51
|
Canalejo D, Guadalupe Z, Martínez-Lapuente L, Ayestarán B, Pérez-Magariño S. Optimization of a method to extract polysaccharides from white grape pomace by-products. Food Chem 2021; 365:130445. [PMID: 34237579 DOI: 10.1016/j.foodchem.2021.130445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/19/2021] [Accepted: 06/20/2021] [Indexed: 11/18/2022]
Abstract
The aim of this paper is to optimize a method to recover polysaccharides from white grape pomace (non-fermented), the main waste by-product of the food industry. Different conditions are tested and the polysaccharides extracted are analyzed by high performance size exclusion chromatography with refractive index detector (HPSEC-RID) and gas chromatography with mass detector (GC-MS). The extraction solvent did not show a significant effect on the polysaccharide extraction, acid pH yielded to higher efficiencies, and longer extraction times extracted more smaller polysaccharides (≤5.4 kg mol-1). The highest efficiencies were obtained with both solvents at pH 1 and 1:4 solid to liquid ratio. The optimum conditions selected (TA as solvent of extraction, 2.5 g L-1 solvent concentration, pH = 1, 1:4 solid to liquid ratio, and 18 h of extraction time) allow the extraction of polysaccharides rich in arabinose and galactose, rhamnogalacturonans, homogalacturonans and glucosyl polysaccharides, under efficient and food-safe conditions.
Collapse
Affiliation(s)
- Diego Canalejo
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain
| | - Zenaida Guadalupe
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain.
| | - Leticia Martínez-Lapuente
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain
| | - Belén Ayestarán
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain
| | - Silvia Pérez-Magariño
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra Burgos Km 119, 47071 Valladolid, Spain
| |
Collapse
|
52
|
Optimization of enzymatic hydrolysis of immature citrus ( Citrus unshiu Marcov.) for flavonoid content and antioxidant activity using a response surface methodology. Food Sci Biotechnol 2021; 30:663-673. [PMID: 34123463 DOI: 10.1007/s10068-021-00897-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022] Open
Abstract
Immature citrus with peel was enzymatically treated for production of a hydrolysate with enriched bioactive components and higher antioxidant activity. The effects of reaction factors, including enzyme concentration, reaction time, and temperature on hesperetin and naringenin contents, total phenolic content (TPC), and antioxidant activity were investigated using response surface methodology. The models were adequate, and the enzyme concentration, temperature, and time positively affected hesperetin and naringenin contents and TPC, but negatively affected DPPH radical scavenging capacity. The reaction conditions for maximizing hesperetin, naringenin, and total phenol production and ferric reducing antioxidant power were optimized with the combination of enzyme concentration at 4%, 51 °C and 18 h. The hydrolysate at the optimized conditions contained higher hesperetin and naringenin contents and TPC compared with those before hydrolysis, by 251.7-, 45.5-, and 2.6-fold, respectively. This hydrolysate can be utilized in the production of functional beverages with high added values.
Collapse
|
53
|
Domínguez-Rodríguez G, Plaza M, Marina ML. High-performance thin-layer chromatography and direct analysis in real time-high resolution mass spectrometry of non-extractable polyphenols from tropical fruit peels. Food Res Int 2021; 147:110455. [PMID: 34399456 DOI: 10.1016/j.foodres.2021.110455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Passiflora species, mangosteen, and cherimoya peels are a source of bioactive phenolic compounds. Nevertheless, a significant fraction of polyphenols, called non-extractable polyphenols (NEPs), are retained in the extraction residue after a conventional extraction. Thus, alkaline, acid, and enzymatic-assisted extractions to recover high contents of antioxidant NEPs from the extraction residue of fruit peels, were compared in this work. A high-performance thin-layer chromatography method with UV/Vis detection was developed in order to obtain the phenolic profile for the extracts. The most intense bands were further analyzed by direct analysis in real-time-high-resolution mass spectrometry to tentatively identified NEPs in fruit peel extracts. Total phenolic and proanthocyanidin contents and antioxidant capacity of the extracts were measured to carry out a multivariate statistical analysis. Alkaline hydrolysis was the most efficient treatment to recover NEPs from fruit peels as well as a promising treatment to obtain antioxidant extracts along with EAE. Cherimoya peel extracts were the richest in antioxidant NEPs. This work highlights that many NEPs remain on the extraction residue of fruit peels after conventional extraction and are not usually taken into account.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Merichel Plaza
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
54
|
The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021; 10:foods10040867. [PMID: 33921097 PMCID: PMC8071402 DOI: 10.3390/foods10040867] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Grape pomace is one of the most abundant solid by-products generated during winemaking. A lot of products, such as ethanol, tartrates, citric acid, grape seed oil, hydrocolloids, bioactive compounds and dietary fiber are recovered from grape pomace. Grape pomace represents a major interest in the field of fiber extraction, especially pectin, as an alternative source to conventional ones, such as apple pomace and citrus peels, from which pectin is obtained by acid extraction and precipitation using alcohols. Understanding the structural and functional components of grape pomace will significantly aid in developing efficient extraction of pectin from unconventional sources. In recent years, natural biodegradable polymers, like pectin has invoked a big interest due to versatile properties and diverse applications in food industry and other fields. Thus, pectin extraction from grape pomace could afford a new reason for the decrease of environmental pollution and waste generation. This paper briefly describes the structure and composition of grape pomace of different varieties for the utilization of grape pomace as a source of pectin in food industry.
Collapse
|
55
|
Xavier Machado TDO, Portugal IBM, Padilha CVDS, Ferreira Padilha F, Dos Santos Lima M. New trends in the use of enzymes for the recovery of polyphenols in grape byproducts. J Food Biochem 2021; 45:e13712. [PMID: 33786844 DOI: 10.1111/jfbc.13712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022]
Abstract
Residues from wine and juice processing still contain about 70% of the phenolic compounds in grapes. These compounds are valued for having several bioactive properties that are explored in the pharmaceutical and food sectors. This paper aims to summarize the most recent advances in the use of enzymatic techniques for the recovery of bioactive compounds from GP for industrial application. For this, we analyzed scientific articles and patent applications from the last 20 years in the main indexed and patent databases. Among the most used enzymes in the recovery of bioactive compounds in wastes, cellulases, pectinases, tannases, glucoamylases, and proteases such as trypsin and chymotrypsin, are the most important. As a result, extracts are obtained with greater retrieval of compounds such as anthocyanins, gallic acid, catechins, epicatechins, and trans-resveratrol and the improvement of coloring, anti-inflammatory, antioxidant and vasoprotective properties. Although the use of enzymes for the recovery of phenolics is an old strategy, the number of studies focusing on the functional characteristics and industrial applicability of the extracts obtained has been recently growing. PRACTICAL APPLICATIONS: Phenolic compounds have acted as anti-inflammatories, antioxidants, anticarcinogens, and antimicrobials, being additives or relevant ingredients for various products in the food and pharmaceutical industry. Although there are several techniques for extracting/recovering phenolics from grape pomace, there is still no agreement on which method is ideal. In recent years, several extractions methods have been applied in seeking optimized conditions to recover phenolics from grape residues. Among them, the use of enzymes has been gaining attention for being considered a green and promising technology. The present study aims to carry out a review that would bring a new perspective to the recovery of bioactive compounds from grape residues by enzymatic techniques, with a view to industrial purpose.
Collapse
Affiliation(s)
| | | | | | | | - Marcos Dos Santos Lima
- Departamento de Tecnologia em Alimentos, Instituto Federal do Sertão Pernambucano, Petrolina, Brazil
| |
Collapse
|
56
|
Energy Utilization of Torrefied Residue from Wine Production. MATERIALS 2021; 14:ma14071610. [PMID: 33806159 PMCID: PMC8037500 DOI: 10.3390/ma14071610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
A significant amount of waste is generated in the food industry, which is both an environmental and an economic problem. The recycling of this waste has become an important area of research. The processing of grapes produces 20-30% of the waste in the form of grape pomace and stalks. This article assesses the fuel values of these materials before and after torrefaction. The input materials were grape pomace samples from the varieties Riesling (Vitis vinifera "Welschriesling") and Cabernet Sauvignon (Vitis vinifera "Cabernet Sauvignon") from the South Moravia region and stalks from the variety Welschriesling. The torrefaction process was performed using a LECO TGA 701 thermogravimetric analyzer under nitrogen atmosphere at set temperatures of 225 °C, 250 °C, and 275 °C. The residence time was 30 min. Elemental analysis, calorific value, and gross calorific value were determined for all samples. The analyses show a positive effect of torrefaction on fuel properties in the samples. Between temperatures 250 °C and 275 °C, the carbon content increased by 4.29 wt.%, and the calorific value increased with the increase in temperature reaching a value of 25.84 MJ·kg-1 at a peak temperature of 275 °C in the sample grape pomace from blue grapevine.
Collapse
|
57
|
Oliver L, Ramió-Pujol S, Amoedo J, Malagón M, Serrano M, Bahí A, Lluansí A, Torrealba L, Busquets D, Pardo L, Serra-Pagès M, Aldeguer X, Garcia-Gil J. A Novel Grape-Derived Prebiotic Selectively Enhances Abundance and Metabolic Activity of Butyrate-Producing Bacteria in Faecal Samples. Front Microbiol 2021; 12:639948. [PMID: 33833742 PMCID: PMC8021714 DOI: 10.3389/fmicb.2021.639948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) patients have different faecal microbiota profiles compared to healthy controls. Prebiotics intake influences intestinal microbiota composition which in turn influence the growth of short-chain fatty acids (SCFA) producing bacteria. This study aimed to evaluate the capacity of Previpect, a new prebiotic obtained from grapes fibre, to balance the dysbiosis found in patients with intestinal disorders. This was achieved through the analysis of specific bacterial markers and SCFA production using an in vitro fermentation system and comparing the obtained results with those obtained with other commercial prebiotics. Fresh faecal samples from patients with IBD (N = 6), IBS (N = 3), and control subjects (N = 6) were used. Previpect showed high fermentative ability enabling the growth of butyrate producing bacteria and increasing SCFA concentration up to 2.5-fold. Previpect is a promising prebiotic which may be used as a therapeutic strategy towards promotion of intestinal microbiota restoration, microbial healing, and as a preventive supplement for healthy individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Bahí
- Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain
| | - Aleix Lluansí
- Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain
| | | | - David Busquets
- Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Laura Pardo
- Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | | - Xavier Aldeguer
- GoodGut SL, Girona, Spain.,Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain.,Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | |
Collapse
|
58
|
Monitoring Commercial Starter Culture Development in Presence of Red Grape Pomace Powder to Produce Polyphenol-Enriched Fresh Ovine Cheeses at Industrial Scale Level. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Red grape Nero d’Avola cultivar grape pomace powder (GPP) was applied during fresh ovine cheese production in order to increase polyphenol content. Before cheeses were produced, the bacteria of a freeze-dried commercial starter culture were isolated and tested in vitro against GPP. Two dominant strains, both resistant to GPP, were identified. Thestarter culture was inoculated in pasteurized ewe’s milk and the curd was divided into two bulks, one added with 1% (w/w) GPP and another one GPP-free. GPP did not influence the starter culture development, since lactic acid bacteria (LAB) counts were 109 CFU/g in both cheeses at 30 d. To exclude the interference of indigenous LAB, the pasteurized milk was analyzed, and several colonies of presumptive LAB were isolated, purified and typed. Four strains were allotted into Enterococcus and Lacticaseibacillus genera. The direct comparison of the polymorphic profiles of cheese bacteria evidenced the dominance of the starter culture over milk LAB. The addition of GPP increased cheese total phenolic compounds by 0.42 g GAE/kg. Sensory evaluation indicated that GPP-enriched cheese was well appreciated by the judges, providing evidence that GPP is a suitable substrate to increase the availability of total phenolic content in fresh ovine cheese.
Collapse
|
59
|
Clarification of the pomegranate juice in a bioreactor packed by pectinase enzymes immobilized on the glass bead activated with polyaldehyde polysaccharides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
60
|
Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021; 26:molecules26030718. [PMID: 33573150 PMCID: PMC7866523 DOI: 10.3390/molecules26030718] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Wine is one of the most consumed beverages around the world. It is composed of alcohols, sugars, acids, minerals, proteins and other compounds, such as organic acids and volatile and phenolic compounds (also called polyphenols). Polyphenols have been shown to be highly related to both (i) wine quality (color, flavor, and taste) and (ii) health-promoting properties (antioxidant and cardioprotective among others). Polyphenols can be grouped into two big families: (i) Flavonoids, including anthocyanidins, flavonols, flavanols, hydrolysable and condensed tannins, flavanones, flavones and chalcones; and (ii) Non-flavonoids, including hydroxycinnamic acids, hydroxybenzoic acids, stilbenes, tyrosol and hydroxytyrosol. Each group affects in some way the different properties of wine to a greater or a lesser extent. For that reason, the phenolic composition can be managed to obtain singular wines with specific, desirable characteristics. The current review presents a summary of the ways in which the phenolic composition of wine can be modulated, including (a) invariable factors such as variety, field management or climatic conditions; (b) pre-fermentative strategies such as maceration, thermovinification and pulsed electric field; (c) fermentative strategies such as the use of different yeasts and bacteria; and (d) post-fermentative strategies such as maceration, fining agents and aging. Finally, the different extraction methods and analytical techniques used for polyphenol detection and quantification have been also reviewed.
Collapse
|
61
|
Interactions between Polyphenols and Volatile Compounds in Wine: A Literature Review on Physicochemical and Sensory Insights. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031157] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Wine polyphenols (PPhs) and volatile organic compounds (VOCs) are responsible for two of the main sensory characteristics in defining the complexity and quality of red wines: astringency and aroma. Wine VOCs’ volatility and solubility are strongly influenced by the matrix composition, including the interactions with PPhs. To date, these interactions have not been deeply studied, although the topic is of great interest in oenology. This article reviews the available knowledge on the main physicochemical and sensory effects of polyphenols on the release and perception of wine aromas in orthonasal and retronasal conditions. It describes the molecular insights and the phenomena that can modify VOCs behavior, according to the different chemical classes. It introduces the possible impact of saliva on aroma release and perception through the modulation of polyphenols–aroma compounds interactions. Limitations and possible gaps to overcome are presented together with updated approaches used to investigate those interactions and their effects, as well as future perspectives on the subject.
Collapse
|
62
|
Wine By-Products as Raw Materials for the Production of Biopolymers and of Natural Reinforcing Fillers: A Critical Review. Polymers (Basel) 2021; 13:polym13030381. [PMID: 33530517 PMCID: PMC7865623 DOI: 10.3390/polym13030381] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/19/2023] Open
Abstract
The plastic industry is today facing a green revolution; however, biopolymers, produced in low amounts, expensive, and food competitive do not represent an efficient solution. The use of wine waste as second-generation feedstock for the synthesis of polymer building blocks or as reinforcing fillers could represent a solution to reduce biopolymer costs and to boost the biopolymer presence in the market. The present critical review reports the state of the art of the scientific studies concerning the use of wine by-products as substrate for the synthesis of polymer building blocks and as reinforcing fillers for polymers. The review has been mainly focused on the most used bio-based and biodegradable polymers present in the market (i.e., poly(lactic acid), poly(butylene succinate), and poly(hydroxyalkanoates)). The results present in the literature have been reviewed and elaborated in order to suggest new possibilities of development based on the chemical and physical characteristics of wine by-products.
Collapse
|
63
|
Nguyen HC, Nguyen HNT, Huang M, Lin K, Pham D, Tran YB, Su C. Optimization of aqueous enzyme‐assisted extraction of rosmarinic acid from rosemary (
Rosmarinus
officinalis
L.) leaves and the antioxidant activity of the extract. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hoang Chinh Nguyen
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| | | | - Meng‐Yuan Huang
- Department of Life Sciences National Chung Hsing University Taichung City Taiwan
| | - Kuan‐Hung Lin
- Department of Horticulture and Biotechnology Chinese Culture University Taipei Taiwan
| | - Dinh‐Chuong Pham
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Yen Binh Tran
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Chia‐Hung Su
- Graduate School of Biochemical Engineering Ming Chi University of Technology New Taipei City Taiwan
| |
Collapse
|
64
|
Formulation and Stability of Cellulose-Based Delivery Systems of Raspberry Phenolics. Processes (Basel) 2021. [DOI: 10.3390/pr9010090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Encapsulation of bioactives is a tool to prepare their suitable delivery systems and ensure their stability. For this purpose, cellulose was selected as carrier of raspberry juice phenolics and freeze-dried cellulose/raspberry encapsulates (C/R_Es) were formulated. Influence of cellulose amount (2.5%, 5%, 7.5% and 10%) and time (15 or 60 min) on the complexation of cellulose and raspberry juice was investigated. Obtained C/R_Es were evaluated for total phenolics, anthocyanins, antioxidant activity, inhibition of α-amylase and color. Additionally, encapsulation was confirmed by FTIR. Stability of C/R_Es was examined after 12 months of storage at room temperature. Increasing the amount of cellulose during formulation of C/R_E from 2.5% to 10%, resulted in the decrease of content of total phenolics and anthocyanins. Additionally, encapsulates formulated by 15 min of complexation had a higher amount of investigated compounds. This tendency was retained after storage. The highest antioxidant activities were determined for C/R_E with 2.5% of cellulose and the lowest for those with 10% of cellulose, regardless of the methods used for its evaluation. After storage of 12 months, antioxidant activity slightly increased. Encapsulates with 2.5% of cellulose had the highest and those with 10% of cellulose the lowest capability for inhibition of α-amylase. The amount of cellulose also had an impact on color of C/R_Es. Results of this study suggest that cellulose could be a good encapsulation polymer for delivering raspberry bioactives, especially when cellulose was used in lower percentages for formulation of encapsulates.
Collapse
|
65
|
Espejo F. Role of commercial enzymes in wine production: a critical review of recent research. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:9-21. [PMID: 33505047 PMCID: PMC7813895 DOI: 10.1007/s13197-020-04489-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/02/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Purified enzymes of microbial origin are applied in the beverage industry since decades because of their ability to enhance products and processes with minimal side effects and low costs. Commercial enzymes are widely used during different wine making steps providing a broad range of effects, such as to maximise juice yield, improve aroma compounds, flavour enhancement, colour extraction in red wines, and contribute in the removal of dissolved unwanted colloidal particles and pectin substances during wine stabilization and filtration. This review presents a study of recent advances in the application of commercial enzymes in the wine making of red, white and sweet wines that have been made in essentially the last 13 years (2005-2018). Literature has been critically analysed to discover general rules about previous research. Special attention is paid to the safety of enzyme application due to allergic issues. Future research efforts should be concentrated on application of immobilizated enzymes and the use of microorganisms with potential enzymatic side activities during wine production.
Collapse
Affiliation(s)
- Francisco Espejo
- Department of Quality, Navisa Industrial Vinícola Española S.A., Avda. José Padillo s/n, 14550 Montilla, Córdoba Spain
| |
Collapse
|
66
|
Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110128] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
67
|
Yang F, Yang J, Qiu S, Xu W, Wang Y. Tannic acid enhanced the physical and oxidative stability of chitin particles stabilized oil in water emulsion. Food Chem 2020; 346:128762. [PMID: 33385917 DOI: 10.1016/j.foodchem.2020.128762] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023]
Abstract
In this work, the stability of CP-TA complex stabilized emulsion was first characterized. It was found that the peak thickness, Turbiscan Stability Index (TSI) and droplet size of CP-TA complex stabilized emulsion gradually decreased with increasing content of TA, indicating the gradually enhanced physical stability of emulsion, which was attributed to the gradually decreased interfacial tension, zeta potential and increased viscosity of CP-TA complex. Moreover, the oxidative stability of CP-TA complex stabilized emulsion gradually enhanced with increasing of TA content due to the antioxidant activity of TA. XRD and FTIR results suggested that the interaction between CP and TA gradually enhanced with increasing content of TA in CP-TA complex, leading to the formation of larger CP-TA clusters shown in AFM results. In conclusion, the presence of tannic acid (TA) enhanced the physical and oxidative stability of chitin particles-tannic acid (CP-TA) complex stabilized oil in water emulsion.
Collapse
Affiliation(s)
- Fang Yang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Henan Province, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, Henan, China
| | - Si Qiu
- Chengdu Normal University, College of Chemistry and Life Sciences, Chengdu 610000, China
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Henan Province, China.
| |
Collapse
|
68
|
Herrera-Bravo J, Beltrán-Lissabet JF, Saavedra K, Saavedra N, Hevia M, Alvear M, Lanas F, Salazar LA. Protective effect of Pinot noir pomace extract against the cytotoxicity induced by polycyclic aromatic hydrocarbons on endothelial cells. Food Chem Toxicol 2020; 148:111947. [PMID: 33359405 DOI: 10.1016/j.fct.2020.111947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are pollutants found in the air generated mainly by the combustion of coal or biomass burning. Exposure to Polycyclic Aromatic Hydrocarbons is positively correlated with cardiovascular diseases. Phenolic compounds are widely found in the plant kingdom, and their availability from agri-food processing waste has led to an increased interest in their recovery. The production of large amounts of organic waste created by the wine industry has emphasized the valuation of these wastes to generate high-added-value by-products. The objective of this work was to investigate the protective effect of Pinot noir pomace extract on human endothelial cells against PAHs found in the polluted air of Temuco, Chile. The pomace extract was characterized by spectrophotometric analysis and high-performance liquid chromatography (HPLC). Results revealed the presence of 5 glycosylated anthocyanins and 9 low molecular weight polyphenols. Molecular docking indicated that cyanidin-3-glucoside (-9.2 kcal/mol) and quercetin (-9.6 kcal/mol) had the highest affinities for the Nrf2 binding site in the Keap1 protein, suggesting a possible competition with this transcription factor. Endothelial cells from the human umbilical vein were exposed to increasing concentrations of Phenanthrene, Fluoranthene, and Pyrene diluted in DMSO in a ratio of 3:1:1 (10 μM-200 μM). Viability through the MTS assay showed that 150 μM of PAHs was sufficient to reduce viability by 75% (p ˂ 0.0001). When the cells were pre-treated with 400 μg/ml of the extract, 150 μM of PAHs did not exert cell death (80% viability). Our preliminary results show that polyphenolic components found in Pinot noir pomace might have a beneficial effect as a protective agent.
Collapse
Affiliation(s)
- Jesús Herrera-Bravo
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile; Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
| | - Jorge F Beltrán-Lissabet
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Temuco, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Monserrat Hevia
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Marysol Alvear
- Department of Chemical Sciences and Natural Resources, Faculty of Engineering and Sciences, Universidad de La Frontera, Chile
| | - Fernando Lanas
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile; Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile.
| |
Collapse
|
69
|
Flavanones biotransformation of citrus by-products improves antioxidant and ACE inhibitory activities in vitro. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
70
|
Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, Stupić D, Maletić E, Kontić JK, Preiner D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020; 25:E5604. [PMID: 33260583 PMCID: PMC7731206 DOI: 10.3390/molecules25235604] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Željko Andabaka
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Stupić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
71
|
Liang Z, Pai A, Liu D, Luo J, Wu J, Fang Z, Zhang P. Optimizing extraction method of aroma compounds from grape pomace. J Food Sci 2020; 85:4225-4240. [PMID: 33190228 DOI: 10.1111/1750-3841.15533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/28/2022]
Abstract
Grape pomace is a major wine industry byproduct. Extraction of volatile compounds from grape pomace is rarely explored. A cost-effective method was developed in this study for aroma compounds extraction from grape pomace with the potential for industrial application. Based on the solvent extraction procedure, experimental factors including pretreatment, enzymatic hydrolysis time, solvent concentration and distillation time were investigated to optimize the extraction process. Volatile compounds of the pomace extract were analyzed using headspace solid-phase microextraction gas-chromatography mass spectrometry (HS-SPME-GC-MS) method. Results revealed that enzymatic hydrolysis was the optimal pretreatment method. A maximum extraction efficiency was achieved under 48 hr of enzymatic hydrolysis, 70% of ethanol concentration and 20 min of distillation. A total of 65 volatile compounds were identified in the extract, including 16 alcohols, 1 alkane, 1 aldehyde, 9 esters, 3 ketones, 4 phenols, 6 terpenes, and 1 furan, of which 15 volatiles were determined as odor-active compounds. This study developed a feasible extraction technique to recycle the underutilized byproducts from wine industry to produce aroma/flavor food additives. PRACTICAL APPLICATION: This study develops a cost-effective method for aroma compounds extraction from grape pomace with the potential for industrial application as food additives.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ahalya Pai
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Di Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiaqiang Luo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
72
|
Sangkaew O, Phaonakrop N, Roytrakul S, Yompakdee C. Metaproteomic investigation of functional insight into special defined microbial starter on production of fermented rice with melanogenesis inhibition activity. PLoS One 2020; 15:e0241819. [PMID: 33147601 PMCID: PMC7641363 DOI: 10.1371/journal.pone.0241819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022] Open
Abstract
Fermentation of rice grains requires diverse metabolic enzymes to be synchronously synthesized by the microbial community. Although many studies have used a metaproteomic approach to investigate the roles of microorganisms in improving the flavor of fermented foods, their roles in producing compounds with biological activity have not yet been reported. In a previous study the ferment obtained from unpolished black rice (UBR) fermented with a defined microbial starter (De-E11), comprised of Rhizopus oryzae, Saccharomycopsis fibuligera, Saccharomyces cerevisiae, and Pediococcus pentosaceus, (fermented UBR; FUBR) showed a strong melanogenesis inhibition activity in B16F10 melanoma cells. Hence, in this study, the roles of these microorganisms in producing the melanogenesis inhibitor(s) in FUBR was investigated using a metaproteomic approach. The melanogenesis inhibition activity of the FUBR liquid (FR-Liq) was found to increase with longer fermentation times. R. oryzae and S. cerevisiae were the major hosts of proteins related to the biosynthesis of melanogenesis inhibitor(s) in the FUBR. During fermentation, the enzymes involved in the degradation of UBR and in the carbohydrate metabolic process were identified. These enzymes were associated with the process of releasing of bioactive compound(s) from UBR and the synthesis of organic acids from the microorganisms, respectively. In addition, enzymes involved in the synthesis of some known melanogenesis inhibitor(s) and in the degradation of the melanogenesis stimulator (arsenate) were detected. Varying the combination of microorganisms in the De-E11 starter to produce the FR-Liq revealed that all four microorganisms were required to produce the most potent melanogenesis inhibition activity. Taken together with the metaproteomics results, this suggested that the microorganisms in De-E11 synchronously synthesize the FR-Liq with melanogenesis inhibition activity. In conclusion, this information on the metaproteome in FUBR will increase our understanding of the microbial metabolic modes and could lead to knowledge-based improvements in the fermented rice process to produce melanogenesis inhibitor(s).
Collapse
Affiliation(s)
- Orrarat Sangkaew
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand
| | - Chulee Yompakdee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
73
|
Bao Y, Reddivari L, Huang JY. Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
74
|
Fernández-Fernández AM, Iriondo-DeHond A, Nardin T, Larcher R, Dellacassa E, Medrano-Fernandez A, del Castillo MD. In Vitro Bioaccessibility of Extractable Compounds from Tannat Grape Skin Possessing Health Promoting Properties with Potential to Reduce the Risk of Diabetes. Foods 2020; 9:foods9111575. [PMID: 33143027 PMCID: PMC7692155 DOI: 10.3390/foods9111575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes pathogenesis encompasses oxidative stress, inflammation, insulin malfunctioning and partial or total insulin secretion impairment, which leads to a constant hyperglycemia. Polyphenols are known to possess bioactive properties, being Tannat grape skin a natural and sustainable source of these compounds. The present study aimed to find out the bioaccessibility of health-promoting molecules composing a multifunctional extract from Tannat grape skin obtained under hydro-alcoholic-acid conditions. The identification of phenolic compounds in the samples was performed by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Subsequently, the samples were in vitro digested mimicking the human oral gastrointestinal conditions and the bioactivity of the digest (antioxidant, anti-inflammatory and modulation of glucose metabolism) was assessed. Effect on glucose metabolism was estimated by measuring carbohydrases activity and the functionality of glucose transporters of small intestine cells in presence and absence of the digested extract. Flavonoids, phenolic acids and phenolic alcohols were the major phenol compounds detected in the extract. The bioaccessible compounds protected the intestinal cells and macrophages against the induced formation of reactive oxygen species (ROS) and nitric oxide (NO). In addition, glucose transporters were inhibited by the digested extract. In conclusion, the bioaccessible compounds of the extract, including phenols, modulated key biochemical events involved in the pathogenesis of diabetes such as oxidative stress, inflammation and glucose absorption. The extract was effective under prevention with co-administration conditions supporting its potential for either reducing the risk or treating this disease.
Collapse
Affiliation(s)
- Adriana Maite Fernández-Fernández
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (A.M.F.-F.); (A.M.-F.)
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay
| | - Amaia Iriondo-DeHond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Tiziana Nardin
- Dipartimento Alimenti e Trasformazione, Centro Trasferimento Tecnologico, Fondazione Edmund Mach di San Michele all’Adige, Via E. Mach, 1 38010 S. Michele all’Adige (TN), Italy; (T.N.); (R.L.)
| | - Roberto Larcher
- Dipartimento Alimenti e Trasformazione, Centro Trasferimento Tecnologico, Fondazione Edmund Mach di San Michele all’Adige, Via E. Mach, 1 38010 S. Michele all’Adige (TN), Italy; (T.N.); (R.L.)
| | - Eduardo Dellacassa
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay;
| | - Alejandra Medrano-Fernandez
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (A.M.F.-F.); (A.M.-F.)
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Correspondence: ; Tel.: +34-910017900 (ext. 953)
| |
Collapse
|
75
|
Synergic Involvements of Microorganisms in the Biomedical Increase of Polyphenols and Flavonoids during the Fermentation of Ginger Juice. Int J Microbiol 2020; 2020:8417693. [PMID: 33110428 PMCID: PMC7579675 DOI: 10.1155/2020/8417693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/15/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Steered fermentation by microorganisms gives great added value in the nutritional quality of local food. Ginger rhizome naturally contains a myriad of bioactive compounds including polyphenol and flavonoids. The aim of this work was to ferment the ginger juice, to evaluate the biochemical parameters of ginger wine, and to understand the involvement of microorganisms in the bioincrease of polyphenol compounds. Titratable acidity and pH values were determined and showed that pH is around 1.6 at the end of the fermentation when the acidity is around 6.431 g/L. Using colorimetric assay, the total polyphenolic and flavonoid compounds were evaluated throughout the fermentation. The variation of the polyphenol and flavonoid concentrations of the unsweetened sample was around 10.18 to 14.64 mg Eq AG/g and 1.394 to 2.224 mg Eq Cat/g Ms, but those from the sweet sample were around 10.82 to 18.34 mg Eq AG/g Ms and 1.311 to 2.290 mg Eq Cat/g. Using one-step PCR, multiplex techniques with specific primers, with yeast-like phenotype 27.27% (6), have been assigned among 22 isolates to Saccharomyces cerevisiae. By using PCR multiplex techniques, Bacillus licheniformis, Bacillus pumilus, Bacillus safensis, and Saccharomyces cerevisiae have been identified. Together with Saccharomyces cerevisiae, we showed that Bacillus sp. are able to secrete enzymatic landscape with some activities up to 50% including cellulase, amylase, pectinase, and protease.
Collapse
|
76
|
Kumari GUWUP, Gunathilake KDPP. In vitro bioaccessibility and antioxidant activity of black plum (Syzygium caryophyllatum). J Food Biochem 2020; 44:e13499. [PMID: 33020933 DOI: 10.1111/jfbc.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
Abstract
Influence of drying, juice processing, and simulated enteric digestion on bioactive constituents and bioactivity of Syzygium caryophyllatum fruit was assessed and compared with fresh blueberry (Vaccinium angustifolium). Methanolic extracts of fresh fruits and processed products and digesta at different digestion phases were analyzed for phenolics, flavonoids, anthocyanin, β-carotene, lycopene, and ascorbic acid contents, and antioxidant activities. The results indicated that fresh black-plum possesses higher bioactives content and antioxidant activities compared to processed black plum. The contents of bioactives and antioxidant activities reduced gradually due to gastrocolic digestion. Bioaccessibility and bioavailability of bioactives from blueberry, black-plum, and its products showed significant variations. These results highlighted that the alterations in contents of bioactives and antioxidant activities of black-plum due to drying, juice processing, and gastrocolic digestion could potentially influence on bioaccessibility and dialysis or potential bioavailability of bioactives found in black-plums. PRACTICAL APPLICATIONS: The present research produced a comprehensive cognition regarding alterations in the contents of bioactive constituents and antioxidant activity of black plum due to drying, juice processing, and gastrointestinal digestion, which can function as a new source of functional food.
Collapse
|
77
|
Cedola A, Palermo C, Centonze D, Del Nobile MA, Conte A. Characterization and Bio-Accessibility Evaluation of Olive Leaf Extract-Enriched "Taralli". Foods 2020; 9:E1268. [PMID: 32927764 PMCID: PMC7554863 DOI: 10.3390/foods9091268] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/31/2023] Open
Abstract
Olive leaves are rich in many compounds precious for human health. Due to this property, the current study was aimed to valorize the extract from this by-product in a cereal-based food, very popular all around the world, the "taralli". To this aim, ultrasound-assisted extraction was applied to dried olive leaves to obtain the extract, used as "taralli" ingredient, instead of white wine. The "taralli" with and without extract was subjected to in vitro digestion to assess the quantity of polyphenolic compounds released in the gastrointestinal tract to become available for absorption. Total content of phenols and flavonoids, as well as the antioxidant capacity, was measured on both cooked and uncooked samples, before and after digestion. In addition, High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) of the three most abundant polyphenols present in olive leaf extracts, such as oleuropein, hydroxytyrosol, and verbascoside, was carried out at the three stages of the digestion process. The results showed that the substitution of white wine with olive leaf extract increased the total content of polyphenols and flavonoids and the antioxidant capacity. Bio-accessibility of the main phenolic compounds demonstrated that oleuropein resisted slightly after gastric digestion but was almost completely degraded in the intestinal phase, while hydroxytyrosol and verbascoside were not resistant to the digestion process from the gastric phase.
Collapse
Affiliation(s)
| | | | | | - Matteo Alessandro Del Nobile
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy; (A.C.); (C.P.); (D.C.); (A.C.)
| | | |
Collapse
|
78
|
Non-Extractable Polyphenols from Food By-Products: Current Knowledge on Recovery, Characterisation, and Potential Applications. Processes (Basel) 2020. [DOI: 10.3390/pr8080925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Non-extractable polyphenols (NEPs), or bound polyphenols, are a significant fraction of polyphenols that are retained in the extraction residues after conventional aqueous organic solvent extraction. They include both high molecular weight polymeric polyphenols and low molecular weight phenolics attached to macromolecules. Current knowledge proved that these bioactive compounds possess high antioxidant, antidiabetic, and other biological activities. Plant-based food by-products, such as peels, pomace, and seeds, possess high amount of NEPs. The recovery of these valuable compounds is considered an effective way to recycle food by-products and mitigate pollution, bad manufacturing practice, and economic loss caused by the residues management. The current challenge to valorise NEPs from plant-based by-products is to increase the extraction efficiency with proper techniques, choose appropriate characterising methods, and explore potential functions to use in some products. Based on this scenario, the present review aims to summarise the extraction procedure and technologies applied to recover NEPs from plant-based by-products. Furthermore, it also describes the main techniques used for the characterisation of NEPs and outlines their potential food, pharmaceutical, nutraceutical, and cosmetic applications.
Collapse
|
79
|
Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. SENSORS 2020; 20:s20154176. [PMID: 32727151 PMCID: PMC7435477 DOI: 10.3390/s20154176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
A bio-electronic tongue has been developed to evaluate the phenolic content of grape residues (seeds and skins) in a fast and easy way with industrial use in mind. A voltammetric electronic tongue has been designed based on carbon resin electrodes modified with tyrosinase combined with electron mediators. The presence of the phenoloxydase promotes the selectivity and specificity towards phenols. The results of multivariate analysis allowed discriminating seeds and skins according to their polyphenolic content. Partial least squares (PLS) has been used to establish regression models with parameters related to phenolic content measured by spectroscopic methods i.e., total poliphenol content (TPC) and Folin–Ciocalteu (FC) indexes. It has been shown that electronic tongue can be successfully used to predict parameters of interest with high correlation coefficients (higher than 0.99 in both calibration and prediction) and low residual errors. These values can even be improved using genetic algorithms for multivalent analysis. In this way, a fast and simple tool is available for the evaluation of these values. This advantage may be due to the fact that the electrochemical signals are directly related to the phenolic content.
Collapse
|
80
|
Betacyanins from Hylocereus polyrhizus: pectinase-assisted extraction and application as a natural food colourant in ice cream. Journal of Food Science and Technology 2020; 58:1401-1410. [PMID: 33746268 DOI: 10.1007/s13197-020-04651-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
The effect of solvent, substrate-to-solvent ratio and concentration of pectinase on the extraction of betacyanins from the pulp of red pitahaya (Hylocereus polyrhizus) was evaluated with respect to yield, betacyanin content (BC) and total sugar content. The application of betacyanins from red pitahaya in ice cream was then evaluated by comparison to a commercial colourant, E-162. Without the use of pectinase, the highest yields (9.11 ± 0.35%) of betacyanins were obtained using 95% ethanol at a substrate-to-solvent ratio of 1:1. With the use of pectinase at a concentration of 1.5%, the highest yield (17.11-17.45%) of betacyanins were obtained using water as a solvent at a substrate-to-solvent ratio of 1:1 and 1:2. Pectinase treatment (1.5-2.5%) using water as a solvent yielded betacyanins with the highest BC (126.47-130.83 g kg-1) and lowest total sugar content (57.85-59.74 g kg-1). The BC and total colour changes were similar in ice cream containing betacyanins from red pitahaya and E-162 throughout the 21-days of frozen storage at -18 °C. Betacyanins from red pitahaya or E-162 enhanced the antioxidant properties of ice cream. The sensory evaluation of ice cream containing betacyanins from red pitahaya showed a better colour acceptability than E-162.
Collapse
|
81
|
PEF treatments of high specific energy permit the reduction of maceration time during vinification of Caladoc and Grenache grapes. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
82
|
Chen YT, Chen YA, Lee CH, Wu JT, Cheng KC, Hsieh CW. A strategy for promoting γ-glutamyltransferase activity and enzymatic synthesis of S-allyl-(L)-cysteine in aged garlic via high hydrostatic pressure pretreatments. Food Chem 2020; 316:126347. [PMID: 32045818 DOI: 10.1016/j.foodchem.2020.126347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
S-allyl-(L)-cysteine (SAC) is a bioactive compound within garlic. Its level is low since SAC formation is impeded by the cellular structure of garlic. This study investigates the effect of high hydrostatic pressure (HHP) pretreatment on SAC formation in garlic aged at 40 °C for 10 days. Results showed that HHP could enhance γ-glutamyltransferase (γ-GTP) activity, damage the cellular structure of garlic and increase SAC content in aged garlic by about 7-10 times, depending on the processing parameters. HHP processing at 300 MPa for 15 min provided the optimal conditions for enhancing γ-GTP activity (45%) and promoting SAC formation (from 0.51 ± 0.01 to 5.60 ± 0.22 mg/g dry weight). It was also found that HHP could induce the greening and browning of aged garlic. As such, we consider that HHP technology is a promising technique to produce aged black garlic products with higher amounts of bioactive compounds.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung Taiwan.
| | - Yi-An Chen
- College of Biotechnology and Bioresources, Da-Yeh University, 168 University Rd., Dacun, Chang-Hua, Taiwan.
| | - Chieh-Hsiu Lee
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung Taiwan.
| | - Jung-Tsung Wu
- College of Biotechnology and Bioresources, Da-Yeh University, 168 University Rd., Dacun, Chang-Hua, Taiwan.
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan; Graduate Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
83
|
Wei X, Ju Y, Ma T, Zhang J, Fang Y, Sun X. New perspectives on the biosynthesis, transportation, astringency perception and detection methods of grape proanthocyanidins. Crit Rev Food Sci Nutr 2020; 61:2372-2398. [PMID: 32551848 DOI: 10.1080/10408398.2020.1777527] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proanthocyanidins (PAs) are important secondary metabolites crucial for the quality of grape berry and wine. Despite important advances in our understanding of the structural and regulatory genes involved in the PAs biosynthesis pathway, our knowledge about the details of biosynthetic and regulatory networks, especially the mechanism of polymerization and transportation remains limited. We provided an overview of the latest discoveries related to the mechanisms of grape PAs structure, astringency properties, detection methods, biosynthesis and transportation. We also summarized the environmental influencing factors of PAs synthesis in grape. Future trends were discussed.
Collapse
Affiliation(s)
- Xiaofeng Wei
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, China
| | - Yanlun Ju
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, China
| | - Tingting Ma
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, China
| | | | - Yulin Fang
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, China
| | - Xiangyu Sun
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, China
| |
Collapse
|
84
|
Ahmad B, Yadav V, Yadav A, Rahman MU, Yuan WZ, Li Z, Wang X. Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137315. [PMID: 32135320 DOI: 10.1016/j.scitotenv.2020.137315] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
The ever-increasing environmental crisis, depleting natural resources, and uncertainties in fossil fuel availability have rekindled researchers' attention to develop green and environmentally friendlier strategies. In this context, a biorefinery approach with a zero-waste theme has stepped-up as the method of choice for sustainable production of an array of industrially important products to address bio-economy challenges. Grape winery results in substantial quantities of solid organic and effluent waste, which epitomizes an increasing concentration of pollution problems with direct damage to human health, economy and nature. From the perspective of integrated biorefinery and circular economy, winery waste could be exploited for multiple purpose value-added products before using the biomass for energy security. This review covers state-of-the-art biorefinery opportunities beyond traditional methods as a solution to overcome many current challenges such as waste minimization in grape leaves, stems, seeds, pomace, wine lees, vinasse etc. and the biosynthesis of various high-value bioproducts viz., phenolic compounds, hydroxybenzoic acids, hydroxycinnamic acids, flavonoids, tartaric acids, lignocellulosic substrates etc.. The critical discussion on the valorization of winery waste (solid, liquid, or gaseous) and life cycle assessment was deployed to find a sustainable solution with value added energy products in an integrated biorefinery approach, keeping the environment and circular economy in the background.
Collapse
Affiliation(s)
- Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ashish Yadav
- ICAR-Central Institute for Sub Tropical Horticulture, Lucknow 226101, U.P., India
| | - Mati Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wang Zhong Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
85
|
Sparrow AM, Dambergs RG, Close DC. Grape skins as supplements for color development in Pinot noir wine. Food Res Int 2020; 133:108707. [PMID: 32466922 DOI: 10.1016/j.foodres.2019.108707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
Abstract
A particular challenge to making wine from Pinot noir grapes is the delicate flavor, light color and poor ageing potential of the wine. Conventional Pinot noir must preparations were compared with those made using a skin-based supplement to assess the impact on non-bleachable (sulfur resistant) pigments in the wine. When supplemented with either fresh grape pomace of Pinot noir, Pinot gris or Chardonnay grapes; Pinot noir grape marc or a commercial liquid grape skin extract, the additional seeds and pulp from the supplements were shown to compromise the development of stable pigments in the wine. To compare the relative merits of tannin derived from grape skins and seeds, the supplements used in a parallel experiment were the skins alone of the same three grape varieties and at six months bottle age, the stable pigment concentration was found to exceed the amount attributable to the supplement. A third experiment used fermented grape skins as the supplement, with 85% of the supplementary anthocyanin recovered as stable pigment complexes in the wine. Notably, this series of experiments showed that supplements containing grape seeds appeared to compromise non-bleachable pigment formation in the wine while skin only supplements stimulated their development.
Collapse
Affiliation(s)
- Angela M Sparrow
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia.
| | - Robert G Dambergs
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia.
| | - Dugald C Close
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
86
|
Maza MA, Martínez JM, Cebrián G, Sánchez-Gimeno AC, Camargo A, Álvarez I, Raso J. Evolution of Polyphenolic Compounds and Sensory Properties of Wines Obtained from Grenache Grapes Treated by Pulsed Electric Fields during Aging in Bottles and in Oak Barrels. Foods 2020; 9:E542. [PMID: 32365897 PMCID: PMC7278698 DOI: 10.3390/foods9050542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
The evolution of polyphenolic compounds and sensory properties of wines obtained from Grenache grapes, either untreated or treated with pulsed electric fields (PEF), in the course of bottle aging, as well as during oak aging followed by bottle aging, were compared. Immediately prior to aging in bottles or in barrels, enological parameters that depend on phenolic extraction during skin maceration were higher when grapes had been treated with PEF. In terms of color intensity, phenolic families, and individual phenols, the wine obtained with grapes treated by PEF followed an evolution similar to untreated control wine in the course of aging. Sensory analysis revealed that the application of a PEF treatment resulted in wines that are sensorially different: panelists preferred wines obtained from grapes treated with PEF. Physicochemical and sensory analyses showed that grapes treated with PEF are suitable for obtaining wines that require aging in bottles or in oak barrels.
Collapse
Affiliation(s)
- Marcos Andrés Maza
- Departamento de Ciencias Enológicas y Agroalimentarias, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, M5528AHB Mendoza, Argentina; (M.A.M.); (A.C.)
- Tecnología de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), c/Miguel Servet, 177, 50013 Zaragoza, Spain; (J.M.M.); (G.C.); (A.C.S.-G.); (I.A.)
| | - Juan Manuel Martínez
- Tecnología de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), c/Miguel Servet, 177, 50013 Zaragoza, Spain; (J.M.M.); (G.C.); (A.C.S.-G.); (I.A.)
| | - Guillermo Cebrián
- Tecnología de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), c/Miguel Servet, 177, 50013 Zaragoza, Spain; (J.M.M.); (G.C.); (A.C.S.-G.); (I.A.)
| | - Ana Cristina Sánchez-Gimeno
- Tecnología de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), c/Miguel Servet, 177, 50013 Zaragoza, Spain; (J.M.M.); (G.C.); (A.C.S.-G.); (I.A.)
| | - Alejandra Camargo
- Departamento de Ciencias Enológicas y Agroalimentarias, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, M5528AHB Mendoza, Argentina; (M.A.M.); (A.C.)
| | - Ignacio Álvarez
- Tecnología de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), c/Miguel Servet, 177, 50013 Zaragoza, Spain; (J.M.M.); (G.C.); (A.C.S.-G.); (I.A.)
| | - Javier Raso
- Tecnología de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), c/Miguel Servet, 177, 50013 Zaragoza, Spain; (J.M.M.); (G.C.); (A.C.S.-G.); (I.A.)
| |
Collapse
|
87
|
Barbera M. Reuse of Food Waste and Wastewater as a Source of Polyphenolic Compounds to Use as Food Additives. J AOAC Int 2020; 103:906-914. [DOI: 10.1093/jaocint/qsz025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Indexed: 01/18/2023]
Abstract
Abstract
The problem of waste and byproducts generated from agro-industrial activities worldwide is an increasing concern in terms of environmental sustainability. In this ambit, the quantity of food wastes—produced in all steps of the whole food chain—is enormous, and it may be forecasted that food waste could amount to more than 120 billion tonnes by 2020. The reuse of food waste and wastewater as source of polyphenolic compounds could be an interesting discussion in this ambit. In fact, polyphenols obtained in this way might be used for food and non-food purposes by means of new, improved, and safe extraction methods. In light of the opportunity represented by the treatment of agro-industrial waste, different systems concerning the winemaking and olive oil production industries have also been discussed as describing approaches applicable to other sectors. More research is needed before considering recovery of phenolic compounds from wastewater as an economically convenient choice for the food sector.
Collapse
Affiliation(s)
- Marcella Barbera
- University of Palermo, Department of Environmental and Agricultural Sciences, Palermo 90100, Italy
| |
Collapse
|
88
|
Chen YT, Lee CH, Chen YA, Wu JT, Tsai MS, Cheng KC, Hsieh CW. Preparation of S-allyl cysteine-enriched garlic by two-step processing. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
89
|
Unusan N. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103861] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
90
|
Natolino A, Da Porto C. Kinetic models for conventional and ultrasound assistant extraction of polyphenols from defatted fresh and distilled grape marc and its main components skins and seeds. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
91
|
Iglesias-Carres L, Mas-Capdevila A, Bravo FI, Bladé C, Arola-Arnal A, Muguerza B. Optimization of extraction methods for characterization of phenolic compounds in apricot fruit (Prunus armeniaca). Food Funct 2020; 10:6492-6502. [PMID: 31535681 DOI: 10.1039/c9fo00353c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fruits are rich in phenolic compounds with health-promoting activities. However, phenolic profiles vary between fruits. Hence, specific extraction methods are required for accurate profiling of the functional compounds. This study aims to develop an optimised method by response surface methodology to extract phenolics from apricots (Prunus armeniaca) and correctly characterise apricots' phenolic profile. For this, the effects of the solid-to-liquid ratio, temperature, extraction solvent, extraction time and sequential extraction steps on the extraction of major phenolic families were investigated. Methanol- and ethanol-based extractions were suitable, although methanol was the optimal solvent. The optimised extraction conditions were 20 g mL-1, 38 °C and 72% methanol (1% formic acid). When this method was used in apricots, the characterisation of their phenolic profile by HPLC-ESI-MS/MS showed a higher extraction of phenolic compounds than other studies in the literature that use non-specific extraction methods. The developed method is fast and economically feasible for accurate characterisation of the phenolic profile of apricot fruits and thus can be routinely used to extract apricot phenolic compounds for their characterisation.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain.
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
Wine production is one of the most important agricultural activities around the world. The production of wine involves the use of a large number of valuable resources, such as water, fertilizers, and other organic products. Moreover, it produces a large amount of wastewater and organic waste that must be treated adequately to avoid contaminating the areas of production. The nature of the waste produced depends very closely on the specific vinification procedures, which also affect the physical–chemical properties of the residual material generated, whose characteristics determine its subsequent use and even condition the subsequent specific recovery circuit in which can be integrated.
Collapse
|
93
|
Muangrat R, Jirarattanarangsri W. Physicochemical properties and antioxidant activity of oil extracted from Assam tea seeds (Camellia sinensisvar.assamica) by supercritical CO2extraction. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rattana Muangrat
- Division of Food Process Engineering Faculty of Agro‐Industry Chiang Mai University Chiang Mai Thailand
- Food Drying Technology Research Unit Faculty of Agro‐Industry Chiang Mai University Chiang Mai Thailand
| | - Wachira Jirarattanarangsri
- Division of Food Science and Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
94
|
Leong SY, Treadwell M, Liu T, Hochberg M, Sack M, Mueller G, Sigler J, Silcock P, Oey I. Influence of Pulsed Electric Fields processing at high-intensity electric field strength on the relationship between anthocyanins composition and colour intensity of Merlot (Vitis vinifera L.) musts during cold maceration. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
95
|
Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108785] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
96
|
Arcena MR, Kebede B, Leong SY, Silcock P, Oey I. Feasibility of using integrated fingerprinting, profiling and chemometrics approach to understand (bio) chemical changes throughout commercial red winemaking: A case study on Merlot. Food Res Int 2019; 127:108767. [PMID: 31882091 DOI: 10.1016/j.foodres.2019.108767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/09/2019] [Accepted: 10/19/2019] [Indexed: 12/18/2022]
Abstract
This study assessed the feasibility of using a multiplatform approach; integrating untargeted fingerprinting of volatiles and targeted profiling of phenolic and oenological attributes (soluble solids, pH, titratable acidity and colour properties) coupled with chemometrics to understand complex (bio) chemical reactions occurring during Merlot red winemaking. The changes were investigated at three winemaking stages, starting from pre-maceration (PM), maceration-alcoholic fermentation (MAF) up to completion of malolactic fermentation (MLF). Merlot musts at PM were characterised by lighter colour and higher amount of green aroma-related volatiles. Completion of MAF led to increased extraction of anthocyanins, flavonols, and stilbenes, resulting in a more intense and darker fermenting juice. Furthermore, development of yeast-fermentation associated volatiles such as esters and alcohols was observed at this stage. The final wine, when MLF was completed, was rich in phenolic acids, esters, alcohols, and terpenes. The multiplatform analytical approach was effective to unravel the complex reactions throughout Merlot winemaking process and find relevant markers, which could help to predict expected quality attributes in the finished wine.
Collapse
Affiliation(s)
- Mylene Ross Arcena
- Department of Food Science, University of Otago, PO BOX 56, Dunedin 9054, New Zealand
| | - Biniam Kebede
- Department of Food Science, University of Otago, PO BOX 56, Dunedin 9054, New Zealand.
| | - Sze Ying Leong
- Department of Food Science, University of Otago, PO BOX 56, Dunedin 9054, New Zealand; Riddet Insititute, Palmerston North, New Zealand
| | - Patrick Silcock
- Department of Food Science, University of Otago, PO BOX 56, Dunedin 9054, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO BOX 56, Dunedin 9054, New Zealand; Riddet Insititute, Palmerston North, New Zealand.
| |
Collapse
|
97
|
Oladele AK, Duodu KG, Emmambux NM. Pasting, flow, thermal and molecular properties of maize starch modified with crude phenolic extracts from grape pomace and sorghum bran under alkaline conditions. Food Chem 2019; 297:124879. [DOI: 10.1016/j.foodchem.2019.05.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
|
98
|
|
99
|
Impact of Must Replacement and Hot Pre-Fermentative Maceration on the Color of Uruguayan Tannat Red Wines. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This research aimed to evaluate the impact of different options for winemaking on the color composition of Uruguayan Tannat red wines. The techniques evaluated were the substitution of ripe grape juice with immature grape juice and the heating of the crushed grapes before fermentation, called must replacement and hot pre-fermentative maceration, respectively. These procedures were proposed to reduce the alcohol content and increase the phenolic composition of the wine, according to the expected effects of climate change and current trends in consumer preferences. The investigation was made over three consecutive years (2016, 2017, and 2018). Both winemaking techniques allow the enhancement of the chromatic characteristics of wines via the modification of the phenolic composition. Additionally, such techniques allow the overcoming of the well-known limitations in the extractability of anthocyanins presented by the Tannat cultivar. Hot pre-fermentative maceration increases the proportion of the most oxidizable molecules delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and petunidin-3-O-glucoside, suggesting heat inactivation of polyphenoloxidases enzymes. Must replacement and hot pre-fermentative maceration are technological alternatives that could significantly improve the intensity and chromatic characteristics of red wines.
Collapse
|
100
|
Matos MS, Romero-Díez R, Álvarez A, Bronze MR, Rodríguez-Rojo S, Mato RB, Cocero MJ, Matias AA. Polyphenol-Rich Extracts Obtained from Winemaking Waste Streams as Natural Ingredients with Cosmeceutical Potential. Antioxidants (Basel) 2019; 8:antiox8090355. [PMID: 31480581 PMCID: PMC6770854 DOI: 10.3390/antiox8090355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022] Open
Abstract
Phenolics present in grapes have been explored as cosmeceutical principles, due to their antioxidant activity and ability to inhibit enzymes relevant for skin ageing. The winemaking process generates large amounts of waste, and the recovery of bioactive compounds from residues and their further incorporation in cosmetics represents a promising market opportunity for wine producers and may contribute to a sustainable development of the sector. The extracts obtained from grape marc and wine lees, using solid-liquid (SL) extraction with and without microwave (MW) pretreatment of the raw material, were characterized in terms of antioxidant activity through chemical (ORAC/HOSC/HORAC) and cell-based (keratinocytes-HaCaT; fibroblasts-HFF) assays. Furthermore, their inhibitory capacity towards specific enzymes involved in skin ageing (elastase; MMP-1; tyrosinase) was evaluated. The total phenolic and anthocyanin contents were determined by colorimetric assays, and HPLC-DAD-MS/MS was performed to identify the main compounds. The MW pretreatment prior to conventional SL extraction led to overall better outcomes. The red wine lees extracts presented the highest phenolic content (3 to 6-fold higher than grape marc extracts) and exhibited the highest antioxidant capacity, being also the most effective inhibitors of elastase, MMP-1 and tyrosinase. The results support that winemaking waste streams are valuable sources of natural ingredients with the potential for cosmeceutical applications.
Collapse
Affiliation(s)
- Melanie S Matos
- Nutraceuticals & Bioactives Process Technology Group, Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Do Marquês, Estação Agronómica Nacional, Edifício iBET/ITQB, 2780-157 Oeiras, Portugal
| | - Rut Romero-Díez
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Sede Mergelina Valladolid, 47011 Castilla y León, Spain
| | - Ana Álvarez
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Sede Mergelina Valladolid, 47011 Castilla y León, Spain
| | - M R Bronze
- Nutraceuticals & Bioactives Process Technology Group, Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Do Marquês, Estação Agronómica Nacional, Edifício iBET/ITQB, 2780-157 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Faculty of Pharmacy, University of Lisbon (FFUL), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Soraya Rodríguez-Rojo
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Sede Mergelina Valladolid, 47011 Castilla y León, Spain.
| | - Rafael B Mato
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Sede Mergelina Valladolid, 47011 Castilla y León, Spain
| | - M J Cocero
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Sede Mergelina Valladolid, 47011 Castilla y León, Spain
| | - Ana A Matias
- Nutraceuticals & Bioactives Process Technology Group, Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Do Marquês, Estação Agronómica Nacional, Edifício iBET/ITQB, 2780-157 Oeiras, Portugal.
| |
Collapse
|