open
Abstract
Multi-pathway approaches for the treatment of complex polygenic disorders are emerging as alternatives to classical monotarget therapies and microRNAs are of particular interest in that regard. MicroRNA research has come a long way from their initial discovery to the cumulative appreciation of their regulatory potential in healthy and diseased brain. However, systematic interrogation of putative therapeutic or toxic effects of microRNAs in (models of) Alzheimer's disease is currently missing and fundamental research findings are yet to be translated into clinical applications. Here, we review the literature to summarize the knowledge on microRNA regulation in Alzheimer's pathophysiology and to critically discuss whether and to what extent these increasing insights can be exploited for the development of microRNA-based therapeutics in the clinic.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Lujia Zhou
- Division of Janssen Pharmaceutica NV, Discovery Neuroscience, Janssen Research and Development, Beerse, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- UK Dementia Research Institute at University College London, London, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
77
|
Leal-Galicia P, Chávez-Hernández ME, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-de-Jesús A, Buenrostro-Jáuregui MH. Adult Neurogenesis: A Story Ranging from Controversial New Neurogenic Areas and Human Adult Neurogenesis to Molecular Regulation. Int J Mol Sci 2021; 22:11489. [PMID: 34768919 PMCID: PMC8584254 DOI: 10.3390/ijms222111489] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.
Collapse
Affiliation(s)
- Perla Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Florencia Mata
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Jesús Mata-Luévanos
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Alejandro Tapia-de-Jesús
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| |
Collapse
|
78
|
Dou Y, Xie J, Tan Y, Zhang M, Zhao Y, Liu X. Neurotransmitter-stimulated neuron-derived sEVs have opposite effects on amyloid β-induced neuronal damage. J Nanobiotechnology 2021; 19:324. [PMID: 34654438 PMCID: PMC8518222 DOI: 10.1186/s12951-021-01070-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
The ratio of excitatory to inhibitory neurotransmitters is essential for maintaining the firing patterns of neural networks, and is strictly regulated within individual neurons and brain regions. Excitatory to inhibitory (E/I) imbalance has been shown to participate in the progression of neurodegenerative diseases, including Alzheimer's disease (AD). Glutamate excitotoxicity and GABAergic neuron dysfunction appear to be key components of the neuronal cell death that takes place in AD. Since extracellular vesicles (EVs) are now explored as an important vehicle in transmitting signals between cells, we hypothesized that the function of neuron-derived small EVs (sEVs) might be regulated by the status of neurotransmitter balance and that sEVs might affect amyloid β (Aβ) toxicity on neurons. This study aimed to reveal the effects of sEVs from unbalanced neurotransmitter-stimulated neurons on Aβ-induced toxicity. We demonstrated the opposite effects of the two groups of sEVs isolated from neurons stimulated by glutamate or GABA on Aβ toxicity in vivo and in vitro. The sEVs released from GABA-treated neurons alleviated Aβ-induced damage, while those released from glutamate-treated neurons aggravated Aβ toxicity. Furthermore, we compared the microRNA (miRNA) composition of sEVs isolated from glutamate/GABA/PBS-treated neurons. Our results showed that glutamate and GABA oppositely regulated miR-132 levels in sEVs, resulting in the opposite destiny of recipient cells challenged with Aβ. Our results indicated that manipulating the function of sEVs by different neurotransmitters may reveal the mechanisms underlying the pathogenesis of AD and provide a promising strategy for AD treatment.
Collapse
Affiliation(s)
- Yunxiao Dou
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Junchao Xie
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Yan Tan
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Min Zhang
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Yanxin Zhao
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| |
Collapse
|
79
|
Wander CM, Song J. The neurogenic niche in Alzheimer's disease. Neurosci Lett 2021; 762:136109. [PMID: 34271133 PMCID: PMC9013442 DOI: 10.1016/j.neulet.2021.136109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Adult hippocampal neurogenesis is the process of generation and functional incorporation of new neurons, formed by adult neural stem cells in the dentate gyrus. Adult hippocampal neurogenesis is highly dependent upon the integration of dynamic external stimuli and is instrumental in the formation of new spatial memories. Adult hippocampal neurogenesis is therefore uniquely sensitive to the summation of neuronal circuit and neuroimmune environments that comprise the neurogenic niche, and has powerful implications in diseases of aging and neurological disorders. This sensitivity underlies the neurogenic niche alterations commonly observed in Alzheimer's disease, the most common form of dementia. This review summarizes Alzheimer's disease associated changes in neuronal network activity, neuroinflammatory processes, and adult neural stem cell fate choice that ultimately result in neurogenic niche dysfunction and impaired adult hippocampal neurogenesis. A more comprehensive understanding of the complex changes mediating neurogenic niche disturbances in Alzheimer's disease will aid development of future therapies targeting adult neurogenesis.
Collapse
Affiliation(s)
- Connor M Wander
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
80
|
The emerging role of miRNA-132/212 cluster in neurologic and cardiovascular diseases: Neuroprotective role in cells with prolonged longevity. Mech Ageing Dev 2021; 199:111566. [PMID: 34517022 DOI: 10.1016/j.mad.2021.111566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023]
Abstract
miRNA-132/212 are small regulators of gene expression with a function that fulfills a vital function in diverse biological processes including neuroprotection of cells with prolonged longevity in neurons and the cardiovascular system. In neurons, miRNA-132 appears to be essential for controlling differentiation, development, and neural functioning. Indeed, it also universally promotes axon evolution, nervous migration, plasticity as well, it is suggested to be neuroprotective against neurodegenerative diseases. Moreover, miRNA-132/212 disorder leads to neural developmental perturbation, and the development of degenerative disorders covering Alzheimer's, Parkinson's, and epilepsy's along with psychiatric perturbations including schizophrenia. Furthermore, the cellular mechanisms of the miRNA-132/212 have additionally been explored in cardiovascular diseases models. Also, the miRNA-132/212 family modulates cardiac hypertrophy and autophagy in cardiomyocytes. The protective and effective clinical promise of miRNA-132/212 in these systems is discussed in this review. To sum up, the current progress in innovative miRNA-based therapies for human pathologies seems of extreme concern and reveals promising novel therapeutic strategies.
Collapse
|