51
|
Kesisova IA, Robinson BP, Spiliotis ET. A septin GTPase scaffold of dynein-dynactin motors triggers retrograde lysosome transport. J Cell Biol 2021; 220:211663. [PMID: 33416861 PMCID: PMC7802366 DOI: 10.1083/jcb.202005219] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/22/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The metabolic and signaling functions of lysosomes depend on their intracellular positioning and trafficking, but the underlying mechanisms are little understood. Here, we have discovered a novel septin GTPase-based mechanism for retrograde lysosome transport. We found that septin 9 (SEPT9) associates with lysosomes, promoting the perinuclear localization of lysosomes in a Rab7-independent manner. SEPT9 targeting to mitochondria and peroxisomes is sufficient to recruit dynein and cause perinuclear clustering. We show that SEPT9 interacts with both dynein and dynactin through its GTPase domain and N-terminal extension, respectively. Strikingly, SEPT9 associates preferentially with the dynein intermediate chain (DIC) in its GDP-bound state, which favors dimerization and assembly into septin multimers. In response to oxidative cell stress induced by arsenite, SEPT9 localization to lysosomes is enhanced, promoting the perinuclear clustering of lysosomes. We posit that septins function as GDP-activated scaffolds for the cooperative assembly of dynein-dynactin, providing an alternative mechanism of retrograde lysosome transport at steady state and during cellular adaptation to stress.
Collapse
|
52
|
Wang K, Liu Y, Liu C, Zhu H, Li X, Zhang F, Gao N, Pang X, Sheng W, Zhu B. A simple pyridine-based highly specific fluorescent probe for tracing hypochlorous acid in lysosomes of living cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj02256c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A simple pyridine-based highly specific fluorescent probe was constructed to trace hypochlorous acid in lysosomes of living cells.
Collapse
Affiliation(s)
- Kun Wang
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Yilin Liu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Caiyun Liu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Xiwei Li
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Fenfen Zhang
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Na Gao
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Xiangming Pang
- Biology Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250103
- China
| | - Wenlong Sheng
- Biology Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250103
- China
| | - Baocun Zhu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
- Key Laboratory of Molecular and Nano Probes
| |
Collapse
|
53
|
Gao Y, Xu A, Shen Q, Xie Y, Liu S, Wang X. Graphene oxide aggravated dextran sulfate sodium-induced colitis through intestinal epithelial cells autophagy dysfunction. J Toxicol Sci 2021; 46:43-55. [PMID: 33408300 DOI: 10.2131/jts.46.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Graphene oxide (GO) is one of the most promising nanomaterials used in biomedicine. However, studies about its adverse effects on the intestine in state of inflammation remain limited. This study aimed to explore the underlying effects of GO on intestinal epithelial cells (IECs) in vitro and colitis in vivo. We found that GO could exert toxic effects on NCM460 cells in a dose- and time-dependent manner and promote inflammation. Furthermore, GO caused lysosomal dysfunction and then blockaded autophagy flux. Moreover, pharmacological autophagy inhibitor 3-Methyladenine could reverse GO-induced LC3B and p62 expression levels, reduce expression levels of IL-6, IL-8, TLR4, and CXCL2, and increase the level of IL-10. In vivo, C57BL/6 mice were treated with 2.5% dextran sulfate sodium (DSS) in drinking water for five consecutive days to induce colitis. Then, GO at 60 mg/kg dose was administered through the oral route every two days from day 2 to day 8. These results showed that GO aggravated DSS-induced colitis, characterized by shortening of the colon and severe pathological changes, and induced autophagy. In conclusion, GO caused the abnormal autophagy in IECs and exacerbated DSS-induced colitis in mice. Our research indicated that GO may contribute to the development of intestinal inflammation by inducing IECs autophagy dysfunction.
Collapse
Affiliation(s)
- Yanfei Gao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Angao Xu
- Huizhou Medicine Institute, China
| | - Qiong Shen
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Yue Xie
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Siliang Liu
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Xinying Wang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| |
Collapse
|
54
|
Paik S, Jo EK. An Interplay Between Autophagy and Immunometabolism for Host Defense Against Mycobacterial Infection. Front Immunol 2020; 11:603951. [PMID: 33262773 PMCID: PMC7688515 DOI: 10.3389/fimmu.2020.603951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy, an intracellular catabolic pathway featuring lysosomal degradation, is a central component of the host immune defense against various infections including Mycobacterium tuberculosis (Mtb), the pathogen that causes tuberculosis. Mtb can evade the autophagic defense and drive immunometabolic remodeling of host phagocytes. Co-regulation of the autophagic and metabolic pathways may play a pivotal role in shaping the innate immune defense and inflammation during Mtb infection. Two principal metabolic sensors, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) kinase, function together to control the autophagy and immunometabolism that coordinate the anti-mycobacterial immune defense. Here, we discuss our current understanding of the interplay between autophagy and immunometabolism in terms of combating intracellular Mtb, and how AMPK-mTOR signaling regulates antibacterial autophagy in terms of Mtb infection. We describe several autophagy-targeting agents that promote host antimicrobial defenses by regulating the AMPK-mTOR axis. A better understanding of the crosstalk between immunometabolism and autophagy, both of which are involved in host defense, is crucial for the development of innovative targeted therapies for tuberculosis.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
55
|
Shen Y, Hao X. Natural product sciences: an integrative approach to the innovations of plant natural products. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1634-1650. [PMID: 32955660 PMCID: PMC7504874 DOI: 10.1007/s11427-020-1799-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/11/2020] [Indexed: 01/24/2023]
Abstract
The study on plant natural products not only helps us understand that their structural diversity is the inevitable result of plant species diversity, but also helps us understand certain rules and unity of the inevitable connection between the two. The diversity and complexity of chemical structures of many natural products are beyond imagination before we elucidated their structures. The question that follows is what is the biological significance of these natural products. Intrigued by the relationship between plant resources, natural products and biological functions, the Hao laboratory has taken an integrative approach that employs tools and knowledge from multi-disciplines, including natural product chemistry, chemical ecology and chemical biology, to unveil the effects of plant natural products on plant resistance to diseases, and environmental acclimations. Collaborating with cell biologists, the research has resulted in discovery of new mechanisms of cellular signaling and lead compounds.
Collapse
Affiliation(s)
- Yuemao Shen
- Key Laboratory of Chemical Biology of Natural Products, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
56
|
Zhu SY, Yao RQ, Li YX, Zhao PY, Ren C, Du XH, Yao YM. Lysosomal quality control of cell fate: a novel therapeutic target for human diseases. Cell Death Dis 2020; 11:817. [PMID: 32999282 PMCID: PMC7528093 DOI: 10.1038/s41419-020-03032-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
In eukaryotic cells, lysosomes are digestive centers where biological macromolecules are degraded by phagocytosis and autophagy, thereby maintaining cellular self-renewal capacity and energy supply. Lysosomes also serve as signaling hubs to monitor the intracellular levels of nutrients and energy by acting as platforms for the assembly of multiple signaling pathways, such as mammalian target of rapamycin complex 1 (mTORC1) and adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK). The structural integrity and functional balance of lysosomes are essential for cell function and viability. In fact, lysosomal damage not only disrupts intracellular clearance but also results in the leakage of multiple contents, which pose great threats to the cell by triggering cell death pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis. The collapse of lysosomal homeostasis is reportedly critical for the pathogenesis and development of various diseases, such as tumors, neurodegenerative diseases, cardiovascular diseases, and inflammatory diseases. Lysosomal quality control (LQC), comprising lysosomal repair, lysophagy, and lysosomal regeneration, is rapidly initiated in response to lysosomal damage to maintain lysosomal structural integrity and functional homeostasis. LQC may be a novel but pivotal target for disease treatment because of its indispensable role in maintaining intracellular homeostasis and cell fate.
Collapse
Affiliation(s)
- Sheng-Yu Zhu
- Trauma Research Center, Fourth Medical Center and Medical Innovation Research Division of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China.,Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, 100853, Beijing, People's Republic of China.,School of Medicine, Nankai University, 300071, Tianjin, People's Republic of China
| | - Ren-Qi Yao
- Trauma Research Center, Fourth Medical Center and Medical Innovation Research Division of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China.,Department of Burn Surgery, Changhai Hospital, Naval Medical University, 200433, Shanghai, People's Republic of China
| | - Yu-Xuan Li
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, 100853, Beijing, People's Republic of China
| | - Peng-Yue Zhao
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, 100853, Beijing, People's Republic of China
| | - Chao Ren
- Trauma Research Center, Fourth Medical Center and Medical Innovation Research Division of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China.
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, 100853, Beijing, People's Republic of China.
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center and Medical Innovation Research Division of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China.
| |
Collapse
|
57
|
Nielsen IØ, Groth-Pedersen L, Dicroce-Giacobini J, Jonassen ASH, Mortensen M, Bilgin M, Schmiegelow K, Jäättelä M, Maeda K. Cationic amphiphilic drugs induce elevation in lysoglycerophospholipid levels and cell death in leukemia cells. Metabolomics 2020; 16:91. [PMID: 32851548 DOI: 10.1007/s11306-020-01710-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Repurposing of cationic amphiphilic drugs (CADs) emerges as an attractive therapeutic solution against various cancers, including leukemia. CADs target lysosomal lipid metabolism and preferentially kill cancer cells via induction of lysosomal membrane permeabilization, but the exact effects of CADs on the lysosomal lipid metabolism remain poorly illuminated. OBJECTIVES We aimed to systematically monitor CAD-induced alterations in the quantitative lipid profiles of leukemia cell lines in order to chart effects of CADs on the metabolism of various lipid classes present in these cells. METHODS We conducted this study on eight cultured cell lines representing two leukemia types, acute lymphoblastic leukemia and acute myeloid leukemia. Mass spectrometry-based quantitative shotgun lipidomics was employed to quantify the levels of around 400 lipid species of 26 lipid classes in the leukemia cell lines treated or untreated with a CAD, siramesine. RESULTS The two leukemia types displayed high, but variable sensitivities to CADs and distinct profiles of cellular lipids. Treatment with siramesine rapidly altered the levels of diverse lipid classes in both leukemia types. These included sphingolipid classes previously reported to play key roles in CAD-induced cell death, but also lipids of other categories. We demonstrated that the treatment with siramesine additionally elevated the levels of numerous cytolytic lysoglycerophospholipids in positive correlation with the sensitivity of individual leukemia cell lines to siramesine. CONCLUSIONS Our study shows that CAD treatment alters balance in the metabolism of glycerophospholipids, and proposes elevation in the levels of lysoglycerophospholipids as part of the mechanism leading to CAD-induced cell death of leukemia cells.
Collapse
Affiliation(s)
- Inger Ødum Nielsen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Line Groth-Pedersen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Jano Dicroce-Giacobini
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Anna Sofie Holm Jonassen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Monika Mortensen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Mesut Bilgin
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Juliane Marie Centre, Rigshospitalet University Hospital, 2100, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Kenji Maeda
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark.
| |
Collapse
|
58
|
Pang C, Song C, Li Y, Wang Q, Zhu X, Wu J, Tian Y, Fan H, Hu J, Li C, Wang B, Li X, Liu W, Fan L. The Establishment and Application Studies on Precise Lysosome pH Indicator Based on Self-Decomposable Nanoparticles. NANOSCALE RESEARCH LETTERS 2020; 15:143. [PMID: 32642882 PMCID: PMC7343700 DOI: 10.1186/s11671-020-03367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Acidic pH of lysosomes is closely related to autophagy; thus, well known of the precise lysosomes, pH changes will give more information on the autophagy process and status. So far, however, only pH changes in a relatively broad range could be indicated, the exact lysosomes pH detection has never arrived. In our study, we established an endo/lysosome pH indicator based on the self-decomposable SiO2 nanoparticle system with specific synthesis parameters. The central concentrated methylene blue (MB) in the central-hollow structural nanoparticles presented sensitive release as a function of pH values from pH 4.0-4.8, which is exactly the pH range of lysosomes. The linear correlation of the optical density (OD) values and the pH values has been built up, which has been used for the detection of lysosomes pH in 6 different cell lines. Moreover, by this system, we succeeded in precisely detecting the pH average changes of lysosomes before and after black mesoporous silicon (BPSi) NP endocytosis, clarifying the mechanism of the autophagy termination after BPSi endocytosis. So, the self-decomposable nanoparticle-based luminal pH indicator may provide a new methodology and strategy to know better of the lysosome pH, then indicate more details on the autophagy process or other important signaling about metabolisms.
Collapse
Affiliation(s)
- Cui Pang
- Department of Oncology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Chaojun Song
- School of Life Science, Northwestern Polytechnic University, 127th Youyi West Road, Xi'an, 710072, Shaanxi, China
| | - Yize Li
- Department of Oncology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Qiaofeng Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaosheng Zhu
- Department of Oncology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jianwei Wu
- Department of Oncology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yi Tian
- Department of Oncology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Hao Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jinwei Hu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Chen Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Baolong Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaoye Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenchao Liu
- Department of Oncology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Li Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
59
|
Julian LM, Stanford WL. Organelle Cooperation in Stem Cell Fate: Lysosomes as Emerging Regulators of Cell Identity. Front Cell Dev Biol 2020; 8:591. [PMID: 32733892 PMCID: PMC7358313 DOI: 10.3389/fcell.2020.00591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
Regulation of stem cell fate is best understood at the level of gene and protein regulatory networks, though it is now clear that multiple cellular organelles also have critical impacts. A growing appreciation for the functional interconnectedness of organelles suggests that an orchestration of integrated biological networks functions to drive stem cell fate decisions and regulate metabolism. Metabolic signaling itself has emerged as an integral regulator of cell fate including the determination of identity, activation state, survival, and differentiation potential of many developmental, adult, disease, and cancer-associated stem cell populations and their progeny. As the primary adenosine triphosphate-generating organelles, mitochondria are well-known regulators of stem cell fate decisions, yet it is now becoming apparent that additional organelles such as the lysosome are important players in mediating these dynamic decisions. In this review, we will focus on the emerging role of organelles, in particular lysosomes, in the reprogramming of both metabolic networks and stem cell fate decisions, especially those that impact the determination of cell identity. We will discuss the inter-organelle interactions, cell signaling pathways, and transcriptional regulatory mechanisms with which lysosomes engage and how these activities impact metabolic signaling. We will further review recent data that position lysosomes as critical regulators of cell identity determination programs and discuss the known or putative biological mechanisms. Finally, we will briefly highlight the potential impact of elucidating mechanisms by which lysosomes regulate stem cell identity on our understanding of disease pathogenesis, as well as the development of refined regenerative medicine, biomarker, and therapeutic strategies.
Collapse
Affiliation(s)
- Lisa M. Julian
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - William L. Stanford
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
60
|
Zhao Q, Gao SM, Wang MC. Molecular Mechanisms of Lysosome and Nucleus Communication. Trends Biochem Sci 2020; 45:978-991. [PMID: 32624271 DOI: 10.1016/j.tibs.2020.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Lysosomes transcend the role of degradation stations, acting as key nodes for interorganelle crosstalk and signal transduction. Lysosomes communicate with the nucleus through physical proximity and functional interaction. In response to external and internal stimuli, lysosomes actively adjust their distribution between peripheral and perinuclear regions and modulate lysosome-nucleus signaling pathways; in turn, the nucleus fine-tunes lysosomal biogenesis and functions through transcriptional controls. Changes in coordination between these two essential organelles are associated with metabolic disorders, neurodegenerative diseases, and aging. In this review, we address recent advances in lysosome-nucleus communication by multi-tiered regulatory mechanisms and discuss how these regulations couple metabolic inputs with organellar motility, cellular signaling, and transcriptional network.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shihong Max Gao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
61
|
Miao ZF, Adkins-Threats M, Burclaff JR, Osaki LH, Sun JX, Kefalov Y, He Z, Wang ZN, Mills JC. A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation. Cell Stem Cell 2020; 26:910-925.e6. [PMID: 32243780 DOI: 10.1016/j.stem.2020.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Cellular metabolism plays important functions in dictating stem cell behaviors, although its role in stomach epithelial homeostasis has not been evaluated in depth. Here, we show that the energy sensor AMP kinase (AMPK) governs gastric epithelial progenitor differentiation. Administering the AMPK activator metformin decreases epithelial progenitor proliferation and increases acid-secreting parietal cells (PCs) in mice and organoids. AMPK activation targets Krüppel-like factor 4 (KLF4), known to govern progenitor proliferation and PC fate choice, and PGC1α, which we show controls PC maturation after their specification. PC-specific deletion of AMPKα or PGC1α causes defective PC maturation, which could not be rescued by metformin. However, metformin treatment still increases KLF4 levels and suppresses progenitor proliferation. Thus, AMPK activates KLF4 in progenitors to reduce self-renewal and promote PC fate, whereas AMPK-PGC1α activation within the PC lineage promotes maturation, providing a potential suggestion for why metformin increases acid secretion and reduces gastric cancer risk in humans.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Mahliyah Adkins-Threats
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph R Burclaff
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Luciana H Osaki
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing-Xu Sun
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Yan Kefalov
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zheng He
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
62
|
Qi W, Zhou X, Wang J, Zhang K, Zhou Y, Chen S, Nie S, Xie M. Cordyceps sinensis polysaccharide inhibits colon cancer cells growth by inducing apoptosis and autophagy flux blockage via mTOR signaling. Carbohydr Polym 2020; 237:116113. [PMID: 32241434 DOI: 10.1016/j.carbpol.2020.116113] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Cordyceps sinensis is thought to have anti-cancer effects, but its mechanisms remain elusive. In this study, we aimed to investigate the anti-cancer effect of Cordyceps sinensis polysaccharide (CSP) on human colon cancer cell line (HCT116) and its mechanism. Results indicated that CSP significantly inhibited the proliferation of HCT116 cells, increased autophagy and apoptosis, while blocked autophagy flux and lysosome formation. Further experiments showed that CSP decreased the expression of PI3K and phosphorylation level of AKT and mTOR, increased the expression of AMPKa and phosphorylation level of ULK1. In addition, repression of CSP-induced autophagy by bafilomycin (autophagy inhibitor) enhanced apoptosis and cell death of HCT116 cells. Hence, our findings suggested that CSP inhibited the proliferation of HCT116 cells by inducing apoptosis and autophagy flux blockage, which might be achieved through PI3K-AKT-mTOR and AMPK-mTOR-ULK1 signaling. CSP may be a potential therapeutic agent for colon cancer.
Collapse
Affiliation(s)
- Wucheng Qi
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi, 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi, 330047, China.
| | - Junqiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi, 330047, China
| | - Ke Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi, 330047, China
| | - Yujia Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi, 330047, China
| | - Shuping Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi, 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi, 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi, 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| |
Collapse
|
63
|
Liu C, Liu X, Ge X, Wang Q, Zhang L, Shang W, Zhang Y, Yuan XA, Tian L, Liu Z, You J. Fluorescent iridium(iii) coumarin-salicylaldehyde Schiff base compounds as lysosome-targeted antitumor agents. Dalton Trans 2020; 49:5988-5998. [DOI: 10.1039/d0dt00627k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescent iridium(iii) coumarin-salicylaldehyde Schiff base antitumor compounds change the ROS and ΔΨm, induce lysosomal damage, and lead to apoptosis.
Collapse
|