51
|
Ehlert A, Manthei G, Hesselmann V, Mathias K, Bein B, Pluta R. A Case of Hyperacute Onset of Vasospasm After Aneurysmal Subarachnoid Hemorrhage and Refractory Vasospasm Treated with Intravenous and Intraventricular Nitric Oxide: A Mini Review. World Neurosurg 2016; 91:673.e11-8. [PMID: 27109628 DOI: 10.1016/j.wneu.2016.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND A case of hyperacute vasospasm, indicating a poor prognosis after aneurysmal subarachnoid hemorrhage (SAH), is reported, and a review is presented of the literature addressing use of nitric oxide (NO) donors in cases of refractory vasospasm and recurrent delayed cortical ischemias (DCI). CASE DESCRIPTION A 65-year-old woman was admitted within 1 hour after aneurysmal SAH (Hunt and Hess grade III, Fisher modified by Frontera grade IV). A hyperacute vasospasm had been confirmed arteriographically, the right middle cerebral artery (MCA) aneurysm was immediately coiled and a standard antivasospastic therapy was started. Within 48 hours, the patient developed cerebral vasospasm with DCI. Because the standard therapy failed to control clinical symptoms and to address severe vasospasm, an individualized rescue treatment with NO donors was initiated. A continuous intravenous molsidomine infusion was started and clinical stabilization was achieved for a week (Hunt and Hess grade I; World Federation of Neurological Surgeons grade I; Glasgow Coma Scale score, 15) after which vasospasm and DCI recurred. During a subsequent DCI, we escalated NO donor therapy by adding intraventricular boluses of sodium nitroprusside (SNP). Over the course of the following 22 days, 7 transient DCIs (Glasgow Coma Scale score, 8) were treated with boluses of SNP during continued molsidomine therapy and each time vasospasm and DCI were completely reversed. Despite initial poor prognosis, the clinical outcome was excellent; at 3, 6, and 12 months follow-up the patient's modified National Institutes of Health-Stroke Scale and modified Rankin Scale scores were 0, with no cognitive deficits. CONCLUSIONS The review of the literature suggested that combined intravenous molsidomine with intraventricular SNP treatment reversed refractory, recurrent vasospasm and DCIs probably by addressing the hemoglobin NO sink effect, NO depletion, and decreased NO availability after aneurysmal SAH.
Collapse
Affiliation(s)
- Angelika Ehlert
- Department of Neurosurgery, Asklepios Klinik St. Georg, Hamburg, Germany.
| | - Gerd Manthei
- Department of Neurosurgery, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Volker Hesselmann
- Department of Neuroradiology, Asklepios Clinic North, Hamburg, Germany
| | - Klaus Mathias
- Department of Neuroradiology, Asklepios Clinic, St. Georg, Hamburg, Germany
| | - Berthold Bein
- Department of Anesthesiology, Asklepios Clinic, St. Georg, Hamburg, Germany
| | - Ryszard Pluta
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
52
|
Van de Velde S, De Groef L, Stalmans I, Moons L, Van Hove I. Towards axonal regeneration and neuroprotection in glaucoma: Rho kinase inhibitors as promising therapeutics. Prog Neurobiol 2015; 131:105-19. [PMID: 26093354 DOI: 10.1016/j.pneurobio.2015.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 11/27/2022]
Abstract
Due to a prolonged life expectancy worldwide, the incidence of age-related neurodegenerative disorders such as glaucoma is increasing. Glaucoma is the second cause of blindness, resulting from a slow and progressive loss of retinal ganglion cells (RGCs) and their axons. Up to now, intraocular pressure (IOP) reduction is the only treatment modality by which ophthalmologists attempt to control disease progression. However, not all patients benefit from this therapy, and the pathophysiology of glaucoma is not always associated with an elevated IOP. These limitations, together with the multifactorial etiology of glaucoma, urge the pressing medical need for novel and alternative treatment strategies. Such new therapies should focus on preventing or retarding RGC death, but also on repair of injured axons, to ultimately preserve or improve structural and functional connectivity. In this respect, Rho-associated coiled-coil forming protein kinase (ROCK) inhibitors hold a promising potential to become very prominent drugs for future glaucoma treatment. Their field of action in the eye does not seem to be restricted to IOP reduction by targeting the trabecular meshwork or improving filtration surgery outcome. Indeed, over the past years, important progress has been made in elucidating their ability to improve ocular blood flow, to prevent RGC death/increase RGC survival and to retard axonal degeneration or induce proper axonal regeneration. Within this review, we aim to highlight the currently known capacity of ROCK inhibition to promote neuroprotection and regeneration in several in vitro, ex vivo and in vivo experimental glaucoma models.
Collapse
Affiliation(s)
- Sarah Van de Velde
- Laboratory of Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ingeborg Stalmans
- Laboratory of Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
53
|
Yamamoto T, Mori K, Esaki T, Nakao Y, Tokugawa J, Watanabe M. Preventive effect of continuous cisternal irrigation with magnesium sulfate solution on angiographic cerebral vasospasms associated with aneurysmal subarachnoid hemorrhages: a randomized controlled trial. J Neurosurg 2015; 124:18-26. [PMID: 26230471 DOI: 10.3171/2015.1.jns142757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECT Although cerebral vasospasm (CV) is one of the most important predictors for the outcome in patients with subarachnoid hemorrhage (SAH), no treatment has yet been established for this condition. This study investigated the efficacy of continuous direct infusion of magnesium sulfate (MgSO4) solution into the intrathecal cistern in patients with an aneurysmal SAH. METHODS An SAH caused by a ruptured aneurysm was identified on CT scans within 72 hours after SAH onset. All patients were treated by surgical clipping and randomized into 2 groups: a control group of patients undergoing a standard treatment and a magnesium (Mg) group of patients additionally undergoing continuous infusion of 5 mmol/L MgSO4 solution for 14 days. The Mg(2+) concentrations in serum and CSF were recorded daily. Neurological examinations were performed by intensive care clinicians. Delayed cerebral ischemia was monitored by CT or MRI. To assess the effect of the Mg treatment on CV, the CVs were graded on the basis of the relative degree of constriction visible on cerebral angiograms taken on Day 10 after the SAH, and transcranial Doppler ultrasonography was performed daily to measure blood flow velocity in the middle cerebral artery (MCA). Neurological outcomes and mortality rates were evaluated with the Glasgow Outcome Scale and modified Rankin Scale at 3 months after SAH onset. RESULTS Seventy-three patients admitted during the period of April 2008 to March 2013 were eligible and enrolled in this study. Three patients were excluded because of violation of protocol requirements. The 2 groups did not significantly differ in age, sex, World Federation of Neurosurgical Societies grade, or Fisher grade. In the Mg group, the Mg(2+) concentration in CSF gradually increased from Day 4 after initiation of the continuous MgSO4 intrathecal administration. No such increase was observed in the control group. No significant changes in the serum Mg(2+) levels were observed for 14 days, and no cardiovascular complications such as bradycardia or hypotension were observed in any of the patients. However, bradypnea was noted among patients in the Mg group. The Mg group had a significantly better CV grade than the control group (p < 0.05). Compared with the patients in the Mg group, those in the control group had a significantly elevated blood flow velocity in the MCA. Both groups were similar in the incidences of cerebral infarction, and the 2 groups also did not significantly differ in clinical outcomes. CONCLUSIONS Continuous cisternal irrigation with MgSO4 solution starting on Day 4 and continuing to Day 14 significantly inhibited CV in patients with aneurysmal SAH without severe cardiovascular complications. However, this improvement in CV neither reduced the incidence of delayed cerebral ischemia nor improved the functional outcomes in patients with SAH.
Collapse
Affiliation(s)
- Takuji Yamamoto
- Department of Neurosurgery, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka
| | - Kentaro Mori
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Saitama; and
| | - Takanori Esaki
- Department of Rehabilitation, Gifu Central Hospital, Gifu, Japan
| | - Yasuaki Nakao
- Department of Neurosurgery, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka
| | - Joji Tokugawa
- Department of Neurosurgery, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka
| | - Mitsuya Watanabe
- Department of Neurosurgery, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka
| |
Collapse
|
54
|
William BM, An W, Feng D, Nadeau S, Mohapatra BC, Storck MA, Band V, Band H. Fasudil, a clinically safe ROCK inhibitor, decreases disease burden in a Cbl/Cbl-b deficiency-driven murine model of myeloproliferative disorders. ACTA ACUST UNITED AC 2015; 21:218-24. [PMID: 26177294 DOI: 10.1179/1607845415y.0000000031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Mutations in Cbl or Cbl-b gene occur in 10% of myeloproliferative disorder (MPD) patients and are associated with poor prognosis. Hematopoietic Cbl/Cbl-b double knockout (DKO) leads to a disease in mice phenotypically similar to human MPDs. The aim of this study was to evaluate the anti-MPD activity of a clinically safe drug, Fasudil, identified in an in vitro kinase inhibitor as an inhibitor of proliferation of DKO mouse hematopoietic stem/progenitor cells (HSPCs). METHODS Fasudil exhibited relatively selective anti-proliferative activity against Cbl/Cbl-b DKO vs. control murine bone marrow HSPCs. We established a mouse model with uniform time of MPD onset by transplanting Cbl/Cbl-b DKO HSPCs into busulfan-conditioned NOD/SCID/gamma chain-deficient mice. Four weeks post-transplant, mice were treated with 100 mg/kg fasudil (13 mice) or water (control, 8 mice) daily by oral gavage, followed by blood cell count every 2 weeks. RESULTS By 2 weeks of treatment, total white cell and monocyte counts were significantly lower in mice treated with fasudil. We observed a trend towards improved survival in fasudil-treated mice that did not reach statistical significance. Notably, prolonged survival beyond 27 weeks was observed in two fasudil-treated mice, nearly twice the 16-week average life-span in the Cbl/Cbl-b DKO MPD model. CONCLUSIONS Our results suggest a therapeutic potential for fasudil, a clinically safe drug with promising results in vascular diseases, in the treatment of MPDs or other mutant Cbl-driven myeloid disorders.
Collapse
Affiliation(s)
- Basem M William
- a Division of Hematology and Oncology, Department of Medicine , University of Nebraska Medical Center , Omaha , USA
| | - Wei An
- b Department of Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , USA.,c Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha , USA
| | - Dan Feng
- c Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha , USA
| | - Scott Nadeau
- b Department of Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , USA.,c Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha , USA
| | - Bhopal C Mohapatra
- c Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha , USA.,d Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , USA
| | - Matthew A Storck
- c Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha , USA
| | - Vimla Band
- b Department of Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , USA.,c Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha , USA.,e Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center , Omaha , USA
| | - Hamid Band
- b Department of Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , USA.,c Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha , USA.,d Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , USA.,e Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center , Omaha , USA
| |
Collapse
|
55
|
Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol Rev 2015; 67:103-17. [PMID: 25395505 DOI: 10.1124/pr.114.009381] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung scarring, short median survival, and limited therapeutic options, creating great need for new pharmacologic therapies. IPF is thought to result from repetitive environmental injury to the lung epithelium, in the context of aberrant host wound healing responses. Tissue responses to injury fundamentally involve reorganization of the actin cytoskeleton of participating cells, including epithelial cells, fibroblasts, endothelial cells, and macrophages. Actin filament assembly and actomyosin contraction are directed by the Rho-associated coiled-coil forming protein kinase (ROCK) family of serine/threonine kinases (ROCK1 and ROCK2). As would therefore be expected, lung ROCK activation has been demonstrated in humans with IPF and in animal models of this disease. ROCK inhibitors can prevent fibrosis in these models, and more importantly, induce the regression of already established fibrosis. Here we review ROCK structure and function, upstream activators and downstream targets of ROCKs in pulmonary fibrosis, contributions of ROCKs to profibrotic cellular responses to lung injury, ROCK inhibitors and their efficacy in animal models of pulmonary fibrosis, and potential toxicities of ROCK inhibitors in humans, as well as involvement of ROCKs in fibrosis in other organs. As we discuss, ROCK activation is required for multiple profibrotic responses, in the lung and multiple other organs, suggesting ROCK participation in fundamental pathways that contribute to the pathogenesis of a broad array of fibrotic diseases. Multiple lines of evidence therefore indicate that ROCK inhibition has great potential to be a powerful therapeutic tool in the treatment of fibrosis, both in the lung and beyond.
Collapse
Affiliation(s)
- Rachel S Knipe
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| | - Andrew M Tager
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| | - James K Liao
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| |
Collapse
|
56
|
Green J, Cao J, Bandarage UK, Gao H, Court J, Marhefka C, Jacobs M, Taslimi P, Newsome D, Nakayama T, Shah S, Rodems S. Design, Synthesis, and Structure–Activity Relationships of Pyridine-Based Rho Kinase (ROCK) Inhibitors. J Med Chem 2015; 58:5028-37. [DOI: 10.1021/acs.jmedchem.5b00424] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeremy Green
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Jingrong Cao
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Upul K. Bandarage
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Huai Gao
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - John Court
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Craig Marhefka
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Marc Jacobs
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Paul Taslimi
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - David Newsome
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Tomoko Nakayama
- Vertex Pharmaceuticals,
Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Sundeep Shah
- Vertex Pharmaceuticals,
Inc., 11010 Torreyana Road, San Diego, California 92121, United States
| | - Steve Rodems
- Vertex Pharmaceuticals,
Inc., 11010 Torreyana Road, San Diego, California 92121, United States
| |
Collapse
|
57
|
Saito A, Inoue M, Kon H, Imaruoka S, Basaki K, Midorikawa H, Sasaki T, Nishijima M. Effectiveness of intraarterial administration of fasudil hydrochloride for preventing symptomatic vasospasm after subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:297-301. [PMID: 25366640 DOI: 10.1007/978-3-319-04981-6_50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
OBJECTIVE We examined the effect of intraarterial administration of fasudil hydrochloride (IAFC), a Rho kinase inhibitor, for the prevention of symptomatic vasospasm after SAH by evaluating cerebral circulation. METHODS We evaluated IAFC cases of 57 sides of 38 patients (12 men and 26 women, average age 60.2 years old) diagnosed with aneurysmal subarachnoid hemorrhage (SAH) from February 2012 to November 2012. All cases were treated by clipping or coil embolization within 48 h after onset. Indication for IAFC was the existence of a spastic change on follow-up digital subtraction angiography (DSA) compared with that of onset. RESULTS Clipping was performed in 30 cases and coil embolization in 8 cases. IAFC was performed an average of 6.6 days after onset. Color gradient mapping demonstrated reduction of the circulation time after IAFC compared with before IAFC on 39 sides, no change on 15 sides, and extension on 3 sides. Average arterial circulation time before IAFC was 2.25 ± 0.57 s and after IAFC was 1.95 ± 0.55 s. IAFC significantly shortened average arterial circulation (P = 0.005). No case developed symptomatic vasospasm after IAFC. CONCLUSION IAFC significantly reduced the cerebral circulation time after aneurysmal SAH and might be effective for the prevention of symptomatic vasospasm.
Collapse
Affiliation(s)
- Atsushi Saito
- Departments of Neurosurgery and Radiology, Aomori Prefectural Central Hospital, 2-1-1 Higashitsukurimichi, Aomori, 0308553, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Bond LM, Sellers JR, McKerracher L. Rho kinase as a target for cerebral vascular disorders. Future Med Chem 2015; 7:1039-53. [PMID: 26062400 PMCID: PMC4656981 DOI: 10.4155/fmc.15.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of novel pharmaceutical treatments for disorders of the cerebral vasculature is a serious unmet medical need. These vascular disorders are typified by a disruption in the delicate Rho signaling equilibrium within the blood vessel wall. In particular, Rho kinase overactivation in the smooth muscle and endothelial layers of the vessel wall results in cytoskeletal modifications that lead to reduced vascular integrity and abnormal vascular growth. Rho kinase is thus a promising target for the treatment of cerebral vascular disorders. Indeed, preclinical studies indicate that Rho kinase inhibition may reduce the formation/growth/rupture of both intracranial aneurysms and cerebral cavernous malformations.
Collapse
Affiliation(s)
- Lisa M Bond
- BioAxone BioSciences, Inc., 10 Rogers Street, Suite 101, Kendall Square, Cambridge, MA 02142, USA
- Laboratory of Molecular Physiology, National Heart, Lung & Blood Institute, Bethesda, MD 20892, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung & Blood Institute, Bethesda, MD 20892, USA
| | - Lisa McKerracher
- BioAxone BioSciences, Inc., 10 Rogers Street, Suite 101, Kendall Square, Cambridge, MA 02142, USA
| |
Collapse
|
59
|
Ma S, Deng J, Li B, Li X, Yan Z, Zhu J, Chen G, Wang Z, Jiang H, Miao L, Li J. Development of Second-Generation Small-Molecule RhoA Inhibitors with Enhanced Water Solubility, Tissue Potency, and Significant in vivo Efficacy. ChemMedChem 2014; 10:193-206. [DOI: 10.1002/cmdc.201402386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 12/24/2022]
|
60
|
Richardson BT, Dibble CF, Borikova AL, Johnson GL. Cerebral cavernous malformation is a vascular disease associated with activated RhoA signaling. Biol Chem 2014; 394:35-42. [PMID: 23096573 DOI: 10.1515/hsz-2012-0243] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/13/2012] [Indexed: 11/15/2022]
Abstract
Cerebral cavernous malformation (CCM) involves the homozygous inactivating mutations of one of three genes, ccm1, -2, or -3 resulting in hyperpermeable blood vessels in the brain. The CCM1, -2, and -3 proteins form a complex to organize the signaling networks controlling endothelial cell physiology including actin dynamics, tube formation, and adherens junctions. The common biochemical defect with the loss of CCM1, -2, or -3 is increased RhoA activity leading to the activation of Rho-associated coiled coil-forming kinase (ROCK). Inhibition of the ROCK rescues CCM endothelial cell dysfunction, suggesting that the inhibition of RhoA-ROCK signaling may be a therapeutic strategy to prevent or arrest the progression of the CCM lesions.
Collapse
Affiliation(s)
- Bryan T Richardson
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
61
|
Chan KM, Gordon T, Zochodne DW, Power HA. Improving peripheral nerve regeneration: from molecular mechanisms to potential therapeutic targets. Exp Neurol 2014; 261:826-35. [PMID: 25220611 DOI: 10.1016/j.expneurol.2014.09.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 11/19/2022]
Abstract
Peripheral nerve injury is common especially among young individuals. Although injured neurons have the ability to regenerate, the rate is slow and functional outcomes are often poor. Several potential therapeutic agents have shown considerable promise for improving the survival and regenerative capacity of injured neurons. These agents are reviewed within the context of their molecular mechanisms. The PI3K/Akt and Ras/ERK signaling cascades play a key role in neuronal survival. A number of agents that target these pathways, including erythropoietin, tacrolimus, acetyl-l-carnitine, n-acetylcysteine and geldanamycin have been shown to be effective. Trk receptor signaling events that up-regulate cAMP play an important role in enhancing the rate of axonal outgrowth. Agents that target this pathway including rolipram, testosterone, fasudil, ibuprofen and chondroitinase ABC hold considerable promise for human application. A tantalizing prospect is to combine different molecular targeting strategies in complementary pathways to optimize their therapeutic effects. Although further study is needed prior to human trials, these modalities could open a new horizon in the clinical arena that has so far been elusive.
Collapse
Affiliation(s)
- K Ming Chan
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada; Centre for Neuroscience, University of Alberta, Canada.
| | - Tessa Gordon
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada; Centre for Neuroscience, University of Alberta, Canada; Division of Plastic Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Douglas W Zochodne
- Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Hollie A Power
- Division of Plastic Surgery, University of Alberta, Canada
| |
Collapse
|
62
|
Rho Kinase Inhibition by Fasudil in the Striatal 6-Hydroxydopamine Lesion Mouse Model of Parkinson Disease. J Neuropathol Exp Neurol 2014; 73:770-9. [DOI: 10.1097/nen.0000000000000095] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
63
|
Abstract
Rho kinase (ROCK) is a major downstream effector of the small GTPase RhoA. ROCK family, consisting of ROCK1 and ROCK2, plays central roles in the organization of actin cytoskeleton and is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, proliferation, and apoptosis. Due to the discovery of effective inhibitors, such as fasudil and Y27632, the biological roles of ROCK have been extensively explored with particular attention on the cardiovascular system. In many preclinical models of cardiovascular diseases, including vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, stroke, ischemia-reperfusion injury, and heart failure, ROCK inhibitors have shown a remarkable efficacy in reducing vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment, vascular remodeling, and cardiac remodeling. Moreover, fasudil has been used in the clinical trials of several cardiovascular diseases. The continuing utilization of available pharmacological inhibitors and the development of more potent or isoform-selective inhibitors in ROCK signaling research and in treating human diseases are escalating. In this review, we discuss the recent molecular, cellular, animal, and clinical studies with a focus on the current understanding of ROCK signaling in cardiovascular physiology and diseases. We particularly note that emerging evidence suggests that selective targeting ROCK isoform based on the disease pathophysiology may represent a novel therapeutic approach for the disease treatment including cardiovascular diseases.
Collapse
|
64
|
Fukuda T, Narahara Y, Kanazawa H, Matsushita Y, Kidokoro H, Itokawa N, Kondo C, Atsukawa M, Nakatsuka K, Sakamoto C. Effects of fasudil on the portal and systemic hemodynamics of patients with cirrhosis. J Gastroenterol Hepatol 2014; 29:325-9. [PMID: 24033356 DOI: 10.1111/jgh.12360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Fasudil, a Rho-kinase inhibitor, has been shown to reduce portal venous pressure in cirrhotic rats. However, its effects on portal and systemic hemodynamics have not been investigated in cirrhotic patients with portal hypertension. The aim of this study was to assess the effects of fasudil on the portal and systemic hemodynamics of cirrhotic patients with portal hypertension. METHODS Twenty-three patients with cirrhosis and portal hypertension were studied. Systemic and portal hemodynamics were measured prior to and 50 min after the initiation of intravenous administration of 30 mg fasudil (n = 15) or placebo (n = 8). RESULTS After fasudil, there were significant decreases in both mean arterial pressure (P < 0.05) and systemic vascular resistance (P < 0.05), whereas the heart rate increased significantly (P < 0.05). There was a significant decrease in the hepatic venous pressure gradient (P < 0.05). Portal vascular resistance also decreased significantly (P < 0.01). Placebo caused no significant effects. There were no symptomatic reactions caused by changes in the mean arterial pressure or heart rate after fasudil. CONCLUSIONS In cirrhotic patients with portal hypertension, fasudil lowers portal vascular resistance, resulting in decreased portal venous pressure with reducing arterial pressure.
Collapse
Affiliation(s)
- Takeshi Fukuda
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Fasudil improves short-term echocardiographic parameters of diastolic function in patients with type 2 diabetes with preserved left ventricular ejection fraction: a pilot study. Heart Vessels 2014; 30:89-97. [PMID: 24390764 DOI: 10.1007/s00380-013-0458-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/20/2013] [Indexed: 01/01/2023]
Abstract
Left ventricular (LV) diastolic dysfunction is observed frequently in patients with type 2 diabetes; however, few studies have focused on the effect of the Rho-associated kinase inhibitor fasudil on cardiac performance in humans. We conducted a prospective pilot study to assess the impact of fasudil on LV diastolic function in patients with diabetes without systolic dysfunction. Two hundred and fifty eligible patients with type 2 diabetes (149 men [61.3 %] and 94 women [38.7 %]) with a mean age of 57.2 years were randomly assigned to fasudil (n = 122, 30 mg intravenously twice a day for 14 days) or placebo (n = 121) groups. Echocardiographic variables were measured at the baseline and 1 month after the intervention. Compared with the placebo group, the fasudil group showed a significant decrease in diastolic blood pressure and in the peak of late diastolic transmitral flow (Am) (P < 0.05 for both). Deceleration time (DT), isovolumic relaxation time (IVRT), the peak of early diastolic annular velocity (e'), the peak of late diastolic annular velocity, and E/e' also exhibited a significant improvement (all, P < 0.05) after fasudil administration. Furthermore, the Em/Am ratio and IVRT, DT, and E/e' values recorded after fasudil treatment in the subgroup with impaired LV relaxation significantly differed from the corresponding values in the subgroup with normal LV relaxation (all, P < 0.05). Fasudil improves short-term echocardiographic parameters of LV diastolic function in patients with type 2 diabetes with preserved left ventricular ejection fraction.
Collapse
|
66
|
Markopoulou A, Kyttaris VC. Small molecules in the treatment of systemic lupus erythematosus. Clin Immunol 2013; 148:359-68. [PMID: 23158694 PMCID: PMC3587286 DOI: 10.1016/j.clim.2012.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/18/2012] [Accepted: 09/22/2012] [Indexed: 12/17/2022]
Abstract
Advances in the understanding of the cellular biological events that underlie systemic lupus erythematosus (SLE) have led to the identification of key molecules and signaling pathways that are aberrantly expressed. The parallel development of small molecule drugs that inhibit or interfere with the specific perturbations identified, offers perspective for more rational, effective and less toxic therapy. In this review, we present data from preclinical and clinical studies of such emerging novel therapies with a particular focus on kinase inhibitors and other compounds that modulate signal transduction. Moreover, we highlight the use of chromatin-modifying medications, bringing attention to the central role of epigenetics in SLE pathogenesis.
Collapse
Affiliation(s)
- Anastasia Markopoulou
- Division of Rheumatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
67
|
The protective effect of fasudil on the structure and function of cardiac mitochondria from rats with type 2 diabetes induced by streptozotocin with a high-fat diet is mediated by the attenuation of oxidative stress. BIOMED RESEARCH INTERNATIONAL 2013; 2013:430791. [PMID: 23762845 PMCID: PMC3674652 DOI: 10.1155/2013/430791] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 01/13/2023]
Abstract
Dysfunction of cardiac mitochondria appears to play a substantial role in cardiomyopathy or myocardial dysfunction and is a promising therapeutic target for many cardiovascular diseases. We investigated the effect of the Rho/Rho-associated protein kinase (ROCK) inhibitor fasudil on cardiac mitochondria from rats in which diabetes was induced by a combination of streptozotocin (STZ) and a sustained high-fat diet. Eight weeks after diabetes was induced by a single intraperitoneal injection of 50 mg/kg STZ followed by a sustained high-fat diet, either fasudil (5 mg/kg bid) or equivalent volumes of saline (control) were administered over four weeks. Fasudil significantly protected against the histopathologic changes of cardiac mitochondria in diabetic rats. Fasudil significantly reduced the abundances of the Rho A, ROCK 1, and ROCK 2 proteins, restored the activities of succinate dehydrogenase (SDH) and monoamine oxidase (MAO) in cardiac mitochondria, inhibited the opening of the mitochondrial permeability transition pore, and decreased the total antioxidant capacity, as well as levels of malonyldialdehyde, hydroxy radical, reduced glutathione, and superoxide dismutase in heart. Fasudil improved the structures of cardiac mitochondria and increased both SDH and MAO activities in cardiac mitochondria. These beneficial effects may be associated with the attenuation of oxidative stress caused by fasudil treatment.
Collapse
|
68
|
Lu Y, Li H, Jian W, Zhuang J, Wang K, Peng W, Xu Y. The Rho/Rho-associated protein kinase inhibitor fasudil in the protection of endothelial cells against advanced glycation end products through the nuclear factor κB pathway. Exp Ther Med 2013; 6:310-316. [PMID: 24137180 PMCID: PMC3786857 DOI: 10.3892/etm.2013.1125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/07/2013] [Indexed: 01/23/2023] Open
Abstract
Accumulating evidence has demonstrated that the Rho/Rho-associated protein kinase (Rho/ROCK) and nuclear factor κB (NF-κB) signaling pathways are involved in the pathogenesis of diabetic vascular injury. In this study, we investigated the beneficial effects of fasudil, a ROCK inhibitor, on vascular endothelial injury induced by advanced glycation end products (AGEs) in vitro. Human umbilical vein endothelial cells (HUVECs) were stimulated with AGEs and AGEs plus fasudil in various concentrations for different time periods. Monocyte-endothelial cell adhesion, vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) expression, protein expression and activation of Rho/ROCK, activation of NF-κB and reactive oxygen species (ROS) production were evaluated. Fasudil suppressed AGE-induced monocyte-endothelial adhesion. Fasudil also reduced the mRNA and protein expression of VCAM-1 and MCP-1 in a concentration- and time-dependent manner. Moreover, increases in the protein levels of Rho/ROCK and ROCK activity mediated by AGEs were inhibited by the addition of fasudil. Additionally, fasudil attenuated AGE-induced NF-κB-dependent transcriptional activity and inhibition of NF-κB (IκB) phosphorylation. ROS production induced by AGEs was also reduced by fasudil in HUVECs. The results suggest that ROCK inhibition may protect the vascular endothelium against AGE-induced monocyte-endothelial adhesion in vitro through the reduction of ROS generation and the downregulation of NF-κB signaling. Thus, ROCK inhibition may be a novel therapeutic approach for the treatment of vascular complications in diabetes.
Collapse
Affiliation(s)
- Yuyan Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | | | | | | | | | | | | |
Collapse
|
69
|
Nakamura T, Matsui T, Hosono A, Okano A, Fujisawa N, Tsuchiya T, Indo M, Suzuki Y, Oya S, Chang HS. Beneficial Effect of Selective Intra-arterial Infusion of Fasudil Hydrochloride as a Treatment of Symptomatic Vasospasm Following SAH. ACTA NEUROCHIRURGICA SUPPLEMENT 2013; 115:81-5. [DOI: 10.1007/978-3-7091-1192-5_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
70
|
Yanamoto H, Kataoka H, Nakajo Y, Iihara K. The Role of the Host Defense System in the Development of Cerebral Vasospasm: Analogies between Atherosclerosis and Subarachnoid Hemorrhage. Eur Neurol 2012; 68:329-43. [DOI: 10.1159/000341336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/24/2012] [Indexed: 01/13/2023]
|
71
|
Zhao J, Zhou D, Guo J, Ren Z, Zhou L, Wang S, Zhang Y, Xu B, Zhao K, Wang R, Mao Y, Xu B, Zhang X. Efficacy and safety of fasudil in patients with subarachnoid hemorrhage: final results of a randomized trial of fasudil versus nimodipine. Neurol Med Chir (Tokyo) 2012; 51:679-83. [PMID: 22027241 DOI: 10.2176/nmc.51.679] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fasudil is believed to be at least equally effective as nimodipine for the prevention of cerebral vasospasm and subsequent ischemic injury in patients undergoing surgery for subarachnoid hemorrhage (SAH). We report the final results of a randomized, open trial to compare the efficacy and safety of fasudil with nimodipine. A total of 63 patients undergoing surgery for SAH received fasudil and 66 received nimodipine between 1998 and 2004. Symptomatic vasospasm, low density areas on computed tomography (CT), clinical outcomes, and adverse events were all recorded, and the results were compared between the fasudil and nimodipine groups. Absence of symptomatic vasospasm, occurrence of low density areas associated with vasospasm on CT, and occurrence of adverse events were similar between the two groups. The clinical outcomes were more favorable in the fasudil group than in the nimodipine group (p = 0.040). The proportion of patients with good clinical outcome was 74.5% (41/55) in the fasudil group and 61.7% (37/60) in the nimodipine group. There were no serious adverse events reported in the fasudil group. The present results suggest that fasudil is equally or more effective than nimodipine for the prevention of cerebral vasospasm and subsequent ischemic injury in patients undergoing surgery for SAH.
Collapse
Affiliation(s)
- Jizong Zhao
- Department of Neurosurgery, Capital Medical University Affiliated Beijing Tiantan Hospital, Beijing, P R China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
KIM JY, HAN JY, KWON TG, CHOO MS. Effects of Oral Rho Kinase Inhibitor Fasudil on Detrusor Overactivity after Bladder Outlet Obstruction in Rats. Low Urin Tract Symptoms 2012; 5:96-100. [DOI: 10.1111/j.1757-5672.2012.00169.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
73
|
Potassium-Channel Openers KMUP-1 and Pinacidil Prevent Subarachnoid Hemorrhage–Induced Vasospasm by Restoring the BKCa-Channel Activity. Shock 2012; 38:203-12. [DOI: 10.1097/shk.0b013e31825b2d82] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
74
|
Evidence of a direct cellular protective effect of Rho-kinase inhibitors on endothelin-induced cardiac myocyte hypertrophy. Biochem Biophys Res Commun 2012; 424:338-40. [PMID: 22771803 DOI: 10.1016/j.bbrc.2012.06.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 06/26/2012] [Indexed: 11/20/2022]
Abstract
Using a cellular approach, the present study examined whether fasudil and active metabolite hydroxyfasudil, Rho-kinase inhibitors, exert a direct protective effect on endothelin-induced cardiac myocyte hypertrophy in vitro. Treatment with endothelin (10nM) caused significant hypertrophy of cultured neonatal rat cardiomyocytes by a 21.2% increase in cell surface area. Fasudil (1-10 μM) and hydroxyfasudil (0.3-10 μM) significantly prevented endothelin-induced cardiomyocyte hypertrophy. The present results suggest that inhibition of cardiac hypertrophy by fasudil is, at least in part, due to direct protection of cardiomyocytes from hypertrophy.
Collapse
|
75
|
Pankey EA, Byun RJ, Smith WB, Bhartiya M, Bueno FR, Badejo AM, Stasch JP, Murthy SN, Nossaman BD, Kadowitz PJ. The Rho kinase inhibitor azaindole-1 has long-acting vasodilator activity in the pulmonary vascular bed of the intact chest rat. Can J Physiol Pharmacol 2012; 90:825-35. [DOI: 10.1139/y2012-061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Responses to a selective azaindole-based Rho kinase (ROCK) inhibitor (azaindole-1) were investigated in the rat. Intravenous injections of azaindole-1 (10–300 µg/kg), produced small decreases in pulmonary arterial pressure and larger decreases in systemic arterial pressure without changing cardiac output. Responses to azaindole-1 were slow in onset and long in duration. When baseline pulmonary vascular tone was increased with U46619 or L-NAME, the decreases in pulmonary arterial pressure in response to the ROCK inhibitor were increased. The ROCK inhibitor attenuated the increase in pulmonary arterial pressure in response to ventilatory hypoxia. Azaindole-1 decreased pulmonary and systemic arterial pressures in rats with monocrotaline-induced pulmonary hypertension. These results show that azaindole-1 has significant vasodilator activity in the pulmonary and systemic vascular beds and that responses are larger, slower in onset, and longer in duration when compared with the prototypical agent fasudil. Azaindole-1 reversed hypoxic pulmonary vasoconstriction and decreased pulmonary and systemic arterial pressures in a similar manner in rats with monocrotaline-induced pulmonary hypertension. These data suggest that ROCK is involved in regulating baseline tone in the pulmonary and systemic vascular beds, and that ROCK inhibition will promote vasodilation when tone is increased by diverse stimuli including treatment with monocrotaline.
Collapse
Affiliation(s)
- Edward A. Pankey
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Ryuk J. Byun
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - William B. Smith
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Manish Bhartiya
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Franklin R. Bueno
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Adeleke M. Badejo
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Johannes-Peter Stasch
- Institute of Cardiovascular Research, Pharma Research Centre, Bayer AG, D-42096 Wuppertal, Germany
| | - Subramanyam N. Murthy
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Bobby D. Nossaman
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
- Department of Anesthesiology, Critical Care Medicine Section, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, Louisiana 70121, USA
| | - Philip J. Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| |
Collapse
|
76
|
Li H, Peng W, Jian W, Li Y, Li Q, Li W, Xu Y. ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion. Cardiovasc Diabetol 2012; 11:65. [PMID: 22694757 PMCID: PMC3461463 DOI: 10.1186/1475-2840-11-65] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/06/2012] [Indexed: 11/22/2022] Open
Abstract
Background Previous studies suggested that the RhoA/ROCK pathway may contribute to vascular complications in diabetes. The present study was designed to investigate whether ROCK inhibitor fasudil could prevent high glucose-induced monocyte-endothelial cells adhesion, and whether this was related to fasudil effects on vascular endothelial cell expression of chemotactic factors, vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1). Methods HUVECs were stimulated with high glucose (HG) or HG + fasudil in different concentration or different time. Monocyte-endothelial cell adhesion was determined using fluorescence-labeled monocytes. The mRNA and protein expression of VCAM-1 and MCP-1 were measured using real-time PCR and western blot. The protein levels of RhoA, ROCKI and p-MYPT were determined using western blot analysis. ELISA was employed to measure the expression of soluble VCAM-1 and MCP-1 in cell supernatants and human serum samples. Results Fasudil significantly suppressed HG-induced adhesion of THP-1 to HUVECs. Fasudil reduced Rho/ROCK activity (as indicated by lower p-MYPT/MYPT ratio), and prevented HG induced increases in VCAM-1 and MCP-1 mRNA and protein levels. Fasudil also decreased MCP-1 concentration in HUVEC supernatants, but increased sVCAM-1 shedding into the media. In human diabetic subjects, 2 weeks of fasudil treatment significantly decreased serum MCP-1 level from 27.9 ± 10.6 pg/ml to 13.8 ± 7.0 pg/ml (P < 0.05), while sVCAM-1 increased from 23.2 ± 7.5 ng/ml to 39.7 ± 5.6 ng/ml after fasudil treatment (P < 0.05). Conclusions Treatment with the Rho/ROCK pathway inhibitor fasudil attenuated HG-induced monocyte-endothelial cell adhesion, possibly by reducing endothelial expression of VCAM-1 and MCP-1. These results suggest inhibition of Rho/ROCK signaling may have therapeutic potential in preventing diabetes associated vascular inflammation and atherogenesis.
Collapse
Affiliation(s)
- Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
77
|
Mardilovich K, Olson MF, Baugh M. Targeting Rho GTPase signaling for cancer therapy. Future Oncol 2012; 8:165-77. [PMID: 22335581 DOI: 10.2217/fon.11.143] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence from basic and clinical studies supports the concept that signaling pathways downstream of Rho GTPases play important roles in tumor development and progression. As a result, there has been considerable interest in the possibility that specific proteins in these signal transduction pathways could be potential targets for cancer therapy. A number of inhibitors targeting critical effector proteins, activators or the Rho GTPases themselves, have been developed. We will review the strategies currently being used to develop inhibitors of Rho GTPases and downstream signaling kinases and discuss candidate entities. Although molecularly targeted drugs that inhibit Rho GTPase signaling have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to drive considerable pharmaceutical research and development.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
78
|
Surma M, Wei L, Shi J. Rho kinase as a therapeutic target in cardiovascular disease. Future Cardiol 2012; 7:657-71. [PMID: 21929346 DOI: 10.2217/fca.11.51] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rho kinase (ROCK) belongs to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and is a major downstream effector of the small GTPase RhoA. ROCK plays central roles in the organization of the actin cytoskeleton and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation and gene expression. Two ROCK isoforms, ROCK1 and ROCK2, are assumed to be functionally redundant, based largely on the major common activators, the high degree of homology within the kinase domain and studies from overexpression with kinase constructs and chemical inhibitors (e.g., Y27632 and fasudil), which inhibit both ROCK1 and ROCK2. Extensive experimental and clinical studies support a critical role for the RhoA/ROCK pathway in the vascular bed in the pathogenesis of cardiovascular diseases, in which increased ROCK activity mediates vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment and vascular remodeling. Recent experimental studies, using ROCK inhibitors or genetic mouse models, indicate that the RhoA/ROCK pathway in myocardium contributes to cardiac remodeling induced by ischemic injury or persistent hypertrophic stress, thereby leading to cardiac decompensation and heart failure. This article, based on recent molecular, cellular and animal studies, focuses on the current understanding of ROCK signaling in cardiovascular diseases and in the pathogenesis of heart failure.
Collapse
Affiliation(s)
- Michelle Surma
- Riley Heart Research Centre, Wells Centre for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
79
|
Kuroda S, Tashiro H, Igarashi Y, Tanimoto Y, Nambu J, Oshita A, Kobayashi T, Amano H, Tanaka Y, Ohdan H. Rho inhibitor prevents ischemia-reperfusion injury in rat steatotic liver. J Hepatol 2012; 56:146-52. [PMID: 21756846 DOI: 10.1016/j.jhep.2011.04.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/07/2011] [Accepted: 04/29/2011] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Hepatic stellate cells are thought to play a role in modulating intrahepatic vascular resistance based on their capacity to contract via Rho signaling. We investigated the effect of a Rho-kinase inhibitor on ischemia-reperfusion injury in the steatotic liver. METHODS Steatotic livers, induced by a choline-deficient diet in rats, were subjected to ischemia-reperfusion injury. Hepatic stellate cells isolated from steatotic livers were analyzed for contractility and Rho signaling activity. The portal pressure of the perfused rat liver and the survival rate after ischemia-reperfusion were also investigated. RESULTS Hepatic stellate cells from steatotic livers showed increased contractility and upregulation of Rho-kinase 2 compared with those from normal livers. Furthermore, endothelin-1 significantly enhanced the contractility and phosphorylation level of myosin light chain and cofilin in hepatic stellate cells isolated from steatotic livers. A specific Rho-kinase inhibitor, fasudil, significantly suppressed the contractility and decreased the phosphorylation levels of myosin light chain and cofilin. Serum levels of endothelin-1 were markedly increased after IR in rats with steatotic livers, whereas fasudil significantly decreased endothelin-1 serum levels. Rats with steatotic livers showed a significant increase in portal perfusion pressure after ischemia-reperfusion and a significant decrease in survival rate; fasudil treatment significantly reduced these effects. CONCLUSIONS Activation of Rho/Rho-kinase signaling in hepatic stellate cells isolated from steatotic livers is associated with an increased susceptibility to ischemia-reperfusion injury. A Rho-kinase inhibitor attenuated the activation of hepatic stellate cells isolated from steatotic livers and improved ischemia-reperfusion injury in steatotic rats.
Collapse
Affiliation(s)
- Shintaro Kuroda
- Department of Surgery, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Satoh SI, Takayasu M, Kawasaki K, Ikegaki I, Hitomi A, Yano K, Shibuya M, Asano T. Antivasospastic Effects of Hydroxyfasudil, a Rho-Kinase Inhibitor, After Subarachnoid Hemorrhage. J Pharmacol Sci 2012; 118:92-98. [DOI: 10.1254/jphs.11075fp] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 11/15/2011] [Indexed: 10/14/2022] Open
|
81
|
Miyamoto C, Maehata Y, Ozawa S, Ikoma T, Kubota E, Izukuri K, Kato Y, Hata RI, Lee MCI. Fasudil Suppresses Fibrosarcoma Growth by Stimulating Secretion of the Chemokine CXCL14/BRAK. J Pharmacol Sci 2012; 120:241-9. [DOI: 10.1254/jphs.12177fp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
82
|
Breyer J, Samarin J, Rehm M, Lautscham L, Fabry B, Goppelt-Struebe M. Inhibition of Rho kinases increases directional motility of microvascular endothelial cells. Biochem Pharmacol 2011; 83:616-26. [PMID: 22192821 DOI: 10.1016/j.bcp.2011.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 01/21/2023]
Abstract
Rho kinases are major regulators of actin cytoskeletal organization and cell motility. Depending on the model system, inhibitors of Rho kinases (ROCK) have been reported to increase or decrease endothelial cell migration. In the present study we investigated the effect of Rho kinase inhibitors on microvascular endothelial cell migration with a special focus on the isoform ROCK2. Migration of microvascular endothelial cells was analyzed in a wound-healing, a spheroid-on-collagen migration assay and in cells embedded in collagen-1 gels. The non-selective Rho kinase inhibitor H1152 was compared to the selective ROCK2 inhibitor SLX2119 and to siRNA knock down. Non-selective inhibition of Rho kinases decreased cell-spanning F-actin fibers, loosened cell-cell contacts visualized by VE cadherin staining, and reduced cell-matrix interactions as shown by reduced Hic-5 expression in focal contacts. Rho kinase inhibitors facilitated directed migration of endothelial cells away from spheroids on fibronectin-coated plates and in collagen-1 gels. By contrast, migration of firmly attached endothelial cells, resembling intact vessels, was not promoted by Rho kinase inhibition. Selective inhibition of ROCK2 mimicked the cytoskeletal effects of H1152 and also increased cell motility, although to a lesser extent. In summary, Rho kinase inhibition enhanced the migration and cytoskeletal restructuring preferentially in freshly attached endothelial cells. ROCK2 may be a potential target to manipulate endothelial cell migration after vessel injury.
Collapse
Affiliation(s)
- Johannes Breyer
- Department of Nephrology and Hypertension, Universität Erlangen-Nürnberg, Loschgestrasse 8, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Ishihara M, Yamanaka K, Nakajima S, Yamasaki M. Intracranial hemorrhage after intra-arterial administration of fasudil for treatment of cerebral vasospasm following subarachnoid hemorrhage: a serious adverse event. Neuroradiology 2011; 54:73-5. [PMID: 21431852 DOI: 10.1007/s00234-011-0856-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 02/27/2011] [Indexed: 11/24/2022]
|
84
|
Hansen-Schwartz J. Advances in treatment of cerebral vasospasm: an update. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:23-26. [PMID: 21116909 DOI: 10.1007/978-3-7091-0353-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An update of published clinical advances in the treatment of cerebral vasospasm after subarachnoid haemorrhage was provided. Searching MEDLINE using the search terms "cerebral vasospasm" and "clinical trials" 46 papers were identified that had been published since the International Conference on Cerebral Vasospasm in Istanbul, Turkey in 2006. Of these 26 were either safety studies or case reports leaving 20 papers for consideration. The major topics covered were calcium antagonists, magnesium sulphate, statins, and fasudil hydrochloride. The studies published did not reach an impact justified recommended routine use, but certainly as options. Results of the CONSCIOUS trials on endothelin receptor antagonists are awaited.
Collapse
Affiliation(s)
- Jacob Hansen-Schwartz
- Department of Neurosurgery, Glostrup University Hospital, DK-2600, Glostrup, Denmark.
| |
Collapse
|
85
|
Fasudil protects cultured N1E-115 cells against lysophosphatidic acid-induced neurite retraction through inhibition of Rho-kinase. Brain Res Bull 2010; 84:174-7. [PMID: 21126559 DOI: 10.1016/j.brainresbull.2010.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the possible effects of the Rho-kinase inhibitor, fasudil, on the lysophosphatidic acid (LPA)-induced neurite retraction in N1E-115 cells. In cultured N1E-115 cells, LPA produced a marked increase in the population of rounded cells. Fasudil or hydroxyfasudil, an active metabolite of fasudil, blocked cell rounding in a concentration-dependent manner at levels between 1 and 10 μM, with IC₅₀ values of 1.7 or 1.6 μM, respectively. Fasudil or hydroxyfasudil concentration-dependently inhibited phosphorylation of the myosin binding subunit of myosin phosphatase in N1E-115 cells. These results indicate that Rho-kinase is essential for LPA-induced neurite retraction in N1E-115 cells and that inactivation of Rho-kinase by a Rho-kinase inhibitor, such as fasudil, eliminates cell rounding and promotes neurite outgrowth, thus improving neurological function in the brain damage.
Collapse
|
86
|
Abstract
IMPORTANCE OF THE FIELD Pulmonary arterial hypertension (PAH) is a clinical syndrome characterized by structural narrowing of the small pulmonary arteries that often culminates in fatal right heart failure. AREAS COVERED IN THIS REVIEW PubMed was searched for PAH and treatment. Data from scientific meetings and pharmaceutical websites are also included. There are currently eight FDA approved drugs for PAH that fall into one of three classes: prostacyclins, endothelin-receptor antagonists and PDE-5 inhibitors. All have important limitations and morbidity and mortality remain high. Several new agents with similar mechanisms of action are in clinical development. Multiple novel therapeutic targets are being explored. New applications for PAH therapies, such as pulmonary hypertension due to left heart and lung disease, are also being investigated. WHAT THE READER WILL GAIN An understanding of currently available drugs and those in clinical development for pulmonary hypertension. TAKE HOME MESSAGE Drugs targeting the pulmonary vasculature have been an extremely active area of basic and clinical research for the past 20 years and will continue to be so for the foreseeable future. Considerable progress has been made, and yet there continues to be a great unmet medical need for developing more efficacious therapies.
Collapse
Affiliation(s)
- Reda E Girgis
- Johns Hopkins University, School of Medicine, Division of Pulmonary and Critical Care Medicine, USA.
| |
Collapse
|
87
|
Efficacy of Low-Dose Tissue-Plasminogen Activator Intracisternal Administration for the Prevention of Cerebral Vasospasm After Subarachnoid Hemorrhage. World Neurosurg 2010; 73:675-82. [DOI: 10.1016/j.wneu.2010.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 04/05/2010] [Indexed: 11/23/2022]
|
88
|
Fernandez SF, Tandar A, Boden WE. Emerging medical treatment for angina pectoris. Expert Opin Emerg Drugs 2010; 15:283-98. [DOI: 10.1517/14728210903544482] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
89
|
Prevention of symptomatic vasospasm by continuous cisternal irrigation with mock-CSF containing ascorbic acid and Mg(2+). ACTA NEUROCHIRURGICA. SUPPLEMENT 2010; 107:115-8. [PMID: 19953382 DOI: 10.1007/978-3-211-99373-6_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Symptomatic vasospasm (SVS) is still a major cause of poor outcome in cases undergoing early surgical intervention for ruptured intracranial aneurysm. Among the numbers of therapeutic trials to prevent and ameliorate neurological deterioration due to SVS, removal or quenching of oxy-hemoglobin (OxyHb) from subarachnoid colts and administration of Mg(2+) (Mg) have especially been expected to be effective. In this report the authors investigated the effect of continuous cisternal irrigation (CCI) with mock CSF containing ascorbic acid (ASA) and Mg, performed after early surgery for ruptured aneurysm. METHOD Sixty-three cases which had received CCI were retrospectively compared with 40 control cases as to the incidence of SVS and outcome. FINDINGS Incidence of SVS was significantly less frequent (P < 0.05) in the CCI group (11%) than in the control group (25%). Severe and definitive SVS requiring additional specific treatment occurred only in 3.2% of the CCI group, while 22.5% in the control (P < 0.01). Overall outcome at discharge was significantly better in the CCI group than in the control (P < 0.01). CONCLUSIONS Postoperative CCI with ASA and Mg was definitively effective in preventing SVS and in lessening severity of SVS if it occurs.
Collapse
|
90
|
Abouhamed M, Grobe K, San IVLC, Thelen S, Honnert U, Balda MS, Matter K, Bähler M. Myosin IXa regulates epithelial differentiation and its deficiency results in hydrocephalus. Mol Biol Cell 2010; 20:5074-85. [PMID: 19828736 DOI: 10.1091/mbc.e09-04-0291] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ependymal multiciliated epithelium in the brain restricts the cerebrospinal fluid to the cerebral ventricles and regulates its flow. We report here that mice deficient for myosin IXa (Myo9a), an actin-dependent motor molecule with a Rho GTPase-activating (GAP) domain, develop severe hydrocephalus with stenosis and closure of the ventral caudal 3rd ventricle and the aqueduct. Myo9a is expressed in maturing ependymal epithelial cells, and its absence leads to impaired maturation of ependymal cells. The Myo9a deficiency further resulted in a distorted ependyma due to irregular epithelial cell morphology and altered organization of intercellular junctions. Ependymal cells occasionally delaminated, forming multilayered structures that bridged the CSF-filled ventricular space. Hydrocephalus formation could be significantly attenuated by the inhibition of the Rho-effector Rho-kinase (ROCK). Administration of ROCK-inhibitor restored maturation of ependymal cells, but not the morphological distortions of the ependyma. Similarly, down-regulation of Myo9a by siRNA in Caco-2 adenocarcinoma cells increased Rho-signaling and induced alterations in differentiation, cell morphology, junction assembly, junctional signaling, and gene expression. Our results demonstrate that Myo9a is a critical regulator of Rho-dependent and -independent signaling mechanisms that guide epithelial differentiation. Moreover, Rho-kinases may represent a new target for therapeutic intervention in some forms of hydrocephalus.
Collapse
Affiliation(s)
- Marouan Abouhamed
- Institute of General Zoology and Genetics, Westfalian Wilhelms University, 48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Satoh SI, Hitomi A, Ikegaki I, Kawasaki K, Nakazono O, Iwasaki M, Mohri M, Asano T. Amelioration of endothelial damage/dysfunction is a possible mechanism for the neuroprotective effects of Rho-kinase inhibitors against ischemic brain damage. Brain Res Bull 2010; 81:191-5. [PMID: 19723568 DOI: 10.1016/j.brainresbull.2009.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/17/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
Abstract
We investigated the neuroprotective effects of fasudil's active metabolite, hydroxyfasudil, a Rho-kinase inhibitor, in a rat stroke model in which endothelial damage and subsequent thrombotic occlusion were selectively induced in perforating arteries. By examining the effects on the endothelial damage/dysfunction, we thought to explore the mechanism of Rho-kinase inhibitors. Hydroxyfasudil (10mg/kg, i.p., once daily for 3 days) significantly improved neurological functions and reduced the size of the infarct area produced by internal carotid artery injection of sodium laurate in a rat cerebral microthrombosis model. Treatment with fasudil or hydroxyfasudil concentration-dependently inhibited tumor necrosis factor alpha-induced tissue factor expression on the surface of cultured human umbilical vein endothelial cells. They also inhibited thrombin-induced endothelial hyperpermeability. The present findings suggest that hydroxyfasudil is efficacious in preventing brain damage associated with cerebral ischemia, and is partially responsible for fasudil's cytoprotective potential. The results also suggest that the therapeutic benefits against ischemic injury of Rho-kinase inhibitors are attributed, at least in part, to activity upon endothelial damage/dysfunction.
Collapse
Affiliation(s)
- Shin-Ichi Satoh
- Research Center, Asahi Kasei Pharma Corporation 632-1, Mifuku, Izunokuni-shi, Shizuoka 410-2321, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Baptiste DC, Tighe A, Fehlings MG. Spinal cord injury and neural repair: focus on neuroregenerative approaches for spinal cord injury. Expert Opin Investig Drugs 2010; 18:663-73. [PMID: 19379122 DOI: 10.1517/13543780902897623] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND This review discusses the urgent need for improved therapeutic approaches aimed at restoring function following traumatic spinal cord injury (SCI). The focus of this paper is neuroregenerative approaches for SCI, with a highlighted comparison of recent advances in the field and comparisons to that made by Cethrin (Alseres Pharmaceuticals, Inc.), the leading nerve repair product. OBJECTIVE This review first provides the reader with an understanding of SCI. The market for promising therapeutics that can either intervene in secondary etiological mechanisms or ameliorate symptoms associated with SCI are then discussed. The reader will also learn about Cethrin and its current status in clinical evaluation. METHODS Review of the preclinical literature and clinical SCI trials relevant to the discovery and current development of Cethrin. RESULTS/CONCLUSION In a recently concluded Phase I/IIa clinical trial involving 37 patients with either cervical or thoracic SCIs, the evidence for Cethrin indicates that topical administration of either 0.3, 1, 3 or 6 mg of the recombinant rho inhibitor following surgical decompression is safe. Alseres has announced that planning is underway for a Phase IIB trial of Cethrin to include a placebo arm to assess better the drugs' clinical efficacy.
Collapse
Affiliation(s)
- Darryl C Baptiste
- University Health Network, Toronto Western Hospital, Toronto Western Research Institute, Krembil Neuroscience Centre, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
93
|
Schirok H, Paulsen H, Kroh W, Chen G, Gao P. Improved Synthesis of the Selective Rho-Kinase Inhibitor 6-Chloro-N4-{3,5-difluoro-4-[(3-methyl-1H-pyrrolo[2,3-b]pyridin-4-yl)oxy]phenyl}pyrimidin-2,4-diamine. Org Process Res Dev 2009. [DOI: 10.1021/op900260k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hartmut Schirok
- Bayer Schering Pharma AG, Medicinal Chemistry Wuppertal, 42096 Wuppertal, Germany, and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Holger Paulsen
- Bayer Schering Pharma AG, Medicinal Chemistry Wuppertal, 42096 Wuppertal, Germany, and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Walter Kroh
- Bayer Schering Pharma AG, Medicinal Chemistry Wuppertal, 42096 Wuppertal, Germany, and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Gang Chen
- Bayer Schering Pharma AG, Medicinal Chemistry Wuppertal, 42096 Wuppertal, Germany, and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Ping Gao
- Bayer Schering Pharma AG, Medicinal Chemistry Wuppertal, 42096 Wuppertal, Germany, and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| |
Collapse
|
94
|
Löhn M, Plettenburg O, Ivashchenko Y, Kannt A, Hofmeister A, Kadereit D, Schaefer M, Linz W, Kohlmann M, Herbert JM, Janiak P, O'Connor SE, Ruetten H. Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension 2009; 54:676-83. [PMID: 19597037 DOI: 10.1161/hypertensionaha.109.134353] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent advances in basic and clinical research have identified Rho kinase as an important target potentially implicated in a variety of cardiovascular diseases. Rho kinase is a downstream mediator of RhoA that leads to stress fiber formation, membrane ruffling, smooth muscle contraction, and cell motility. Increased Rho-kinase activity is associated with vasoconstriction and elevated blood pressure. We identified a novel inhibitor of Rho kinase (SAR407899) and characterized its effects in biochemical, cellular, tissue-based, and in vivo assays. SAR407899 is an ATP-competitive Rho-kinase inhibitor, equipotent against human and rat-derived Rho-kinase 2 with inhibition constant values of 36 nM and 41 nM, respectively. It is highly selective in panel of 117 receptor and enzyme targets. SAR407899 is approximately 8-fold more active than fasudil. In vitro, SAR407899 demonstrated concentration-dependent inhibition of Rho-kinase-mediated phosphorylation of myosin phosphatase, thrombin-induced stress fiber formation, platelet-derived growth factor-induced proliferation, and monocyte chemotactic protein-1-stimulated chemotaxis. SAR407899 potently (mean IC(50) values: 122 to 280 nM) and species-independently relaxed precontracted isolated arteries of different species and different vascular beds. In vivo, over the dose range 3 to 30 mg/kg PO, SAR407899 lowered blood pressure in a variety of rodent models of arterial hypertension. The antihypertensive effect of SAR407899 was superior to that of fasudil and Y-27632. In conclusion, SAR407899 is a novel and potent selective Rho-kinase inhibitor with promising antihypertensive activity.
Collapse
Affiliation(s)
- Matthias Löhn
- TD CV Pharmacology, Sanofi-Aventis, Industriepark Hoechst, Frankfurt am Main, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Shin HK, Salomone S, Ayata C. Targeting cerebrovascular Rho-kinase in stroke. Expert Opin Ther Targets 2009; 12:1547-64. [PMID: 19007322 DOI: 10.1517/14728220802539244] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Rho and Rho-associated kinase (ROCK) play pivotal roles in pathogenesis of vascular diseases including stroke. ROCK is expressed in all cell types relevant to stroke, and regulates a range of physiological processes. OBJECTIVE To provide an overview of ROCK as an experimental therapeutic target in cerebral ischemia, and the translational opportunities and obstacles in the prophylaxis and treatment of stroke. METHODS Relevant literature was reviewed. RESULTS ROCK activity is upregulated in chronic vascular risk factors such as diabetes, hyperlipidemia and hypertension, and more acutely by cerebral ischemia. ROCK activation is predicted to increase the risk of cerebral ischemia, and worsen the ischemic tissue outcome and functional recovery. Evidence suggests that ROCK inhibition is protective in models of cerebral ischemia. The benefit is mediated through multiple mechanisms. CONCLUSION ROCK is a promising therapeutic target in all stages of stroke.
Collapse
Affiliation(s)
- Hwa Kyoung Shin
- Pusan National University, Medical Research Center for Ischemic Tissue Regeneration, 10 Ami-dong, 1-Ga, Seo-Gu, Busan 602-739, Korea
| | | | | |
Collapse
|
96
|
Schirok H, Kast R, Figueroa-Pérez S, Bennabi S, Gnoth M, Feurer A, Heckroth H, Thutewohl M, Paulsen H, Knorr A, Hütter J, Lobell M, Münter K, Geiß V, Ehmke H, Lang D, Radtke M, Mittendorf J, Stasch JP. Design and Synthesis of Potent and Selective Azaindole-Based Rho Kinase (ROCK) Inhibitors. ChemMedChem 2008; 3:1893-904. [DOI: 10.1002/cmdc.200800211] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
97
|
Suzuki Y, Shibuya M, Satoh SI, Sugiyama H, Seto M, Takakura K. Safety and efficacy of fasudil monotherapy and fasudil-ozagrel combination therapy in patients with subarachnoid hemorrhage: sub-analysis of the post-marketing surveillance study. Neurol Med Chir (Tokyo) 2008; 48:241-7; discussion 247-8. [PMID: 18574328 DOI: 10.2176/nmc.48.241] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sub-analysis of the fasudil post-marketing surveillance study compared the safety and efficacy of fasudil plus ozagrel to fasudil only. A total of 3690 patients received fasudil and 1138 received fasudil plus ozagrel between 1995 and 2000. The occurrence of adverse events, occurrence of low density areas associated with vasospasm on computed tomography, absence of symptomatic vasospasm, and poor clinical outcomes associated with vasospasm were compared between the fasudil and fasudil plus ozagrel groups. The pharmacokinetics of fasudil were assessed in 5 patients with subarachnoid hemorrhage. The drug interaction between fasudil and ozagrel was pharmacologically investigated in vitro and in vivo. The occurrence of adverse events and clinical outcomes were similar between the two groups. The occurrences of symptomatic vasospasm and low density areas were lower in the fasudil group than in the fasudil plus ozagrel group. The average trough value (8-hour value) of the fasudil active metabolite, hydroxyfasudil, was 50 nM. Fasudil showed no pharmacological interaction with ozagrel. The combination of fasudil plus ozagrel was well tolerated, but did not result in better efficacy than fasudil only.
Collapse
Affiliation(s)
- Yoshio Suzuki
- Department of Neurosurgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2008. [DOI: 10.1002/pds.1485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
99
|
Abstract
ROCK kinases, which play central roles in the organization of the actin cytoskeleton, are tantalizing targets for the treatment of human diseases. Deletion of ROCK I in mice revealed a role in the pathophysiological responses to high blood pressure, and validated ROCK inhibition for the treatment of specific types of cardiovascular disease. To date, the only ROCK inhibitor employed clinically in humans is fasudil, which has been used safely in Japan since 1995 for the treatment of cerebral vasospasm. Clinical trials, mostly focusing on the cardiovascular system, have uncovered beneficial effects of fasudil for additional indications. Intriguing recent findings also suggest significant potential for ROCK inhibitors in the production and implantation of stem cells for disease therapies.
Collapse
Affiliation(s)
- Michael F Olson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
100
|
Satoh SI, Toshima Y, Hitomi A, Ikegaki I, Seto M, Asano T. Wide therapeutic time window for Rho-kinase inhibition therapy in ischemic brain damage in a rat cerebral thrombosis model. Brain Res 2007; 1193:102-8. [PMID: 18187127 DOI: 10.1016/j.brainres.2007.11.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/20/2007] [Accepted: 11/23/2007] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the influence of delayed Rho-kinase inhibition with fasudil on second ischemic injury in a rat cerebral thrombosis model. Cerebral ischemia was induced in rats by injecting 150 mug of sodium laurate into the left internal carotid artery on day 1. In the ischemic group, the regional cerebral blood flow (rCBF) was significantly decreased 6.5 h after the injection. Fasudil (3 mg/kg/30 min i.v. infusion) significantly increased rCBF. The viscosity of whole blood was significantly increased 48 h after the injection of sodium laurate. Fasudil (10 mg/kg, i.p.) significantly decreased blood viscosity. To clarify the therapeutic time window of fasudil, rats received their first i.p. administration of fasudil (10 mg/kg) 6 h after an injection of sodium laurate. Administration of fasudil twice daily was continued until day 4. Fasudil prevented the accumulation of neutrophils within the brain as seen from measurements taken on day 3, and improved neuronal functions and reduced the infarction area as seen on day 5. Fasudil and hydroxyfasudil, an active metabolite of fasudil, concentration-dependently inhibited phosphorylation of myosin binding subunit of myosin phosphatase in neutrophils. The present results indicate that inhibition of Rho-kinase activation with fasudil is effective for the treatment of ischemic brain damage with a wide therapeutic time window by improving hemodynamic function and preventing the inflammatory responses. These results suggest that fasudil will be a novel and efficacious approach for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Shin-ichi Satoh
- Research Center, Asahi Kasei Pharma Corporation 632-1, Mifuku, Izunokuni-shi, Shizuoka 410-2321, Japan.
| | | | | | | | | | | |
Collapse
|