51
|
Chen C, Chen Y, Zhang L, Wang X, Tang Q, Luo Y, Wang Y, Ma C, Liang X. Dual-targeting nanozyme for tumor activatable photo-chemodynamic theranostics. J Nanobiotechnology 2022; 20:466. [PMID: 36329465 PMCID: PMC9632160 DOI: 10.1186/s12951-022-01662-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor phototheranostics holds a great promise on account of its high spatiotemporal resolution, tumor-specificity, and noninvasiveness. However, physical limitation of light penetration and "always on" properties of conventional photothermal-conversion agents usually cause difficulty in accurate diagnosis and completely elimination of tumor. Meanwhile, nanozymes mediated Fenton reactions can well utilize the tumor microenvironment (TME) to generate hydroxyl radicals for chemodynamic therapy (CDT), but limited by the concentration of H2O2 in TME and the delivery efficiency of nanozymes. To overcome these problems, a dual-targeting nanozyme (FTRNPs) is developed for tumor-specific in situ theranostics, based upon the assembling of ultrasmall Fe3O4 nanoparticles, 3,3',5,5'-tetrameth-ylbenzidine (TMB) and the RGD peptide. The FTRNPs after H2O2 treatment exhibits superior photothermal stability and high photothermal conversion efficiency (η = 50.9%). FTRNPs shows extraordinary accumulation and retention in the tumor site by biological/physical dual-targeting, which is 3.54-fold higher than that without active targeting. Cascade-dual-response to TME for nanozymes mediated Fenton reactions and TMB oxidation further improves the accuracy of both photoacoustic imaging and photothermal therapy (PTT). The tumor inhibition rate of photo-chemodynamic therapy is ~ 97.76%, which is ~ 4-fold higher than that of PTT or CDT only. Thus, the combination of CDT and PTT to construct "turn on" nanoplatform is of great significance to overcome their respective limitations. Considering its optimized "all-in-one" performance, this new nanoplatform is expected to provide an advanced theranostic strategy for the future treatment of cancers.
Collapse
Affiliation(s)
- Chaoyi Chen
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Yuwen Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
| | - Xuanhao Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
| | - Yan Luo
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
| | - Cheng Ma
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China.
- Institute for Precision Healthcare, Tsinghua University, 100084, Beijing, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China.
| |
Collapse
|
52
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
53
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
54
|
Liu S, Zhang R, Han T, Pan Y, Zhang G, Long X, Zhao C, Wang M, Li X, Yang F, Sang Y, Zhu L, He X, Li J, Zhang Y, Li C, Jiang Y, Yang M. Validation of photoacoustic/ultrasound dual imaging in evaluating blood oxygen saturation. BIOMEDICAL OPTICS EXPRESS 2022; 13:5551-5570. [PMID: 36425613 PMCID: PMC9664893 DOI: 10.1364/boe.469747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Photoacoustic imaging (PAI) was performed to evaluate oxygen saturation (sO2) of blood-mimicking phantoms, femoral arteries in beagles, and radial arteries in humans at various sO2 plateaus. The accuracy (root mean square error, RMSE) of PAI sO2 compared with reference sO2 was calculated. In blood-mimicking phantoms, PAI achieved an accuracy of 1.49% and a mean absolute error (MAE) of 1.09% within 25 mm depth, and good linearity (R = 0.968; p < 0.001) was obtained between PAI sO2 and reference sO2. In canine femoral arteries, PAI achieved an accuracy of 2.16% and an MAE of 1.58% within 8 mm depth (R = 0.965; p < 0.001). In human radial arteries, PAI achieved an accuracy of 3.97% and an MAE of 3.28% in depth from 4 to 14 mm (R = 0.892; p < 0.001). For PAI sO2 evaluation at different depths in healthy volunteers, the RMSE accuracy of PAI sO2 increased from 2.66% to 24.96% with depth increasing from 4 to 14 mm. Through the multiscale method, we confirmed the feasibility of the hand-held photoacoustic/ultrasound (PA/US) in evaluating sO2. These results demonstrate the potential clinical value of PAI in evaluating blood sO2. Consequently, protocols for verifying the feasibility of medical devices based on PAI may be established.
Collapse
Affiliation(s)
- Sirui Liu
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- The authors contributed equally to this manuscript
| | - Rui Zhang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- The authors contributed equally to this manuscript
| | - Tao Han
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yinhao Pan
- Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Guangjie Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Xing Long
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Chenyang Zhao
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ming Wang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xuelan Li
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Yang
- Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Yuchao Sang
- Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Lei Zhu
- Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Xujin He
- Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Jianchu Li
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changhui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yuxin Jiang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
55
|
Gonzalez EA, Lediju Bell MA. Dual-wavelength photoacoustic atlas method to estimate fractional methylene blue and hemoglobin contents. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220093GR. [PMID: 36050818 PMCID: PMC9433893 DOI: 10.1117/1.jbo.27.9.096002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Methylene blue (MB) is an exogenous contrast agent that has the potential to assist with visualization and penetration challenges in photoacoustic imaging. However, monitoring the local concentration between MB and endogenous chromophores is critical for avoiding unnecessary MB accumulations that could lead to adverse effects such as hemolysis when exposed to increased dose and photodamage when exposed to high laser energies. AIM We developed a modified version of a previously proposed acoustic-based atlas method to estimate concentration levels from a mixture of two photoacoustic-sensitive materials after two laser wavelength emissions. APPROACH Photoacoustic data were acquired from mixtures of 100-μM MB and either human or porcine blood (Hb) injected in a plastisol phantom, using laser wavelengths of 710 and 870 nm. An algorithm to perform linear regression of the acoustic frequency response from an atlas composed of pure concentrations was designed to assess the concentration levels from photoacoustic samples obtained from 11 known MB/Hb volume mixtures. The mean absolute error (MAE), coefficient of determination (i.e., R2), and Spearman's correlation coefficient (i.e., ρ) between the estimated results and ground-truth labels were calculated to assess the algorithm performance, linearity, and monotonicity, respectively. RESULTS The overall MAE, R2, and ρ were 12.68%, 0.80, and 0.89, respectively, for the human Hb dataset and 9.92%, 0.86, and 0.93, respectively, for the porcine Hb dataset. In addition, a similarly linear relationship was observed between the acoustic frequency response at 2.3 MHz and 870-nm laser wavelength and the ground-truth concentrations, with R2 and | ρ | values of 0.76 and 0.88, respectively. CONCLUSIONS Contrast agent concentration monitoring is feasible with the proposed approach. The potential for minimal data acquisition times with only two wavelength emissions is advantageous toward real-time implementation in the operating room.
Collapse
Affiliation(s)
- Eduardo A. Gonzalez
- Johns Hopkins University, School of Medicine, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Muyinatu A. Lediju Bell
- Johns Hopkins University, School of Medicine, Department of Biomedical Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Whiting School of Engineering, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Whiting School of Engineering, Department of Computer Science, Baltimore, Maryland, United States
| |
Collapse
|
56
|
Osman MS, Chen H, Creamer K, Minotto J, Liu J, Mirg S, Christian J, Bai X, Agrawal S, Kothapalli SR. A Novel Matching Layer Design for Improving the Performance of Transparent Ultrasound Transducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2672-2680. [PMID: 35921343 DOI: 10.1109/tuffc.2022.3195998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transparent ultrasound transducer (TUT) technology allows easy co-alignment of optical and acoustic beams in the development of compact photoacoustic imaging (PAI) devices with minimum acoustic coupling. However, TUTs suffer from narrow bandwidth and low pulse-echo sensitivity due to the lack of suitable transparent acoustic matching and backing layers. Here, we studied translucent glass beads (GB) in transparent epoxy as an acoustic matching layer for the transparent lithium niobate piezoelectric material-based TUTs (LN-TUTs). The acoustic and optical properties of various volume fractions of GB matching layers were studied using theoretical calculations, simulations, and experiments. These results demonstrated that the GB matching layer has significantly enhanced the pulse-echo sensitivity and bandwidth of the TUTs. Moreover, the GB matching layer served as a light diffuser to help achieve uniform optical fluence on the tissue surface and also improved the photoacoustic (PA) signal bandwidth. The proposed GB matching layer fabrication is low cost, easy to manufacture using conventional ultrasound transducer fabrication tools, acoustically compatible with soft tissue, and minimizes the use of the acoustic coupling medium.
Collapse
|
57
|
Yoon C, Kang J, Song TK, Chang JH. Elevational Synthetic Aperture Focusing for Three-Dimensional Photoacoustic Imaging Using a Clinical One-Dimensional Array Transducer. IEEE Trans Biomed Eng 2022; 69:2817-2825. [PMID: 35226597 PMCID: PMC9520468 DOI: 10.1109/tbme.2022.3154754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Two-dimensional (2D) photoacoustic (PA) imaging based on array transducers provide high spatial resolution in the lateral direction by adopting receive dynamic focusing. However, the quality of PA image is often deteriorated by poor elevational resolution which is achieved by an acoustic lens. To overcome this limitation, we present a three-dimensional (3D) image reconstruction method using a commercial one-dimensional (1D) array transducer. METHODS In the method, the elevational resolution is improved by applying synthetic aperture focusing (SAF) technique along the elevational direction. For this, a commercially available 1D array transducer with an acoustic lens is modeled and appropriate synthetic focusing delay that can minimize the effect of the acoustic lens is derived by mathematical analysis. RESULTS From the simulation and experiment results, it was demonstrated that the proposed method can enhance the image quality of PA imaging, i.e., elevational resolution and signal-to-noise ratio (SNR). CONCLUSION 3D PA images with improved elevational resolution were achieved using a clinical 1D array transducer. SIGNIFICANCE The presented method may be useful for clinical application such as detecting microcalcification, imaging of tumor vasculature and guidance of biopsy in real time.
Collapse
|
58
|
Zhang S, Qi L, Li X, Liang Z, Sun X, Liu J, Lu L, Feng Y, Chen W. MRI Information-Based Correction and Restoration of Photoacoustic Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2543-2555. [PMID: 35394906 DOI: 10.1109/tmi.2022.3165839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an emerging molecular imaging modality, Photoacoustic Tomography (PAT) is capable of mapping tissue physiological metabolism and exogenous contrast agent information with high specificity. Due to its ultrasonic detection mechanism, the precise localization of targeted lesions has long been a challenge for PAT imaging. The poor soft-tissue contrast of the PAT image makes this process difficult and inaccurate. To meet this challenge, in this study, we first make use of the rich and clear structural information brought about by another advanced imaging modality, Magnetic Resonance Imaging (MRI), to assist organ segmentation and correct for the light fluence attenuation of PAT. We demonstrate improved feature visibility and enhanced localization of endogenous and exogenous agents in the fluence corrected PAT images. Compared with PAT-based methods, the contrast-to-noise ratio (CNR) of our MRI-assisted method increases by 29.1% in live animal experiments. Furthermore, we show that the co-registered MRI image can also be incorporated into PAT image restoration, and achieves improved anatomical landscape and soft-tissue contrast (CNR increased by 25.36%) while preserving similar spatial resolution. This PAT-MRI combination provides excellent structural, functional and molecular images of the subject, and may enable more comprehensive analysis of various preclinical research applications.
Collapse
|
59
|
Li Z, Meng Z, Tian F, Ye Z, Zhou X, Zhong X, Chen Q, Yang M, Liu Z, Yin Y. Fast Fourier Transform-weighted Photoacoustic Imaging by In Vivo Magnetic Alignment of Hybrid Nanorods. NANO LETTERS 2022; 22:5158-5166. [PMID: 35762802 DOI: 10.1021/acs.nanolett.2c00854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photoacoustic (PA) imaging uses photon-phonon conversion for high-resolution tomography of biological tissues and functions. Exogenous contrast agents are often added to improve the image quality, but the interference from endogenous molecules diminishes the imaging sensitivity and specificity. We report a background-free PA imaging technique based on the active modulation of PA signals via magnetic alignment of Fe3O4@Au hybrid nanorods. Switching the field direction creates enhanced and deactivated PA imaging modalities, enabling a simple pixel subtraction to effectively minimize background noises. Under an alternating magnetic field, the nanorods exhibit PA signals of coherently periodic changes that can be converted into a sharp peak in a frequency domain via the fast Fourier transform. Automatic pixel-wise screening of nanorod signals performed using a computational algorithm across a time-sequence set of PA images regenerates a background-free PA image with significantly improved contrast, specificity, and fidelity.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhouqi Meng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Feng Tian
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong China
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xuanfang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xingjian Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
60
|
Dual-Wavelength Photoacoustic Computed Tomography with Piezoelectric Ring-Array Transducer for Imaging of Indocyanine Green Liposomes Aggregation in Tumors. MICROMACHINES 2022; 13:mi13060946. [PMID: 35744560 PMCID: PMC9227349 DOI: 10.3390/mi13060946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023]
Abstract
Recently, indocyanine green (ICG), as an FDA-approved dye, has been widely used for phototherapy. It is essential to obtain information on the migration and aggregation of ICG in deep tissues. However, existing fluorescence imaging platforms are not able to obtain the structural information of the tissues. Here, we prepared ICG liposomes (ICG-Lips) and built a dual-wavelength photoacoustic computed tomography (PACT) system with piezoelectric ring-array transducer to image the aggregation of ICG-Lips in tumors to guide phototherapy. Visible 780 nm light excited the photoacoustic (PA) effects of the ICG-Lips and near-infrared 1064 nm light provided the imaging of the surrounding tissues. The aggregation of ICG-Lips within the tumor and the surrounding tissues was visualized by PACT in real time. This work indicates that PACT with piezoelectric ring-array transducer has great potential in the real-time monitoring of in vivo drug distribution.
Collapse
|
61
|
Lin Y, Qiu T, Lan Y, Li Z, Wang X, Zhou M, Li Q, Li Y, Liang J, Zhang J. Multi-Modal Optical Imaging and Combined Phototherapy of Nasopharyngeal Carcinoma Based on a Nanoplatform. Int J Nanomedicine 2022; 17:2435-2446. [PMID: 35656166 PMCID: PMC9151321 DOI: 10.2147/ijn.s357493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck with a high incidence rate worldwide, especially in southern China. Phototheranostics in combination with nanoparticles is an integrated strategy for enabling simultaneous diagnosis, real-time monitoring, and administration of precision therapy for nasopharyngeal carcinoma (NPC). It has shown great potential in the field of cancer diagnosis and treatment owing to its unique noninvasive advantages. Many Chinese and international research teams have applied nano-targeted drugs to optical diagnosis and treatment technology to conduct multimodal imaging and collaborative treatment of NPC, which has become a hot research topic. In this review, we aimed to introduce the recent developments in phototheranostics of NPC based on a nanoplatform. This study aimed to elaborate on the applications of nanoplatform-based optical imaging strategies and treatment modalities, including fluorescence imaging, photoacoustic imaging, Raman spectroscopy imaging, photodynamic therapy, and photothermal therapy. This study is expected to provide a scientific basis for further research and development of NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Yanping Lin
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Ting Qiu
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, People's Republic of China
| | - Yintao Lan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China
| | - Zhaoyong Li
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Xin Wang
- Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, People's Republic of China
| | - Mengyu Zhou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China
| | - Qiuyu Li
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Yao Li
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Junsheng Liang
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China.,Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, People's Republic of China
| |
Collapse
|
62
|
Basavarajappa L, Hoyt K. Photoacoustic graphic equalization and application in characterization of red blood cell aggregates. PHOTOACOUSTICS 2022; 26:100365. [PMID: 35592591 PMCID: PMC9111976 DOI: 10.1016/j.pacs.2022.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
A photoacoustic (PA) graphic equalization (PAGE) algorithm was developed to characterize the relative size of optical absorbing aggregates. This technique divides the PA signal into frequency bands related to different-sized optical absorbers. Simulations of a material containing optical absorbing microparticles of varying size were used to assess PAGE performance. Experiments were performed on phantom materials containing microspheres of varying size and concentration. Additional experiments were performed using tubes with fresh clotting blood. PA data was obtained using a Vevo LAZR-X system (FUJIFILM VisualSonics Inc). PAGE imaging of phantoms with varying-sized optical absorbers found a 1.5-fold difference in mean image intensity (p < 0.001). Conversely, PA images from these same materials exhibited no intensity changes (p = 0.68). PAGE imaging results from clotting blood exhibited differences for clot sizes in the range 0.30-0.64 mm (p < 0.001). In summary, PAGE imaging can distinguish optical absorbing aggregates of varying size.
Collapse
|
63
|
Ren G, Xu L, Zhan H, Liu S, Jiang W, Li R. Quantifying the shape effect of plasmonic gold nanoparticles on photoacoustic conversion efficiency. APPLIED OPTICS 2022; 61:4567-4570. [PMID: 36256299 DOI: 10.1364/ao.457426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/28/2022] [Indexed: 06/16/2023]
Abstract
Gold nanoparticles with strong localized plasmonic effects have found wide applications in photoacoustic imaging, which are ascribed to their unique microscopic mechanism of converting photons to ultrasound. In this report, we quantitatively model the time-resolved temperature field, thermal expansion, and pressure distribution based on the finite element analysis method, and two-dimensional gold nanoparticles spanning from the triangle, square, pentagon, and hexagon to the circle have been systematically studied. Results show that the shape of gold nanoparticles has a nontrivial effect on photoacoustic conversion efficiency, and the square-shaped gold structure exhibits the best performance. Our findings could shed light on the shape design of high-performance photoacoustic agents in the future.
Collapse
|
64
|
Huang J, Bao H, Li X, Zhang Z. In vivo
CT imaging tracking of stem cells labeled with Au nanoparticles. VIEW 2022. [DOI: 10.1002/viw.20200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jie Huang
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| | - Hongying Bao
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| | - Xiaodi Li
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| |
Collapse
|
65
|
Kirchner T, Jaeger M, Frenz M. Machine learning enabled multiple illumination quantitative optoacoustic oximetry imaging in humans. BIOMEDICAL OPTICS EXPRESS 2022; 13:2655-2667. [PMID: 35774340 PMCID: PMC9203099 DOI: 10.1364/boe.455514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
Optoacoustic (OA) imaging is a promising modality for quantifying blood oxygen saturation (sO2) in various biomedical applications - in diagnosis, monitoring of organ function, or even tumor treatment planning. We present an accurate and practically feasible real-time capable method for quantitative imaging of sO2 based on combining multispectral (MS) and multiple illumination (MI) OA imaging with learned spectral decoloring (LSD). For this purpose we developed a hybrid real-time MI MS OA imaging setup with ultrasound (US) imaging capability; we trained gradient boosting machines on MI spectrally colored absorbed energy spectra generated by generic Monte Carlo simulations and used the trained models to estimate sO2 on real OA measurements. We validated MI-LSD in silico and on in vivo image sequences of radial arteries and accompanying veins of five healthy human volunteers. We compared the performance of the method to prior LSD work and conventional linear unmixing. MI-LSD provided highly accurate results in silico and consistently plausible results in vivo. This preliminary study shows a potentially high applicability of quantitative OA oximetry imaging, using our method.
Collapse
Affiliation(s)
- Thomas Kirchner
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Michael Jaeger
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Martin Frenz
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| |
Collapse
|
66
|
Fully Customized Photoacoustic System Using Doubly Q-Switched Nd:YAG Laser and Multiple Axes Stages for Laboratory Applications. SENSORS 2022; 22:s22072621. [PMID: 35408235 PMCID: PMC9002370 DOI: 10.3390/s22072621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
We developed a customized doubly Q-switched laser that can control the pulse width to easily find weak acoustic signals for photoacoustic (PA) systems. As the laser was constructed using an acousto-optic Q-switcher, in contrast to the existing commercial laser system, it is easier to control the pulse repetition rate and pulse width. The laser has the following control ranges: 10 Hz–10 kHz for the pulse repetition rate, 40–150 ns for the pulse width, and 50–500 μJ for the pulse energy. Additionally, a custom-made modularized sample stage was used to develop a fully customized PA system. The modularized sample stage has a nine-axis control unit design for the PA system, allowing the sample target and transducer to be freely adjusted. This makes the system suitable for capturing weak PA signals. Images were acquired and processed for widely used sample targets (hair and insulating tape) with the developed fully customized PA system. The customized doubly Q-switched laser-based PA imaging system presented in this paper can be modified for diverse conditions, including the wavelength, frequency, pulse width, and sample target; therefore, we expect that the proposed technique will be helpful in conducting fundamental and applied research for PA imaging system applications.
Collapse
|
67
|
Zhao T, Ma MT, Ourselin S, Vercauteren T, Xia W. Video-rate dual-modal photoacoustic and fluorescence imaging through a multimode fibre towards forward-viewing endomicroscopy. PHOTOACOUSTICS 2022; 25:100323. [PMID: 35028288 PMCID: PMC8741494 DOI: 10.1016/j.pacs.2021.100323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Multimode fibres (MMFs) are becoming increasingly attractive in optical endoscopy as they promise to enable unparallelled miniaturisation, spatial resolution and cost. However, high-speed imaging with wavefront shaping has been challenging. Here, we report the development of a video-rate dual-modal photoacoustic (PA) and fluorescence microscopy probe with a high-speed digital micromirror device (DMD) towards forward-viewing endomicroscopy. Optimal DMD patterns were obtained using a real-valued intensity transmission matrix algorithm to raster-scan a 1.5 μ m-diameter focused beam at the distal fibre tip for imaging. The PA imaging speed and spatial resolution were varied from ∼ 2 to 57 frames per second and from 1.7 to 3 μ m, respectively. Further, high-fidelity PA images of carbon fibres and mouse red blood cells were acquired at unprecedented speed. The capability of dual-modal imaging was demonstrated with phantoms. We anticipate that with further miniaturisation of the ultrasound detector, this probe could be integrated into medical needles to guide minimally invasive procedures.
Collapse
|
68
|
Xavierselvan M, Cook J, Duong J, Diaz N, Homan K, Mallidi S. Photoacoustic nanodroplets for oxygen enhanced photodynamic therapy of cancer. PHOTOACOUSTICS 2022; 25:100306. [PMID: 34917471 PMCID: PMC8666552 DOI: 10.1016/j.pacs.2021.100306] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 05/20/2023]
Abstract
Photodynamic therapy (PDT) is a well-known cancer therapy that utilizes light to excite a photosensitizer and generate cytotoxic reactive oxygen species (ROS). The efficacy of PDT primarily depends on the photosensitizer and oxygen concentration in the tumor. Hypoxia in solid tumors promotes treatment resistance, resulting in poor PDT outcomes. Hence, there is a need to combat hypoxia while delivering sufficient photosensitizer to the tumor for ROS generation. Here we showcase our unique theranostic perfluorocarbon nanodroplets as a triple agent carrier for oxygen, photosensitizer, and indocyanine green that enables light triggered spatiotemporal delivery of oxygen to the tumors. We evaluated the characteristics of the nanodroplets and validated their ability to deliver oxygen via photoacoustic monitoring of blood oxygen saturation and subsequent PDT efficacy in a murine subcutaneous tumor model. The imaging results were validated with an oxygen sensing probe, which showed a 9.1 fold increase in oxygen content inside the tumor, following systemic administration of the nanodroplets. These results were also confirmed with immunofluorescence. In vivo studies showed that nanodroplets held higher rates of treatment efficacy than a clinically available benzoporphyrin derivative formulation. Histological analysis showed higher necrotic area within the tumor with perfluoropentane nanodroplets. Overall, the photoacoustic nanodroplets can significantly enhance image-guided PDT and has demonstrated substantial potential as a valid theranostic option for patient-specific photodynamic therapy-based treatments.
Collapse
Key Words
- 1O2, singlet oxygen
- BPD, benzoporphyrin derivative
- DLS, dynamic light scattering
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- DSPE-mPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]
- H&E, hematoxylin and eosin
- HbT, total hemoglobin
- Hypoxia
- ICG, indocyanine green
- IF, immunofluorescence
- Image guided PDT
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NIR, near infrared radiation
- PA, photoacoustic
- PBS, phosphate buffered saline
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PFP, perfluoropentane
- PS, photosensitizer
- Perfluorocarbon nanodroplets
- Photoacoustic imaging
- Photodynamic therapy
- ROS, reactive oxygen species
- SOSG, singlet oxygen sensor green
- StO2, oxygen saturation
- TBAI, tertbutylammonium iodide
- pO2, partial pressure of oxygen
Collapse
Affiliation(s)
- Marvin Xavierselvan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Jeanne Duong
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Nashielli Diaz
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
69
|
Li L, Chen H, Shi Y, Xing D. Human-Body-Temperature Triggerable Phase Transition of W-VO 2@PEG Nanoprobes with Strong and Switchable NIR-II Absorption for Deep and Contrast-Enhanced Photoacoustic Imaging. ACS NANO 2022; 16:2066-2076. [PMID: 35083911 DOI: 10.1021/acsnano.1c07511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The immense potential of temperature-responsive nanomaterials for use as contrast agents has propelled much recent research and development in the field of photoacoustic (PA) imaging, while the exorbitant transition temperature exceeding the human-tolerable range and the low reversibility of the reported temperature-sensitive nanosystems are still two severe issues that hinder effective imaging and long-term monitoring in practical applications. Herein, we propose a high-performing thermoresponsive polyethylene glycol-coated tungsten-doped vanadium dioxide (W-VO2@PEG) nanoprobe (NP) with strong and switchable optical absorption in the near-infrared-II (NIR-II) biowindow (1000-1700 nm) near human-body temperature, to achieve deep and contrast-enhanced PA imaging. Our study shows that the PA signal amplitude of W-VO2@PEG NPs at 1064 nm increases up to 260% when the temperature increases from 35 °C to 45 °C, with a signal fluctuation of less than 10% after 10 temperature cycles, therefore enabling great potential of "off-to-on" dynamic contrast-enhanced imaging capability in deep-seated tissues. Experiments on tissue-mimicking phantoms and in vitro chicken breast showed that, by levering the prepared W-VO2@PEG NPs and dynamically modulating the temperature field with an external NIR optical stimulus, contrast-enhanced PA images of the target can be obtained with an imaging depth up to 1.5 cm. Furthermore, in vivo potential of the prepared thermoresponsive NPs for the detection and identification of deep-seated tumors by directly comparing to conventional "always on" NPs has been demonstrated. Our work will offer feasible guidance for the development of smart temperature-activatable PA NPs with improved imaging depth and imaging contrast.
Collapse
Affiliation(s)
- Liantong Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Huazhen Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yujiao Shi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
70
|
Kyrkou SG, Vrettos EI, Gorpas D, Crook T, Syed N, Tzakos AG. Design Principles Governing the Development of Theranostic Anticancer Agents and Their Nanoformulations with Photoacoustic Properties. Pharmaceutics 2022; 14:362. [PMID: 35214094 PMCID: PMC8877540 DOI: 10.3390/pharmaceutics14020362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
The unmet need to develop novel approaches for cancer diagnosis and treatment has led to the evolution of theranostic agents, which usually include, in addition to the anticancer drug, an imaging agent based mostly on fluorescent agents. Over the past few years, a non-invasive photoacoustic imaging modality has been effectively integrated into theranostic agents. Herein, we shed light on the design principles governing the development of theranostic agents with photoacoustic properties, which can be formulated into nanocarriers to enhance their potency. Specifically, we provide an extensive analysis of their individual constituents including the imaging dyes, drugs, linkers, targeting moieties, and their formulation into nanocarriers. Along these lines, we present numerous relevant paradigms. Finally, we discuss the clinical relevance of the specific strategy, as also the limitations and future perspectives, and through this review, we envisage paving the way for the development of theranostic agents endowed with photoacoustic properties as effective anticancer medicines.
Collapse
Affiliation(s)
- Stavroula G. Kyrkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Eirinaios I. Vrettos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, D-85764 Oberschleißheim, Germany;
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Timothy Crook
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
71
|
Pang W, Wang Y, Guo L, Wang B, Lai P, Xiao J. Two-Dimensional Photoacoustic/Ultrasonic Endoscopic Imaging Based on a Line-Focused Transducer. Front Bioeng Biotechnol 2022; 9:807633. [PMID: 35071214 PMCID: PMC8770734 DOI: 10.3389/fbioe.2021.807633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Existing acoustic-resolution photoacoustic/ultrasonic endoscopy (PA/USE) generally employs a point-focused transducer for ultrasound detection, which is only sensitive in its focal region, thus the lateral resolution and sensitivity drop dramatically when the targets move far from its focus. Even if a dynamic focusing algorithm is applied, the sensitivity out of the transducer focus is still much lower than that in the focus in ultrasonic imaging mode. In this work, we propose an acoustic-resolution PA/USE with a line-focused transducer to realize automatic focusing for the first time. In comparison to a point-focused transducer, the line-focused transducer emits a more uniform sound field, causing the original signal intensity and signal-to-noise ratio (SNR) of the front and rear targets to be closer in the radial direction, which is beneficial for improving target signal uniformity in ultrasonic imaging. Simultaneously, we improved the resolution of the defocus area by modifying a prior work of back-projection (BP) reconstruction algorithm typically used in point-focused transducer based PAE and applying it to line-focused PA/USE. This combined approach may significantly enhance the depth of field of ultrasonic imaging and the resolution of the defocus zone in PA/US imaging, compared to the conventional method. Sufficient numerical simulations and phantom experiments were performed to verify this method. The results show that our method can effectively improve the lateral resolution in the image's defocused region to achieve automatic focusing and perfectly solve the defect of the target signal difference in the far-focus region in ultrasonic imaging, while also enhancing the image SNR and contrast. The proposed method in this paper lays foundations for the realization of photoacoustic/ultrasonic combined endoscopy with enhanced lateral resolution and depth of field, which can potentially benefit a many of biomedical applications.
Collapse
Affiliation(s)
- Weiran Pang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Yongjun Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Lili Guo
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
| | - Bo Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Jiaying Xiao
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
72
|
Kubelick KP, Mehrmohammadi M. Magnetic particles in motion: magneto-motive imaging and sensing. Theranostics 2022; 12:1783-1799. [PMID: 35198073 PMCID: PMC8825589 DOI: 10.7150/thno.54056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/22/2021] [Indexed: 11/05/2022] Open
Abstract
Superparamagnetic nanoparticles have become an important tool in biomedicine. Their biocompatibility, controllable small size, and magnetic properties allow manipulation with an external magnetic field for a variety of diagnostic and therapeutic applications. Recently, the magnetically-induced motion of superparamagnetic nanoparticles has been investigated as a new source of imaging contrast. In magneto-motive imaging, an external, time-varying magnetic field is applied to move a magnetically labeled subject, such as labeled cells or tissue. Several major imaging modalities such as ultrasound, photoacoustic imaging, optical coherence tomography, and laser speckle tracking can utilize magneto-motive contrast to monitor biological events at smaller scales with enhanced contrast and sensitivity. In this review article, an overview of magneto-motive imaging techniques is presented, including synthesis of superparamagnetic nanoparticles, fundamental principles of magneto-motive force and its utility to excite labeled tissue within a viscoelastic medium, current capabilities of magneto-motive imaging modalities, and a discussion of the challenges and future outlook in the magneto-motive imaging domain.
Collapse
Affiliation(s)
- Kelsey P. Kubelick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Georgia, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Georgia, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Michigan, USA
- Barbara Ann Karmanos Cancer Institute, Michigan, USA
| |
Collapse
|
73
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
74
|
Gao S, Tsumura R, Vang DP, Bisland K, Xu K, Tsunoi Y, Zhang HK. Acoustic-resolution photoacoustic microscope based on compact and low-cost delta configuration actuator. ULTRASONICS 2022; 118:106549. [PMID: 34474357 PMCID: PMC8530928 DOI: 10.1016/j.ultras.2021.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 05/02/2023]
Abstract
The state-of-the-art configurations for acoustic-resolution photoacoustic (PA) microscope (AR-PAM) are large in size and expensive, hindering their democratization. While previous research on AR-PAMs introduced a low-cost light source to reduce the cost, few studies have investigated the possibility of optimizing the sensor actuation, particularly for the AR-PAM. Additionally, there is an unmet need to evaluate the image quality deterioration associated with the actuation inaccuracy. A low-cost actuation device is introduced to reduce the system size and cost of the AR-PAM while maintaining the image quality by implementing the advanced beamformers. This work proposes an AR-RAM incorporating the delta configuration actuator adaptable from a low-cost off-the-shelf 3D printer as the sensor actuation device. The image degradation due to the data acquisition positioning inaccuracy is evaluated in the simulation. We further assess the mitigation of potential actuation precision uncertainty through advanced 3D synthetic aperture focusing algorithms represented by the Delay-and-Sum (DAS) with Coherence Factor (DAS+CF) and Delay-Multiply-and-Sum (DMAS) algorithms. The simulation study demonstrated the tolerance of image quality on actuation inaccuracy and the effect of compensating the actuator motion precision error through advanced reconstruction algorithms. With those algorithms, the image quality degradation was suppressed to within 25% with the presence of 0.2 mm motion inaccuracy. The experimental evaluation using phantoms and an ex-vivo sample presented the applicability of low-cost delta configuration actuators for AR-PAMs. The measured full width at half maximum of the 0.2 mm diameter pencil-lead phantom were 0.45 ± 0.06 mm, 0.31 ± 0.04 mm, and 0.35 ± 0.07 mm, by applying the DAS, DAS+CF, and DMAS algorithms, respectively. AR-PAMs with a compact and low-cost delta configuration provide high-quality PA imaging with better accessibility for biomedical applications. The research evaluated the image degradation contributed by the actuation inaccuracy and suggested that the advanced beamformers are capable of suppressing the actuation inaccuracy.
Collapse
Affiliation(s)
- Shang Gao
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Ryosuke Tsumura
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Doua P Vang
- Worcester Polytechnic Institute, Department of Electrical and Computer Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Keion Bisland
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Keshuai Xu
- Johns Hopkins University, Department of Computer Science, Baltimore 21218, United States
| | - Yasuyuki Tsunoi
- National Defense Medical College Research Institute, Division of Bioinformation and Therapeutic Systems, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | - Haichong K Zhang
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Computer Science, 100 Institute Rd, Worcester 01609, United States.
| |
Collapse
|
75
|
Inzunza-Ibarra MA, Navarro-Becerra JA, Narumanchi V, Bottenus N, Murray TW, Borden MA. Enhanced visibility through microbubble-induced photoacoustic fluctuation imaging. JASA EXPRESS LETTERS 2022; 2:012001. [PMID: 35005712 PMCID: PMC8725790 DOI: 10.1121/10.0009129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A photoacoustic contrast mechanism is presented based on the photoacoustic fluctuations induced by microbubbles flowing inside a micro-vessel filled with a continuous absorber. It is demonstrated that the standard deviation of a homogeneous absorber mixed with microbubbles increases non-linearly as the microbubble concentration and microbubble size is increased. This effect is then utilized to perform photoacoustic fluctuation imaging with increased visibility and contrast of a blood flow phantom.
Collapse
Affiliation(s)
- Marco A Inzunza-Ibarra
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | | - Venkatalakshmi Narumanchi
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
76
|
Saad MA, Xavierselvan M, Sharif HA, Selfridge S, Pawle R, Varvares M, Mallidi S, Hasan T. Dual Function Antibody Conjugates for Multimodal Imaging and Photoimmunotherapy of Cancer Cells. Photochem Photobiol 2022; 98:220-231. [PMID: 34379796 PMCID: PMC10038131 DOI: 10.1111/php.13501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022]
Abstract
Precision imaging, utilizing molecular targeted agents, is an important tool in cancer diagnostics and guiding therapies. While there are limitations associated with single mode imaging probes, multimodal molecular imaging probes enabling target visualization through complementary imaging technologies provides an attractive alternative. However, there are several challenges associated with designing molecular probes carrying contrast agents for complementary multimodal imaging. Here, we propose a dual function antibody conjugate (DFAC) comprising an FDA approved photosensitizer Benzoporphyrin derivative (BPD) and a naphthalocyanine-based photoacoustic dye (SiNc(OH)) for multimodal infrared (IR) imaging. While fluorescence imaging, through BPD, provides sensitivity, complementing it with photoacoustic imaging, through SiNc(OH), provides a depth-resolved spatial resolution much beyond the optical diffusion limits of fluorescence measurements. Through a series of in vitro experiments, we demonstrate the development and utilization of DFACs for multimodal imaging and photodynamic treatment of squamous cell carcinoma (A431) cell line. The proposed DFACs have potential use in precision imaging applications such as guiding tumor resection surgeries and photodynamic treatment of residual microscopic disease thereby minimizing local recurrence. The data demonstrated in this study merits further investigation for its preclinical and clinical translation.
Collapse
Affiliation(s)
- Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Marvin Xavierselvan
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA
| | | | | | | | - Mark Varvares
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, The Massachusetts Eye and Ear, Boston, MA
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
77
|
Nazari M, Saljooghi AS, Ramezani M, Alibolandi M, Mirzaei M. Current status and future prospects of nanoscale metal–organic frameworks in bioimaging. J Mater Chem B 2022; 10:8824-8851. [DOI: 10.1039/d2tb01787c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The importance of diagnosis and in situ monitoring of lesion regions and transportation of bioactive molecules has a pivotal effect on successful treatment, reducing side effects, and increasing the chances of survival in the case of diseases.
Collapse
Affiliation(s)
- Mahsa Nazari
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Khorasan Science and Technology Park (KSTP), 12th km of Mashhad-Quchan Road, Mashhad, Khorasan Razavi, Iran
| |
Collapse
|
78
|
Jain K, Ahmad J, Rizwanullah M, Suthar T, Albarqi HA, Ahmad MZ, Vuddanda PR, Khan MA. Receptor-Targeted Surface Engineered Nanomaterials for Breast Cancer Imaging and Theranostic Applications. Crit Rev Ther Drug Carrier Syst 2022; 39:1-44. [DOI: 10.1615/critrevtherdrugcarriersyst.2022040686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
79
|
Zhou Y, Ni J, Wen C, Lai P. Light on osteoarthritic joint: from bench to bed. Theranostics 2022; 12:542-557. [PMID: 34976200 PMCID: PMC8692899 DOI: 10.7150/thno.64340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is one of the rapidly growing disability-associated conditions with population aging worldwide. There is a pressing need for precise diagnosis and timely intervention for OA in the early stage. Current clinical imaging modalities, including pain radiography, magnetic resonance imaging, ultrasound, and optical coherent tomography, are limited to provide structural changes when the damage has been established or advanced. It prompts further endeavors in search of novel functional and molecular imaging, which potentially enables early diagnosis and intervention of OA. A hybrid imaging modality based on photothermal effects, photoacoustic imaging, has drawn wide attention in recent years and has seen a variety of biomedical applications, due to its great performance in yielding high-contrast and high-resolution images from structure to function, from tissue down to molecular levels, from animals to human subjects. Photoacoustic imaging has witnessed gratifying potentials and preliminary effects in OA diagnosis. Regarding the treatment of OA, photothermal-triggered therapy has exhibited its attractions for enhanced therapeutic outcomes. In this narrative review, we will discuss photoacoustic imaging for the diagnosis and monitoring of OA at different stages. Structural, functional, and molecular parameter changes associated with OA joints captured by photoacoustics will be summarized, forming the diagnosis perspective of the review. Photothermal therapy applications related to OA will also be discussed herein. Lastly, relevant clinical applications and its potential solutions to extend photoacoustic imaging to deeper OA situations have been proposed. Although some aspects may not be covered, this mini review provides a better understanding of the diagnosis and treatment of OA with exciting innovations based on tissue photothermal effects. It may also inspire more explorations in the field towards earlier and better theranostics of OA.
Collapse
Affiliation(s)
- Yingying Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Junguo Ni
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, HKSAR
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Photonics Research Institute, The Hong Kong Polytechnic University, HKSAR
| |
Collapse
|
80
|
In vivo imaging in experimental spinal cord injury – Techniques and trends. BRAIN AND SPINE 2022; 2:100859. [PMID: 36248104 PMCID: PMC9560701 DOI: 10.1016/j.bas.2021.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Abstract
Introduction Traumatic Spinal Cord Injury (SCI) is one of the leading causes of disability in the world. Treatment is limited to supportive care and no curative therapy exists. Experimental research to understand the complex pathophysiology and potential mediators of spinal cord regeneration is essential to develop innovative translational therapies. A multitude of experimental imaging methods to monitor spinal cord regeneration in vivo have developed over the last years. However, little literature exists to deal with advanced imaging methods specifically available in SCI research. Research Question This systematic literature review examines the current standards in experimental imaging in SCI allowing for in vivo imaging of spinal cord regeneration on a neuronal, vascular, and cellular basis. Material and Methods Articles were included meeting the following criteria: experimental research, original studies, rodent subjects, and intravital imaging. Reviewed in detail are microstructural and functional Magnetic Resonance Imaging, Micro-Computed Tomography, Laser Speckle Imaging, Very High Resolution Ultrasound, and in vivo microscopy techniques. Results Following the PRISMA guidelines for systematic reviews, 689 articles were identified for review, of which 492 were sorted out after screening and an additional 104 after detailed review. For qualitative synthesis 93 articles were included in this publication. Discussion and Conclusion With this study we give an up-to-date overview about modern experimental imaging techniques with the potential to advance the knowledge on spinal cord regeneration following SCI. A thorough knowledge of the strengths and limitations of the reviewed techniques will help to optimally exploit our current experimental armamentarium in the field. In vivo imaging is essential to enhance the understanding of SCI pathophysiology. Multiple experimental imaging methods have evolved over the past years. Detailed review of in vivo (f)MRI, μCT, VHRUS, and Microcopy in experimental SCI. Experimental imaging allows for longitudinal examination to the cellular level. Knowledge of the strengths and limitations is essential for future research.
Collapse
|
81
|
Thangam R, Paulmurugan R, Kang H. Functionalized Nanomaterials as Tailored Theranostic Agents in Brain Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:18. [PMID: 35009968 PMCID: PMC8746658 DOI: 10.3390/nano12010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Functionalized nanomaterials of various categories are essential for developing cancer nano-theranostics for brain diseases; however, some limitations exist in their effectiveness and clinical translation, such as toxicity, limited tumor penetration, and inability to cross blood-brain and blood-tumor barriers. Metal nanomaterials with functional fluorescent tags possess unique properties in improving their functional properties, including surface plasmon resonance (SPR), superparamagnetism, and photo/bioluminescence, which facilitates imaging applications in addition to their deliveries. Moreover, these multifunctional nanomaterials could be synthesized through various chemical modifications on their physical surfaces via attaching targeting peptides, fluorophores, and quantum dots (QD), which could improve the application of these nanomaterials by facilitating theranostic modalities. In addition to their inherent CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PAI (Photo-acoustic imaging), and X-ray contrast imaging, various multifunctional nanoparticles with imaging probes serve as brain-targeted imaging candidates in several imaging modalities. The primary criteria of these functional nanomaterials for translational application to the brain must be zero toxicity. Moreover, the beneficial aspects of nano-theranostics of nanoparticles are their multifunctional systems proportioned towards personalized disease management via comprising diagnostic and therapeutic abilities in a single biodegradable nanomaterial. This review highlights the emerging aspects of engineered nanomaterials to reach and deliver therapeutics to the brain and how to improve this by adopting the imaging modalities for theranostic applications.
Collapse
Affiliation(s)
- Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
82
|
Uzianbaeva L, Yan Y, Joshi T, Yin N, Hsu CD, Hernandez-Andrade E, Mehrmohammadi M. Methods for Monitoring Risk of Hypoxic Damage in Fetal and Neonatal Brains: A Review. Fetal Diagn Ther 2021; 49:1-24. [PMID: 34872080 PMCID: PMC8983560 DOI: 10.1159/000520987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
Abstract
Fetal, perinatal, and neonatal asphyxia are vital health issues for the most vulnerable groups in human beings, including fetuses, newborns, and infants. Severe reduction in oxygen and blood supply to the fetal brain can cause hypoxic-ischemic encephalopathy (HIE), leading to long-term neurological disorders, including mental impairment and cerebral palsy. Such neurological disorders are major healthcare concerns. Therefore, there has been a continuous effort to develop clinically useful diagnostic tools for accurately and quantitatively measuring and monitoring blood and oxygen supply to the fetal and neonatal brain to avoid severe consequences of asphyxia HIE and neonatal encephalopathy. Major diagnostic technologies used for this purpose include fetal heart rate monitoring, fetus scalp blood sampling, ultrasound imaging, magnetic resonance imaging, X-ray computed tomography, and nuclear medicine. In addition, given the limitations and shortcomings of traditional diagnostic methods, emerging technologies such as near-infrared spectroscopy and photoacoustic imaging have also been introduced as stand-alone or complementary solutions to address this critical gap in fetal and neonatal care. This review provides a thorough overview of the traditional and emerging technologies for monitoring fetal and neonatal brain oxygenation status and describes their clinical utility, performance, advantages, and disadvantages.
Collapse
Affiliation(s)
- Liaisan Uzianbaeva
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Yan Yan
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Tanaya Joshi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Nina Yin
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
- Department of Anatomy, School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Edgar Hernandez-Andrade
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Texas Health Science Center, Houston, Texas, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
83
|
Ma D, Hou S, Bae C, Pham TC, Lee S, Zhou X. Aza-BODIPY based probe for photoacoustic imaging of ONOO− in vivo. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
84
|
Zheng BD, Ye J, Huang YY, Xiao MT. Phthalocyanine-based photoacoustic contrast agents for imaging and theranostics. Biomater Sci 2021; 9:7811-7825. [PMID: 34755723 DOI: 10.1039/d1bm01435h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phthalocyanine, as an organic dye, has attracted much attention due to its high molar absorption coefficient in the near-infrared region (NIR). It is precisely because of this advantage that phthalocyanine is very beneficial to photoacoustic imaging (PAI). At present, many different strategies have been adopted to design phthalocyanine-based contrast agents with photoacoustic (PA) effect, including increasing water solubility, changing spectral properties, prolonging the circulation time, constructing activatable supramolecular nanoparticles, increasing targeting, etc. Based on this, this minireview highlighted the above ways to enhance the PA effect of phthalocyanine. What's more, the application of phthalocyanine-based PA contrast agents in biomedical imaging and image-guided phototherapy has been discussed. Finally, this minireview also provides the prospects and challenges of phthalocyanine-based PA contrast agents in order to provide some reference for the application of phthalocyanine-based PA contrast agents in biomedical imaging and guiding tumor treatment.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ya-Yan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
85
|
Luo X, Cai Y, Chen Z, Shan H, Sun X, Lin Q, Ma J, Wang B. Stack-Layer Dual-Element Ultrasonic Transducer for Broadband Functional Photoacoustic Tomography. Front Bioeng Biotechnol 2021; 9:786376. [PMID: 34778242 PMCID: PMC8581210 DOI: 10.3389/fbioe.2021.786376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Current Photoacoustic tomography (PAT) approaches are based on a single-element transducer that exhibits compromised performance in clinical imaging applications. For example, vascular, tumors are likely to have complicated shapes and optical absorptions, covering relatively wide spectra in acoustic signals. The wide ultrasonic spectra make it difficult to set the detection bandwidth optimally in advance. In this work, we propose a stack-layer dual-element ultrasonic transducer for PAT. The central frequencies of the two piezoelectric elements are 3.06 MHz (99.3% bandwidth at -6 dB) and 11.07 MHz (85.2% bandwidth at -6 dB), respectively. This transducer bridges the sensitivity capability of ultrasound and the high contrast of optical methods in functional photoacoustic tomography. The dual-element transducer enabled multiscale analysis of the vascular network in rat brains. Using a multi-wavelength imaging scheme, the blood oxygen saturation was also detected. The preliminary results showed the great potential of broad-bandwidth functional PAT on vascular network visualization. The method can also be extended to whole-body imaging of small animals, breast cancer detection, and finger joint imaging.
Collapse
Affiliation(s)
- Xiaofei Luo
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yiqi Cai
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Zeyu Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Han Shan
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Xin Sun
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Qibo Lin
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Jianguo Ma
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Bo Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
86
|
A scalable open-source MATLAB toolbox for reconstruction and analysis of multispectral optoacoustic tomography data. Sci Rep 2021; 11:19872. [PMID: 34615891 PMCID: PMC8494751 DOI: 10.1038/s41598-021-97726-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/17/2021] [Indexed: 12/03/2022] Open
Abstract
Multispectral photoacoustic tomography enables the resolution of spectral components of a tissue or sample at high spatiotemporal resolution. With the availability of commercial instruments, the acquisition of data using this modality has become consistent and standardized. However, the analysis of such data is often hampered by opaque processing algorithms, which are challenging to verify and validate from a user perspective. Furthermore, such tools are inflexible, often locking users into a restricted set of processing motifs, which may not be able to accommodate the demands of diverse experiments. To address these needs, we have developed a Reconstruction, Analysis, and Filtering Toolbox to support the analysis of photoacoustic imaging data. The toolbox includes several algorithms to improve the overall quantification of photoacoustic imaging, including non-negative constraints and multispectral filters. We demonstrate various use cases, including dynamic imaging challenges and quantification of drug effect, and describe the ability of the toolbox to be parallelized on a high performance computing cluster.
Collapse
|
87
|
Green D, Gelb A, Luke GP. Sparsity-Based Recovery of Three-Dimensional Photoacoustic Images from Compressed Single-Shot Optical Detection. J Imaging 2021; 7:jimaging7100201. [PMID: 34677287 PMCID: PMC8537684 DOI: 10.3390/jimaging7100201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Photoacoustic (PA) imaging combines optical excitation with ultrasonic detection to achieve high-resolution imaging of biological samples. A high-energy pulsed laser is often used for imaging at multi-centimeter depths in tissue. These lasers typically have a low pulse repetition rate, so to acquire images in real-time, only one pulse of the laser can be used per image. This single pulse necessitates the use of many individual detectors and receive electronics to adequately record the resulting acoustic waves and form an image. Such requirements make many PA imaging systems both costly and complex. This investigation proposes and models a method of volumetric PA imaging using a state-of-the-art compressed sensing approach to achieve real-time acquisition of the initial pressure distribution (IPD) at a reduced level of cost and complexity. In particular, a single exposure of an optical image sensor is used to capture an entire Fabry–Pérot interferometric acoustic sensor. Time resolved encoding as achieved through spatial sweeping with a galvanometer. This optical system further makes use of a random binary mask to set a predetermined subset of pixels to zero, thus enabling recovery of the time-resolved signals. The Two-Step Iterative Shrinking and Thresholding algorithm is used to reconstruct the IPD, harnessing the sparsity naturally occurring in the IPD as well as the additional structure provided by the binary mask. We conduct experiments on simulated data and analyze the performance of our new approach.
Collapse
Affiliation(s)
- Dylan Green
- Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA; (D.G.); (A.G.)
| | - Anne Gelb
- Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA; (D.G.); (A.G.)
| | - Geoffrey P. Luke
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Correspondence:
| |
Collapse
|
88
|
Wang H, Yang H, Chen Z, Zheng Q, Jiang H, Feng PXL, Xie H. Development of Dual-Frequency PMUT Arrays Based on Thin Ceramic PZT for Endoscopic Photoacoustic Imaging. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2021; 30:770-782. [PMID: 35528228 PMCID: PMC9075345 DOI: 10.1109/jmems.2021.3096733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper presents a dual-frequency piezoelectric micromachined ultrasonic transducer (pMUT) array based on thin ceramic PZT for endoscopic photoacoustic imaging (PAI) applications. With a chip size of 7 × 7 mm2, the pMUT array consists of 256 elements, half of which have a lower resonant frequency of 1.2 MHz and the other half have a higher resonant frequency of 3.4 MHz. Ceramic PZT, with outstanding piezoelectric coefficients, has been successfully thinned down to a thickness of only 4 μ by using wafer bonding and chemical mechanical polishing (CMP) techniques and employed as the piezoelectric layer of the pMUT elements. The diaphragm diameters of the lower-frequency and higher-frequency elements are 220 μm and 120 μm, respectively. The design methodology, multiphysics modeling, fabrication process, and characterization of the pMUTs are presented in detail. The fabricated pMUT array has been fully characterized via electrical, mechanical, and acoustic measurements. The measured maximum responsivities of the lower- and higher- frequency elements reach 110 nm/V and 30 nm/V at their respective resonances. The measured cross-couplings of the lower-frequency elements and higher-frequency elements are about 9% and 5%, respectively. Furthermore, PAI experiments with pencil leads embedded into an agar phantom have been conducted, which clearly shows the advantages of using dual-frequency pMUT arrays to provide comprehensive photoacoustic images with high spatial resolution and large signal-to-noise ratio simultaneously.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Hao Yang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Zhenfang Chen
- MEMS Engineering and Materials Inc., Sunnyvale, CA 94086, USA
| | - Qincheng Zheng
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Philip X-L Feng
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Huikai Xie
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
89
|
Wei J, Liu Y, Yu J, Chen L, Luo M, Yang L, Li P, Li S, Zhang XH. Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103127. [PMID: 34510742 DOI: 10.1002/smll.202103127] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Conjugated polymers (CPs) are capable of coordinating the electron coupling phenomenon to bestow powerful optoelectronic features. The light-harvesting and light-amplifying properties of CPs are extensively used in figuring out the biomedical issues with special emphasis on accurate diagnosis, effective treatment, and precise theranostics. This review summarizes the recent progress of CP materials in bioimaging, cancer therapeutics, and introduces the design strategies by rationally tuning the optical properties. The recent advances of CPs in bioimaging applications are first summarized and the challenges to clear the future directions of CPs in the respective area are discussed. In the following sections, the focus is on the burgeoning applications of CPs in phototherapy of the tumor, and illustrates the underlying photo-transforming mechanism for further molecular designing. Besides, the recent progress in the CPs-assistant drug therapy, mainly including drug delivery, gene therapeutic, the optical-activated reversion of tumor resistance, and synergistic therapy has also been discussed elaborately. In the end, the potential challenges and future developments of CPs on cancer diagnosis and therapy are also illuminated for the improvement of optical functionalization and the promotion of clinical translation.
Collapse
Affiliation(s)
- Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
90
|
Chen Y, Xu C, Cheng Y, Cheng Q. Photostability enhancement of silica-coated gold nanostars for photoacoustic imaging guided photothermal therapy. PHOTOACOUSTICS 2021; 23:100284. [PMID: 34354923 PMCID: PMC8322131 DOI: 10.1016/j.pacs.2021.100284] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 05/14/2023]
Abstract
Gold nanostars (GNSs) are promising contrast agents for simultaneous photothermal therapy and photoacoustic imaging (PAI) owing to their excellent photothermal conversion efficiency. However, GNSs are easily reshaped under transient high-intensity laser pulses, which can cause a rapid shift in the light absorption peak, resulting in a decrease in both therapeutic and monitoring effects. In this work, we synthesized GNSs without toxic surfactants and coated them with a silica shell to retain their shape, thus maintaining their photostability. The excellent performance of these silica-coated GNSs was verified through both in vitro and in vivo PAI experiments. The silica-coated GNSs exhibited a threefold improvement in photoacoustic stability, as compared with the non-coated GNSs. The proposed silica coating method for GNSs was found to improve the photostability of GNSs, making them efficient, safe, and reliable nanoparticles for PAI.
Collapse
Affiliation(s)
- Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Chang Xu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Yu Cheng
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
91
|
Gellini C, Feis A. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. PHOTOACOUSTICS 2021; 23:100281. [PMID: 34194975 PMCID: PMC8233228 DOI: 10.1016/j.pacs.2021.100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 05/08/2023]
Abstract
Plasmonic systems are becoming a favourable alternative to dye molecules in the generation of photoacoustic signals for spectroscopy and imaging. In particular, inorganic nanoparticles are appealing because of their versatility. In fact, as the shape, size and chemical composition of nanoparticles are directly correlated with their plasmonic properties, the excitation wavelength can be tuned to their plasmon resonance by adjusting such traits. This feature enables an extensive spectral range to be covered. In addition, surface chemical modifications can be performed to provide the nanoparticles with designed functionalities, e.g., selective affinity for specific macromolecules. The efficiency of the conversion of absorbed photon energy into heat, which is the physical basis of the photoacoustic signal, can be accurately determined by photoacoustic methods. This review contrasts studies that evaluate photoconversion in various kinds of nanomaterials by different methods, with the objective of facilitating the researchers' choice of suitable plasmonic nanoparticles for photoacoustic applications.
Collapse
Affiliation(s)
- Cristina Gellini
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Feis
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
92
|
Zhang Y, Shen Q, Li Q, He P, Li J, Huang F, Wang J, Duan Y, Shen C, Saleem F, Luo Z, Wang L. Ultrathin Two-Dimensional Plasmonic PtAg Nanosheets for Broadband Phototheranostics in Both NIR-I and NIR-II Biowindows. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100386. [PMID: 34247445 PMCID: PMC8425935 DOI: 10.1002/advs.202100386] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 05/20/2023]
Abstract
Broadband near-infrared (NIR) photothermal and photoacoustic agents covering from the first NIR (NIR-I) to the second NIR (NIR-II) biowindow are of great significance for imaging and therapy of cancers. In this work, ultrathin two-dimensional plasmonic PtAg nanosheets are discovered with strong broadband light absorption from NIR-I to NIR-II biowindow, which exhibit outstanding photothermal and photoacoustic effects under both 785 and 1064 nm lasers. Photothermal conversion efficiencies (PCEs) of PtAg nanosheets reach 19.2% under 785 nm laser and 45.7% under 1064 nm laser. The PCE under 1064 nm laser is higher than those of most reported inorganic NIR-II photothermal nanoagents. After functionalization with folic acid modified thiol-poly(ethylene glycol) (SH-PEG-FA), PtAg nanosheets endowed with good biocompatibility and 4T1 tumor-targeted function give high performances for photoacoustic imaging (PAI) and photothermal therapy (PTT) in vivo under both 785 and 1064 nm lasers. The effective ablation of tumors in mice can be realized without side effects and tumor metastasis by PAI-guided PTT of PtAg nanosheets under 785 or 1064 nm laser. The results demonstrate that the prepared PtAg nanosheets with ultrathin thickness and small size can serve as a promising phototheranostic nanoplatform for PAI-guided PTT of tumors in both NIR-I and NIR-II biowindows.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Electronic and Optical Engineering and College of MicroelectronicNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Qi Shen
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Electronic and Optical Engineering and College of MicroelectronicNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Qi Li
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Electronic and Optical Engineering and College of MicroelectronicNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Panpan He
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Electronic and Optical Engineering and College of MicroelectronicNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Jinyan Li
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Electronic and Optical Engineering and College of MicroelectronicNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Feng Huang
- Department of Human Anatomy, School of Basic Medical SciencesKey Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian ProvinceFujian Medical University1 Xueyuan RoadFuzhou350122China
| | - Jing Wang
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Electronic and Optical Engineering and College of MicroelectronicNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Yefan Duan
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Electronic and Optical Engineering and College of MicroelectronicNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Chuang Shen
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Electronic and Optical Engineering and College of MicroelectronicNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Faisal Saleem
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Zhimin Luo
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Electronic and Optical Engineering and College of MicroelectronicNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Electronic and Optical Engineering and College of MicroelectronicNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| |
Collapse
|
93
|
Yazdani A, Agrawal S, Johnstonbaugh K, Kothapalli SR, Monga V. Simultaneous Denoising and Localization Network for Photoacoustic Target Localization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2367-2379. [PMID: 33939612 PMCID: PMC8526152 DOI: 10.1109/tmi.2021.3077187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A significant research problem of recent interest is the localization of targets like vessels, surgical needles, and tumors in photoacoustic (PA) images.To achieve accurate localization, a high photoacoustic signal-to-noise ratio (SNR) is required. However, this is not guaranteed for deep targets, as optical scattering causes an exponential decay in optical fluence with respect to tissue depth. To address this, we develop a novel deep learning method designed to explicitly exhibit robustness to noise present in photoacoustic radio-frequency (RF) data. More precisely, we describe and evaluate a deep neural network architecture consisting of a shared encoder and two parallel decoders. One decoder extracts the target coordinates from the input RF data while the other boosts the SNR and estimates clean RF data. The joint optimization of the shared encoder and dual decoders lends significant noise robustness to the features extracted by the encoder, which in turn enables the network to contain detailed information about deep targets that may be obscured by noise. Additional custom layers and newly proposed regularizers in the training loss function (designed based on observed RF data signal and noise behavior) serve to increase the SNR in the cleaned RF output and improve model performance. To account for depth-dependent strong optical scattering, our network was trained with simulated photoacoustic datasets of targets embedded at different depths inside tissue media of different scattering levels. The network trained on this novel dataset accurately locates targets in experimental PA data that is clinically relevant with respect to the localization of vessels, needles, or brachytherapy seeds. We verify the merits of the proposed architecture by outperforming the state of the art on both simulated and experimental datasets.
Collapse
|
94
|
Sarbadhikary P, George BP, Abrahamse H. Recent Advances in Photosensitizers as Multifunctional Theranostic Agents for Imaging-Guided Photodynamic Therapy of Cancer. Theranostics 2021; 11:9054-9088. [PMID: 34522227 PMCID: PMC8419035 DOI: 10.7150/thno.62479] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years tremendous effort has been invested in the field of cancer diagnosis and treatment with an overall goal of improving cancer management, therapeutic outcome, patient survival, and quality of life. Photodynamic Therapy (PDT), which works on the principle of light-induced activation of photosensitizers (PS) leading to Reactive Oxygen Species (ROS) mediated cancer cell killing has received increased attention as a promising alternative to overcome several limitations of conventional cancer therapies. Compared to conventional therapies, PDT offers the advantages of selectivity, minimal invasiveness, localized treatment, and spatio-temporal control which minimizes the overall therapeutic side effects and can be repeated as needed without interfering with other treatments and inducing treatment resistance. Overall PDT efficacy requires proper planning of various parameters like localization and concentration of PS at the tumor site, light dose, oxygen concentration and heterogeneity of the tumor microenvironment, which can be achieved with advanced imaging techniques. Consequently, there has been tremendous interest in the rationale design of PS formulations to exploit their theranostic potential to unleash the imperative contribution of medical imaging in the context of successful PDT outcomes. Further, recent advances in PS formulations as activatable phototheranostic agents have shown promising potential for finely controlled imaging-guided PDT due to their propensity to specifically turning on diagnostic signals simultaneously with photodynamic effects in response to the tumor-specific stimuli. In this review, we have summarized the recent progress in the development of PS-based multifunctional theranostic agents for biomedical applications in multimodal imaging combined with PDT. We also present the role of different imaging modalities; magnetic resonance, optical, nuclear, acoustic, and photoacoustic in improving the pre-and post-PDT effects. We anticipate that the information presented in this review will encourage future development and design of PSs for improved image-guided PDT for cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | | |
Collapse
|
95
|
Lin Y, Xiao S, Yao W, Lv Z, Tang Y, Zhang Y, Chen L. Molecular photoacoustic imaging for early diagnosis and treatment monitoring of rheumatoid arthritis in a mouse model. Am J Transl Res 2021; 13:8873-8884. [PMID: 34540001 PMCID: PMC8430181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive inflammatory joint disease. Early diagnosis is critical for timely therapeutic intervention. However, it lacks effective diagnostic methods capable of detecting disease progression in its early stage and evaluating treatment efficacy in clinics. Photoacoustic (PA) molecular imaging is a novel imaging modality that can detect in the early stage of disease and continuously monitor its progression. In this study, Evans blue (EB) was used as a PA contrast agent to detect the angiogenesis and microcirculation dysfunction in RA joint. In collagen-induced arthritis (CIA) mouse model, a distinct increase of PA signal was detected early at 2 weeks, with significant higher PA signal intensities from the RA joints compared to the normal joints. More importantly, we detected an increasing trend of PA signal intensity week by week post CIA induction, demonstrating the potential of EB-enhanced PA imaging in monitoring the development of RA. However, joint damage was silent in the X-ray at 2 weeks post CIA induction, which suggested the superiority of PA imaging in RA early detection. In addition, striking decrease of PA signal intensities in the RA joints was observed after administration with etanercept compared with the untreated RA joints. The signal changes exhibited by PA imaging were confirmed by clinical observation and histological examinations. This study demonstrated the promising use of EB-enhanced PA imaging for the early diagnosis and its feasibility for RA treatment monitoring.
Collapse
Affiliation(s)
- Yimu Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, P. R. China
| | - Shuyi Xiao
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou 310016, P. R. China
| | - Wei Yao
- Department of Respiratory Medicine, Huzhou First People’s HospitalHuzhou 313000, P. R. China
| | - Zhuang Lv
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT)Nanjing 210023, P. R. China
| | - Yufu Tang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech)Nanjing 211816, P. R. China
| | - Yu Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, P. R. China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, P. R. China
| |
Collapse
|
96
|
Abstract
Photoacoustic imaging is a new type of noninvasive, nonradiation imaging modality that combines the deep penetration of ultrasonic imaging and high specificity of optical imaging. Photoacoustic imaging systems employing conventional ultrasonic sensors impose certain constraints such as obstructions in the optical path, bulky sensor size, complex system configurations, difficult optical and acoustic alignment, and degradation of signal-to-noise ratio. To overcome these drawbacks, an ultrasonic sensor in the optically transparent form has been introduced, as it enables direct delivery of excitation light through the sensors. In recent years, various types of optically transparent ultrasonic sensors have been developed for photoacoustic imaging applications, including optics-based ultrasonic sensors, piezoelectric-based ultrasonic sensors, and microelectromechanical system-based capacitive micromachined ultrasonic transducers. In this paper, the authors review representative transparent sensors for photoacoustic imaging applications. In addition, the potential challenges and future directions of the development of transparent sensors are discussed.
Collapse
|
97
|
Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
98
|
Zhang C, Wu L, de Perrot M, Zhao X. Carbon Nanotubes: A Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials. Front Oncol 2021; 11:693814. [PMID: 34386422 PMCID: PMC8353320 DOI: 10.3389/fonc.2021.693814] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon nanotubes (CNTs) are nanomaterials with broad applications that are produced on a large scale. Animal experiments have shown that exposure to CNTs, especially one type of multi-walled carbon nanotube, MWCNT-7, can lead to malignant transformation. CNTs have characteristics similar to asbestos (size, shape, and biopersistence) and use the same molecular mechanisms and signaling pathways as those involved in asbestos tumorigenesis. Here, a comprehensive review of the characteristics of carbon nanotubes is provided, as well as insights that may assist in the design and production of safer nanomaterials to limit the hazards of currently used CNTs.
Collapse
Affiliation(s)
- Chengke Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Licun Wu
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Department Immunology, University of Toronto, Toronto, ON, Canada
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
99
|
Zha M, Ni JS, Li Y, Li K. Monitoring tumor growth with a novel NIR-II photoacoustic probe. Methods Enzymol 2021; 657:181-222. [PMID: 34353487 DOI: 10.1016/bs.mie.2021.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this chapter, we designed and synthesized a series of thiadiazoloquinoxaline (TQ)-based semiconducting polymers (SPs) with a broad absorption covering from NIR-I to NIR-II regions. Theoretical calculation suggests that the BTD-TQE with ester-substituted TQ-acceptor shows a large dihedral angle and narrow adiabatic energy as well as low radiative decay, resulting in higher reorganization energy for efficient photoinduced nonradiative decay (PNRD). As a result, the obtained BDT-TQE SP-cored nanoparticles, a NIR-II PA probe, exhibit a highest NIR-II photothermal conversion efficiency (61.6%) and achieved PA tracking of in situ hepatic tumor growth for 20 days. Herein, we propose a strategy to construct an effective NIR-II photoacoustic reagent through the enhanced PNRD effect of twisted intramolecular charge transfer (TICT), thereby extending the application of NIR-II PA reagents in in vivo bioimaging.
Collapse
Affiliation(s)
- Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Jen-Shyang Ni
- Department of Chemical and Materials Engineering, Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung, China
| | - Yaxi Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| |
Collapse
|
100
|
Nie W, Yao L, Chen G, Wu S, Liao Z, Han L, Ye X. A novel Cr 3+-doped Lu 2CaMg 2Si 3O 12 garnet phosphor with broadband emission for near-infrared applications. Dalton Trans 2021; 50:8446-8456. [PMID: 34041515 DOI: 10.1039/d1dt01195b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Near-infrared (NIR) phosphor-converted light emitting diode (pc-LED) light sources have broad application prospects in environmental science, biomedical and plant growth fields. However, NIR phosphors still suffer from narrowband emission and low thermal stability. Here, we prepared a novel Lu2CaMg2-xSi3O12:xCr3+ (LCMS:xCr3+, x = 0.005-0.06) phosphor with broadband emission by a high-temperature solid state reaction. Under excitation at 450 nm, the emission spectrum of the LCMS:0.05Cr3+ phosphor shows a broadband emission in the range of 650-1000 nm with a large full width at half maximum (FWHM) of 125 nm and an R-line emission of 692 nm. In addition, the LCMS:0.05Cr3+ phosphor has good thermal stability and can maintain 70% emission intensity at 150 °C relative to that at room temperature. The LCMS:0.05Cr3+ phosphor exhibits a high internal quantum efficiency (IQE) of ∼76%. Using this phosphor, a NIR pc-LED with photoelectric efficiencies of 14.8% at 100 mA and 6.0% at 320 mA and NIR output powers of 59.5 mW at 100 mA and 181.0 mW at 320 mA was obtained. The broadband LCMS:0.05Cr3+ phosphor with a NIR emission peaked at 750 nm can serve as a light source for plant cultivation and has superior application prospects in the agriculture field.
Collapse
Affiliation(s)
- Wendong Nie
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China. and Key Laboratory of Rare Earth Luminescence Materials and Devices of Jiangxi Province, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Liqin Yao
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China. and Key Laboratory of Rare Earth Luminescence Materials and Devices of Jiangxi Province, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Guang Chen
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China. and Key Laboratory of Rare Earth Luminescence Materials and Devices of Jiangxi Province, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - ShiHao Wu
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China. and Key Laboratory of Rare Earth Luminescence Materials and Devices of Jiangxi Province, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Zhijian Liao
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China. and Key Laboratory of Rare Earth Luminescence Materials and Devices of Jiangxi Province, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Lei Han
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China. and Key Laboratory of Rare Earth Luminescence Materials and Devices of Jiangxi Province, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Xinyu Ye
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China. and National Engineering Research Center for Ionic Rare Earth, Ganzhou, 341000, PR China and Key Laboratory of Rare Earth Luminescence Materials and Devices of Jiangxi Province, Jiangxi University of Science and Technology, Ganzhou 341000, PR China and Nation Rare Earth Functional Materials Manufacturing Innovation Centre, Ganzhou, 341000, PR China
| |
Collapse
|