51
|
Schrewe M, Julsing MK, Bühler B, Schmid A. Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev 2014; 42:6346-77. [PMID: 23475180 DOI: 10.1039/c3cs60011d] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the last decades, biocatalysis became of increasing importance for chemical and pharmaceutical industries. Regarding regio- and stereospecificity, enzymes have shown to be superior compared to traditional chemical synthesis approaches, especially in C-O functional group chemistry. Catalysts established on a process level are diverse and can be classified along a functional continuum starting with single-step biotransformations using isolated enzymes or microbial strains towards fermentative processes with recombinant microorganisms containing artificial synthetic pathways. The complex organization of respective enzymes combined with aspects such as cofactor dependency and low stability in isolated form often favors the use of whole cells over that of isolated enzymes. Based on an inventory of the large spectrum of biocatalytic C-O functional group chemistry, this review focuses on highlighting the potentials, limitations, and solutions offered by the application of self-regenerating microbial cells as biocatalysts. Different cellular functionalities are discussed in the light of their (possible) contribution to catalyst efficiency. The combined achievements in the areas of protein, genetic, metabolic, and reaction engineering enable the development of whole-cell biocatalysts as powerful tools in organic synthesis.
Collapse
Affiliation(s)
- Manfred Schrewe
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
52
|
|
53
|
Tran NH, Nguyen D, Dwaraknath S, Mahadevan S, Chavez G, Nguyen A, Dao T, Mullen S, Nguyen TA, Cheruzel LE. An efficient light-driven P450 BM3 biocatalyst. J Am Chem Soc 2013; 135:14484-7. [PMID: 24040992 DOI: 10.1021/ja409337v] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
P450s are heme thiolate enzymes that catalyze the regio- and stereoselective functionalization of unactivated C-H bonds using molecular dioxygen and two electrons delivered by the reductase. We have developed hybrid P450 BM3 heme domains containing a covalently attached Ru(II) photosensitizer in order to circumvent the dependency on the reductase and perform P450 reactions upon visible light irradiation. A highly active hybrid enzyme with improved stability and a modified Ru(II) photosensitizer is able to catalyze the light-driven hydroxylation of lauric acid with total turnover numbers of 935 and initial reaction rate of 125 mol product/(mol enzyme/min).
Collapse
Affiliation(s)
- Ngoc-Han Tran
- Department of Chemistry, San José State University , One Washington Square, San José, California 95192-0101, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Ley C, Schewe H, Ströhle FW, Ruff AJ, Schwaneberg U, Schrader J, Holtmann D. Coupling of electrochemical and optical measurements in a microtiter plate for the fast development of electro enzymatic processes with P450s. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
55
|
Müller CA, Akkapurathu B, Winkler T, Staudt S, Hummel W, Gröger H, Schwaneberg U. In VitroDouble Oxidation ofn-Heptane with Direct Cofactor Regeneration. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300143] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
56
|
Urbanova V, Kohring GW, Klein T, Wang Z, Mert O, Emrullahoglu M, Buran K, Demir AS, Etienne M, Walcarius A. Sol-gel Approaches for Elaboration of Polyol Dehydrogenase-Based Bioelectrodes. ACTA ACUST UNITED AC 2013. [DOI: 10.1524/zpch.2013.0324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
This review describes the input of sol-gel chemistry to the immobilization of polyol dehydrogenases on electrodes, for applications in bioelectrocatalysis. The polyol dehydrogenases are described and their application for biosensing, biofuel cell and electrosynthesis are briefly discussed. The immobilization of proteins via sol-gel approaches is described, including a discussion on the difficulty to maintain the activity of proteins in a silica matrix and the strategies developed to offer a proper environment to the proteins by developing optimal organic-inorganic hybrid materials. Finally, the co-immobilization of the NAD
+
co-factor and of mediators for the elaboration of reagentless devices is presented, based on published and original data. All-in-all, sol-gel approaches appear to be a very promising for development of original electrochemical applications involving dehydrogenases in near future.
Collapse
Affiliation(s)
- Veronika Urbanova
- CNRS and Université de Lorraine, Lab. de Chimie Physique et Microbiologie, Villers-les-Nancy, Frankreich
| | | | - Tobias Klein
- Saarland University, Microbiology, Saarbrücken, Deutschland
| | - Zhijie Wang
- CNRS and Université de Lorraine, Lab. de Chimie Physique et Microbiologie, Villers-les-Nancy, Frankreich
| | - Olcay Mert
- Middle East Technical University, Department of Chemistry, Ankara, Türkei
| | | | - Kerem Buran
- Middle East Technical University, Department of Chemistry, Ankara, Türkei
| | - Ayhan S. Demir
- Middle East Technical University, Department of Chemistry, Ankara, Türkei
| | | | - Alain Walcarius
- CNRS and Université de Lorraine, Lab. de Chemie Physique et Microbiologie, Villers-les-Nancy, Frankreich
| |
Collapse
|
57
|
|
58
|
Ströhle FW, Cekic SZ, Magnusson AO, Schwaneberg U, Roccatano D, Schrader J, Holtmann D. A computational protocol to predict suitable redox mediators for substitution of NAD(P)H in P450 monooxygenases. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
59
|
Lee SH, Kim JH, Park CB. Coupling Photocatalysis and Redox Biocatalysis Toward Biocatalyzed Artificial Photosynthesis. Chemistry 2013; 19:4392-406. [DOI: 10.1002/chem.201204385] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
60
|
Tauber K, Fuchs M, Sattler JH, Pitzer J, Pressnitz D, Koszelewski D, Faber K, Pfeffer J, Haas T, Kroutil W. Artificial Multi-Enzyme Networks for the Asymmetric Amination ofsec-Alcohols. Chemistry 2013; 19:4030-5. [DOI: 10.1002/chem.201202666] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/19/2012] [Indexed: 12/12/2022]
|
61
|
Di Nardo G, Gilardi G. Optimization of the bacterial cytochrome P450 BM3 system for the production of human drug metabolites. Int J Mol Sci 2012; 13:15901-24. [PMID: 23443101 PMCID: PMC3546669 DOI: 10.3390/ijms131215901] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/01/2012] [Accepted: 11/13/2012] [Indexed: 12/28/2022] Open
Abstract
Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported.
Collapse
Affiliation(s)
- Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy; E-Mail:
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy; E-Mail:
| |
Collapse
|
62
|
Köhler V, Wilson YM, Dürrenberger M, Ghislieri D, Churakova E, Quinto T, Knörr L, Häussinger D, Hollmann F, Turner NJ, Ward TR. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat Chem 2012; 5:93-9. [DOI: 10.1038/nchem.1498] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/10/2012] [Indexed: 12/22/2022]
|
63
|
Lee SH, Lee HJ, Won K, Park CB. Artificial electron carriers for photoenzymatic synthesis under visible light. Chemistry 2012; 18:5490-5. [PMID: 22488767 DOI: 10.1002/chem.201200281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Indexed: 11/11/2022]
Abstract
NAD analogues can be employed as artificial electron carriers for photoenzymatic synthesis under visible light. Four different NAD analogues that have a 3-substituted pyridine ring have been investigated. 3-Acetylpyridine adenine dinucleotide and 3-pyridinealdehyde adenine dinucleotide were photochemically reduced much more efficiently than NAD, while their reduced products showed coenzyme activity comparable to natural NAD.
Collapse
Affiliation(s)
- Sahng Ha Lee
- KAIST Institute for the BioCentury, Department of Materials Science and Engineering, Daejeon, Republic of Korea
| | | | | | | |
Collapse
|
64
|
Burai TN, Panay AJ, Zhu H, Lian T, Lutz S. Light-Driven, Quantum Dot-Mediated Regeneration of FMN To Drive Reduction of Ketoisophorone by Old Yellow Enzyme. ACS Catal 2012. [DOI: 10.1021/cs300085h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tarak Nath Burai
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Aram Joel Panay
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Haiming Zhu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
65
|
Kochius S, Magnusson AO, Hollmann F, Schrader J, Holtmann D. Immobilized redox mediators for electrochemical NAD(P)+ regeneration. Appl Microbiol Biotechnol 2012; 93:2251-64. [PMID: 22327354 DOI: 10.1007/s00253-012-3900-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
Abstract
The applicability of dissolved redox mediators for NAD(P)(+) regeneration has been demonstrated several times. Nevertheless, the use of mediators in solutions for sensor applications is not a very convenient strategy since the analysis is not reagentless and long stabilization times occur. The most important drawbacks of dissolved mediators in biocatalytic applications are interferences during product purification, limited reusability of the mediators, and their cost-intensive elimination from wastewater. Therefore, the use of immobilized mediators has both economic and ecological advantages. This work critically reviews the current state-of-art of immobilized redox mediators for electrochemical NAD(P)(+) regeneration. Various surface modification techniques, such as adsorption polymerization and covalent linkage, as well as the corresponding NAD(P)(+) regeneration rates and the operational stability of the immobilized mediator films, will be discussed. By comparison with other existing regeneration systems, the technical potential and future perspectives of biocatalytic redox reactions based on electrochemically fed immobilized mediators will be assessed.
Collapse
|
66
|
Bernard J, van Heerden E, Arends IWCE, Opperman DJ, Hollmann F. Chemoenzymatic Reduction of Conjugated CC Double Bonds. ChemCatChem 2011. [DOI: 10.1002/cctc.201100312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
67
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
68
|
Ricca E, Brucher B, Schrittwieser JH. Multi-Enzymatic Cascade Reactions: Overview and Perspectives. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100256] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
69
|
Hartog AF, van Herk T, Wever R. Efficient Regeneration of NADPH in a 3-Enzyme Cascade Reaction by in situ Generation of Glucose 6-Phosphate from Glucose and Pyrophosphate. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
70
|
Leisch H, Morley K, Lau PCK. Baeyer−Villiger Monooxygenases: More Than Just Green Chemistry. Chem Rev 2011; 111:4165-222. [DOI: 10.1021/cr1003437] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
71
|
Ryu J, Lee SH, Nam DH, Park CB. Rational design and engineering of quantum-dot-sensitized TiO₂ nanotube arrays for artificial photosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:1883-8. [PMID: 21509828 DOI: 10.1002/adma.201004576] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Indexed: 05/21/2023]
Affiliation(s)
- Jungki Ryu
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | | | | | | |
Collapse
|
72
|
Lee SH, Ryu J, Nam DH, Park CB. Photoenzymatic synthesis through sustainable NADH regeneration by SiO2-supported quantum dots. Chem Commun (Camb) 2011; 47:4643-5. [PMID: 21336344 DOI: 10.1039/c0cc05246a] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sustainable photochemical NADH regeneration and redox-enzymatic synthesis are accomplished by using CdS nanocrystals grown on the surface of SiO(2) beads. CdS nanocrystals grown on SiO(2) beads worked efficiently as a visible-light absorbing photocatalyst for in situ NADH regeneration with high catalytic activity and minimal loss of activity despite repeated uses.
Collapse
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Science Road 335, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | |
Collapse
|
73
|
de Gonzalo G, Mihovilovic MD, Fraaije MW. Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts. Chembiochem 2011; 11:2208-31. [PMID: 20936617 DOI: 10.1002/cbic.201000395] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) represent a specific class of monooxygenases that are capable of catalyzing a variety of oxidation reactions, including Baeyer-Villiger oxidations. The recently elucidated BVMO crystal structures have provided a more detailed insight into the complex mechanism of these flavin-containing enzymes. Biocatalytic studies on a number of newly discovered BVMOs have shown that they are very potent oxidative biocatalysts. In addition to catalyzing the regio- and enantioselective Baeyer-Villiger oxidations of a wide range of carbonylic compounds, epoxidations, and enantioselective sulfoxidations have also been shown to be part of their catalytic repertoire. This review provides an overview on the recent developments in BVMO-mediated biocatalytic processes, identification of the catalytic role of these enzymes in metabolic routes and prodrug activation, as well as the efforts in developing effective biocatalytic methodologies to apply BVMOs for the synthesis of high added value compounds.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Laboratory of Biochemistry, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
74
|
de Gonzalo G, Smit C, Jin J, Minnaard AJ, Fraaije MW. Turning a riboflavin-binding protein into a self-sufficient monooxygenase by cofactor redesign. Chem Commun (Camb) 2011; 47:11050-2. [DOI: 10.1039/c1cc14039f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
75
|
O'Reilly E, Köhler V, Flitsch SL, Turner NJ. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun (Camb) 2011; 47:2490-501. [DOI: 10.1039/c0cc03165h] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
76
|
Meeuwissen SA, Rioz-Martínez A, de Gonzalo G, Fraaije MW, Gotor V, van Hest JCM. Cofactor regeneration in polymersome nanoreactors: enzymatically catalysed Baeyer–Villiger reactions. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12407b] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
77
|
Lim D, Kim YH, Joo JC, Yoo YJ. Electroenzymatic synthesis of (S)-styrene oxide employing zinc oxide/carbon black composite electrode. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
78
|
|
79
|
Hollmann F, Arends I, Buehler K. Biocatalytic Redox Reactions for Organic Synthesis: Nonconventional Regeneration Methods. ChemCatChem 2010. [DOI: 10.1002/cctc.201000069] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
80
|
On the nature of mutual inactivation between [Cp*Rh(bpy)(H2O)]2+ and enzymes – analysis and potential remedies. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.01.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
81
|
Artificial self-sufficient P450 in reversed micelles. Molecules 2010; 15:2935-48. [PMID: 20657456 PMCID: PMC6257473 DOI: 10.3390/molecules15052935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/14/2010] [Accepted: 04/23/2010] [Indexed: 11/17/2022] Open
Abstract
Cytochrome P450s are heme-containing monooxygenases that require electron transfer proteins for their catalytic activities. They prefer hydrophobic compounds as substrates and it is, therefore, desirable to perform their reactions in non-aqueous media. Reversed micelles can stably encapsulate proteins in nano-scaled water pools in organic solvents. However, in the reversed micellar system, when multiple proteins are involved in a reaction they can be separated into different micelles and it is then difficult to transfer electrons between proteins. We show here that an artificial self-sufficient cytochrome P450, which is an enzymatically crosslinked fusion protein composed of P450 and electron transfer proteins, showed micelle-size dependent catalytic activity in a reversed micellar system. Furthermore, the presence of thermostable alcohol dehydrogenase promoted the P450-catalyzed reaction due to cofactor regeneration.
Collapse
|
82
|
Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. J Biotechnol 2010; 146:9-24. [PMID: 20132846 DOI: 10.1016/j.jbiotec.2010.01.021] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/22/2010] [Accepted: 01/25/2010] [Indexed: 12/29/2022]
Abstract
Monooxygenases are enzymes that catalyze the insertion of a single oxygen atom from O(2) into an organic substrate. In order to carry out this type of reaction, these enzymes need to activate molecular oxygen to overcome its spin-forbidden reaction with the organic substrate. In most cases, monooxygenases utilize (in)organic cofactors to transfer electrons to molecular oxygen for its activation. Monooxygenases typically are highly chemo-, regio-, and/or enantioselective, making them attractive biocatalysts. In this review, an exclusive overview of known monooxygenases is presented, based on the type of cofactor that these enzymes require. This includes not only the cytochrome P450 and flavin-dependent monooxygenases, but also enzymes that utilize pterin, metal ions (copper or iron) or no cofactor at all. As most of these monooxygenases require nicotinamide coenzymes as electron donors, also an overview of current methods for coenzyme regeneration is given. This latter overview is of relevance for the biotechnological applications of these oxidative enzymes.
Collapse
|
83
|
Torres Pazmiño DE, Riebel A, de Lange J, Rudroff F, Mihovilovic MD, Fraaije MW. Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer-Villiger monooxygenases. Chembiochem 2010; 10:2595-8. [PMID: 19795432 DOI: 10.1002/cbic.200900480] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel E Torres Pazmiño
- Laboratory of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
84
|
Rioz-Martínez A, Bisogno FR, Rodríguez C, de Gonzalo G, Lavandera I, Torres Pazmiño DE, Fraaije MW, Gotor V. Biocatalysed concurrent production of enantioenriched compounds through parallel interconnected kinetic asymmetric transformations. Org Biomol Chem 2010; 8:1431-7. [DOI: 10.1039/b925377g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
85
|
Grau MM, Poizat M, Arends IWCE, Hollmann F. Phosphite-driven, [Cp*Rh(bpy)(H2O)]2+-catalyzed reduction of nicotinamide and flavin cofactors: characterization and application to promote chemoenzymatic reduction reactions. Appl Organomet Chem 2010. [DOI: 10.1002/aoc.1623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
86
|
Stueckler C, Reiter TC, Baudendistel N, Faber K. Nicotinamide-independent asymmetric bioreduction of CC-bonds via disproportionation of enones catalyzed by enoate reductases. Tetrahedron 2010; 66:663-667. [PMID: 21270958 PMCID: PMC3007678 DOI: 10.1016/j.tet.2009.11.065] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 11/17/2022]
Abstract
The asymmetric bioreduction of activated CC-bonds catalyzed by a single flavoprotein was achieved via direct hydrogen transfer from a sacrificial 2-enone or 1,4-dione as hydrogen donor without requirement of a nicotinamide cofactor. Due to its simplicity, this system has clear advantages over conventional FAD-recycling systems.
Collapse
Affiliation(s)
- Clemens Stueckler
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
87
|
Grau MM, van der Toorn J, Otten L, Macheroux P, Taglieber A, Zilly F, Arends IW, Hollmann F. Photoenzymatic Reduction of CC Double Bonds. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900560] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
88
|
Lee SH, Nam DH, Park CB. Screening Xanthene Dyes for Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photoenzymatic Synthesis. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900547] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
89
|
Reetz MT, Wu S. Laboratory Evolution of Robust and Enantioselective Baeyer−Villiger Monooxygenases for Asymmetric Catalysis. J Am Chem Soc 2009; 131:15424-32. [PMID: 19807086 DOI: 10.1021/ja906212k] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Sheng Wu
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
90
|
Lee SH, Won K, Song HK, Park CB. Colloidal nanoparticles as a wireless booster for electroenzymatic reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2162-2166. [PMID: 19526534 DOI: 10.1002/smll.200900595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
91
|
Ruinatscha R, Dusny C, Buehler K, Schmid A. Productive Asymmetric Styrene Epoxidation Based on a Next Generation Electroenzymatic Methodology. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900291] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
92
|
|
93
|
Aksu S, Arends IW, Hollmann F. A New Regeneration System for Oxidized Nicotinamide Cofactors. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900033] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
94
|
Hlavica P. Assembly of non-natural electron transfer conduits in the cytochrome P450 system: A critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 2009; 27:103-21. [DOI: 10.1016/j.biotechadv.2008.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|
95
|
Entrapment of cytochrome P450 BM-3 in polypyrrole for electrochemically-driven biocatalysis. Biotechnol Lett 2009; 31:765-70. [DOI: 10.1007/s10529-009-9925-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/07/2009] [Indexed: 11/26/2022]
|
96
|
|
97
|
Torres Pazmiño DE, Snajdrova R, Baas BJ, Ghobrial M, Mihovilovic MD, Fraaije MW. Self-sufficient Baeyer-Villiger monooxygenases: effective coenzyme regeneration for biooxygenation by fusion engineering. Angew Chem Int Ed Engl 2008; 47:2275-8. [PMID: 18224639 DOI: 10.1002/anie.200704630] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel E Torres Pazmiño
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
98
|
Taglieber A, Schulz F, Hollmann F, Rusek M, Reetz MT. Light-driven biocatalytic oxidation and reduction reactions: scope and limitations. Chembiochem 2008; 9:565-72. [PMID: 18288667 DOI: 10.1002/cbic.200700435] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The quest for practical regeneration concepts for nicotinamide-dependent oxidoreductases continues. Recently we proposed the use of visible light to promote the direct reductive regeneration of a flavin-dependent monooxygenase. With this enzyme (PAMO-P3) light-driven enantioselective Baeyer-Villiger oxidations were performed. In spite of the significant reduction in the complexity achieved, catalytic performance of the novel approach did not meet the requirements for an efficient biocatalytic oxygenation system. Driven by this ultimate goal, we further investigated the limiting factors of our particular system. We discovered that oxidative uncoupling of the flavin-regeneration reaction from enzymatic O2-activation accounts for the futile consumption of approximately 95% of the reducing equivalents provided by the sacrificial electron donor, EDTA. Furthermore, it was found that the apparent turnover frequency (TOF) for PAMO-P3 in the present setup is approximately two orders of magnitude lower than in conventional setups that use NADPH as reductant. This finding was traced to sluggish electron transfer kinetics that arose from an impeded interaction between PAMO-P3-bound FAD and the reducing catalyst. The limiting factors and potential approaches for their circumvention are discussed. Furthermore, we broadened the light-driven regeneration approach to the class of flavin-dependent reductases. By using the Old Yellow Enzyme homologue YqjM as a model system, a significantly higher catalytic turnover for the enzyme catalyst was achieved, which we assign to a higher accessibility of the prosthetic group as well as to the absence of oxidative uncoupling.
Collapse
Affiliation(s)
- Andreas Taglieber
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
| | | | | | | | | |
Collapse
|
99
|
Torres Pazmiño D, Snajdrova R, Baas BJ, Ghobrial M, Mihovilovic M, Fraaije M. Self-Sufficient Baeyer–Villiger Monooxygenases: Effective Coenzyme Regeneration for Biooxygenation by Fusion Engineering. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704630] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
100
|
Hollmann F, Taglieber A, Schulz F, Reetz MT. A light-driven stereoselective biocatalytic oxidation. Angew Chem Int Ed Engl 2007; 46:2903-6. [PMID: 17352446 DOI: 10.1002/anie.200605169] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Frank Hollmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
| | | | | | | |
Collapse
|