51
|
Zhang J, Liang L, Shan Y, Zhou X, Sun B, Liu Y, Zhang Y. Antihypertensive Effect, ACE Inhibitory Activity, and Stability of Umami Peptides from Yeast Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37812565 DOI: 10.1021/acs.jafc.3c04819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Bioactive peptides from foods have garnered considerable attention as viable supplements for hypertensive patients. Herein, the antihypertensive effect and mechanism of umami peptides from yeast extract were investigated based on the pharmacophore model, simulated digestion, spontaneously hypertensive rat (SHR) model, and molecular docking. Notably, umami peptide LLLLPKP exhibited favorable angiotensin I-converting enzyme (ACE) inhibitory activity (IC50 = 10.22 μM) in vitro and regulated blood pressure in the SHR model with excellent durability. Remarkably, LLLLPKP showed the highest Fitvalue (4.022) of the pharmacophore model, indicating its similar pharmacological effects as ACE inhibitors. During the simulated gastrointestinal digestion, the ACE inhibition rate of LLLLPKP was merely reduced by 5.89%, but it was enzymatically cleaved into 14 peptide segments. The C-terminal sequence comprising L (4), P (5), K (6), and P (7) exhibited robust stability and a notable presence within the peptide segments postdigestion. Meanwhile, according to molecular docking, these four residues within LLLLPKP were responsible for all interactions with key sites within active pockets S1 and S2 and the active pocket of Zn2+. In light of these findings, LLLLPKP is a highly promising antihypertensive peptide. Developing this umami peptide with antihypertensive effects holds substantial importance for the long-term treatment of hypertension.
Collapse
Affiliation(s)
- Jincheng Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yimeng Shan
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Zhou
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
52
|
Fan Y, Chen W, Zhang N, Li M, Zhu Y, Chen G, Zhang Y, Liu Y. Umami taste evaluation based on a novel mouse taste receptor cell-based biosensor. Biosens Bioelectron 2023; 237:115447. [PMID: 37352759 DOI: 10.1016/j.bios.2023.115447] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023]
Abstract
Umami, a taste sensation known for its savory and delicious properties, has garnered considerable attention from both consumers and the food industry. However, current understanding and evaluation of umami characteristics remain limited, presenting a long-standing issue. To address this challenge, we have developed a self-assembled biosensor based on matured taste receptor cells (TRCs), obtained through isolation and culture of taste stem cells. TRCs, as the recognition element, were mounted onto the surface of a glassy carbon electrode (GCE) treated with gold nanoparticles (AuNPs) and poly-L-lysine (PLL). Key parameters including the cell incubation time and concentration were optimized to ensure the optimal performance of the TRCs-based biosensor. AuNPs were deposited onto the GCE surface via 90 s electrochemical reduction. TRCs concentration of 106 cells/mL and incubation time of 12 h were chosen by electrochemical characterization. Using this novel, rapid, and sensitive TRCs-based biosensor, we successfully detected L-monosodium glutamate (MSG) and other umami substances, demonstrating a good linear relationship within the range of 10-9 - 10-5 M between response signals and concentration of MSG stimuli. Our results provide insights into taste signal transduction mechanisms and suggest the potential for biomimetic sensors in intelligent perception applications.
Collapse
Affiliation(s)
- Yuxia Fan
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weizhu Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ninglong Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingyang Li
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gaole Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
53
|
Zhang J, Yan W, Zhang Q, Li Z, Liang L, Zuo M, Zhang Y. Umami-BERT: An interpretable BERT-based model for umami peptides prediction. Food Res Int 2023; 172:113142. [PMID: 37689906 DOI: 10.1016/j.foodres.2023.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/11/2023]
Abstract
Umami peptides have received extensive attention due to their ability to enhance flavors and provide nutritional benefits. The increasing demand for novel umami peptides and the vast number of peptides present in food call for more efficient methods to screen umami peptides, and further exploration is necessary. Therefore, the purpose of this study is to develop deep learning (DL) model to realize rapid screening of umami peptides. The Umami-BERT model was devised utilizing a novel two-stage training strategy with Bidirectional Encoder Representations from Transformers (BERT) and the inception network. In the pre-training stage, attention mechanisms were implemented on a large amount of bioactive peptides sequences to acquire high-dimensional generalized features. In the re-training stage, umami peptide prediction was carried out on UMP789 dataset, which is developed through the latest research. The model achieved the performance with an accuracy (ACC) of 93.23% and MCC of 0.78 on the balanced dataset, as well as an ACC of 95.00% and MCC of 0.85 on the unbalanced dataset. The results demonstrated that Umami-BERT could predict umami peptides directly from their amino acid sequences and exceeded the performance of other models. Furthermore, Umami-BERT enabled the analysis of attention pattern learned by Umami-BERT model. The amino acids Alanine (A), Cysteine (C), Aspartate (D), and Glutamicacid (E) were found to be the most significant contributors to umami peptides. Additionally, the patterns of summarized umami peptides involving A, C, D, and E were analyzed based on the learned attention weights. Consequently, Umami-BERT exhibited great potential in the large-scale screening of candidate peptides and offers novel insight for the further exploration of umami peptides.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, China.
| | - Wenjing Yan
- National Engineering Research Centre for Agri-product Quality Traceability, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, China.
| | - Qingchuan Zhang
- National Engineering Research Centre for Agri-product Quality Traceability, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, China.
| | - Zihan Li
- National Engineering Research Centre for Agri-product Quality Traceability, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, China.
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, China.
| | - Min Zuo
- National Engineering Research Centre for Agri-product Quality Traceability, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, China.
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, China.
| |
Collapse
|
54
|
Jia R, He Y, Liao G, Yang Z, Gu D, Pu Y, Huang M, Wang G. Identification of umami peptides from Wuding chicken by Nano-HPLC-MS/MS and insights into the umami taste mechanisms. Food Res Int 2023; 172:113208. [PMID: 37689849 DOI: 10.1016/j.foodres.2023.113208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
Wuding chicken is popular with consumers in China because of its umami taste. This study aimed to identify novel umami peptides from Wuding chicken and explore the taste mechanism of umami peptides. The molecular masses and amino acid compositions of peptides in Wuding chicken were identified by nano-scale liquid chromatography-tandem mass spectrometry (Nano-HPLC-MS/MS). The taste characteristics of the peptides synthesized by the solid-phase method were evaluated by sensory evaluation combined with electronic tongue technology. The secondary structure of the peptides was further analyzed by circular dichroism (CD), and the relationship between the structure and taste of the peptides was elucidated by molecular docking. The results showed that eight potential umami peptides were identified, among which FVT (FT-3), LDF (LF-3), and DLAGRDLTDYLMKIL (DL-15) had distinct umami tastes, and FT-3 had the highest umami intensity, followed by LF-3 and DL-15. The relative contents of β-sheets in the three umami peptides were 55.20%, 57.30%, and 47.70%, respectively, which were the key components of Wuding chicken umami peptides. In addition to LF-3 embedded in the cavity-binding domain of the TIR1, both FT-3 and DL-15 were embedded in the venus flytrap domain (VFTD) of the T1R3 to bind the umami receptor T1R1/T1R3. The main binding forces between the umami peptides and the umami receptor T1R1/T1R3 relied on hydrogen bonds and hydrophobic interactions, and the key amino acid residues of the combination of umami peptides and the umami receptor T1R1/T1R3 were Glu292, Asn235, and Tyr262.
Collapse
Affiliation(s)
- Rong Jia
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Ying He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| | - Zijiang Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Dahai Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yuehong Pu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
55
|
Wang X, Zhang D, Guo Q, Pu Y, Huang A, Fan J. Identification and Characterization of Novel Umami Peptides from Protein Hydrolysates of Morchella esculenta and Their Interaction with T1R1/T1R3 Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14046-14056. [PMID: 37709731 DOI: 10.1021/acs.jafc.3c02454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The study aimed to explore umami peptides derived from protein hydrolysates of Morchella esculenta. According to the electronic tongue and sensory evaluation, the ultrafiltration fractions (<3 kDa) of the protein hydrolysates exhibited the strongest umami taste. The overall flavor of the screened fractions was significantly improved after the Maillard reaction, based on the electronic nose and electronic tongue analyses, and the content of total free amino acid increased from 387.35 to 589.30 μg/mL. A total of 37 peptides with high confidence were identified from the fractions using LC-MS/MS. Additionally, two novel umami peptides were screened through bioinformatics and molecular docking, and their recognition threshold was 0.43 (EYPPLGRFA) and 0.52 mmol/L (TVIDAPGHRDFI), respectively. In addition, molecular docking analysis revealed that the key binding sites, such as Ser148, Leu51, Arg327, and Leu468 in T1R1/T1R3 contributed to docking, and hydrogen bonding and hydrophobic interactions were the dominant interaction forces between the two umami peptides and T1R1/T1R3 receptor. This study contributes to the development and utilization of Morchella esculenta in flavored foods.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Dan Zhang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qihong Guo
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yuehong Pu
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Jiangping Fan
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| |
Collapse
|
56
|
Li M, Zhang X, Zhu Y, Zhang X, Cui Z, Zhang N, Sun Y, Yang Z, Wang W, Wang C, Zhang Y, Liu Y, Qing G. Identifying Umami Peptides Specific to the T1R1/T1R3 Receptor via Phage Display. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12004-12014. [PMID: 37523494 DOI: 10.1021/acs.jafc.3c02471] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Umami peptides are small molecular weight oligopeptides that play a role in umami taste attributes. However, the identification of umami peptides is easily limited by environmental conditions, and the abundant source and high chromatographic separation efficiency remain difficult. Herein, we report a robust strategy based on a phage random linear heptapeptide library that targets the T1R1-Venus flytrap domain (T1R1-VFT). Two candidate peptides (MTLERPW and MNLHLSF) were readily identified with high affinity for T1R1-VFT binding (KD of MW-7 and MF-7 were 790 and 630 nM, respectively). The two peptides exhibited umami taste and significantly enhanced the umami intensity when added to the monosodium glutamate solution. Overall, this strategy shows that umami peptides could be developed via phage display technology for the first time. The phage display platform has a promising application to discover other taste peptides with affinity for taste receptors of interest and has more room for improvement in the future.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Xiaoyu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiancheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ninglong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yue Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Zhiying Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
57
|
Chen Q, Xiang H, Zhao Y, Chen S, Cai Q, Wu Y, Wang Y. Cooperative combination of non-targeted metabolomics and targeted taste analysis for elucidating the taste metabolite profile and pathways of traditional fermented golden pompano. Food Res Int 2023; 169:112865. [PMID: 37254315 DOI: 10.1016/j.foodres.2023.112865] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Fermentation plays a key role in taste formation in traditional fermented golden pompano and involves a series of complex metabolic reactions. Indeed, the taste profile of fermented golden pompano exhibits remarkable variation during early fermentation. Herein, nutritional fingerprinting (proteins, amino acids, lipids, etc.) was applied to discriminate the various biomolecular changes involved in golden pompano fermentation. Among the differential metabolites, amino acids, small peptides, lipids, and nucleotides were considered taste-related compounds. An increase in the amino acid content was observed during fermentation, while the peptide content decreased. Glutamic acid, alanine, and lysine had the highest taste activity values and were the main contributors to taste formation. Metabolic pathway enrichment analysis revealed that taste formation was primarily associated with alanine, aspartate, and glutamate metabolism. These findings provide a deeper understanding of taste mechanisms and establish a basis for the targeted regulation of taste formation in the fermented fish industry.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qiuxing Cai
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangxi Colleges and Univerisities Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangxi Colleges and Univerisities Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
58
|
Liu Q, Gao X, Pan D, Liu Z, Xiao C, Du L, Cai Z, Lu W, Dang Y, Zou Y. Rapid screening based on machine learning and molecular docking of umami peptides from porcine bone. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3915-3925. [PMID: 36335574 DOI: 10.1002/jsfa.12319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND The traditional screening method for umami peptide, extracted from porcine bone, was labor-intensive and time-consuming. In this study, the rapid screening method and molecular mechanism of umami peptide was investigated. RESULTS This article showed that a more precisely rapid screening method with composite machine learning and molecular docking was used to screen the potential umami peptide from porcine bone. As reference, 24 reported umami peptides were predicated by composite machine learning, with the accuracy of 86.7%. In this study, potential umami peptide sequences from porcine bone were screened by UMPred-FRL, Umami-MRNN Demo, and molecular docking was used to provide further screening. Finally, nine peptides were screened and verified as umami peptides by this method: LREY, HEAL, LAKVH, FQKVVA, HVKELE, AEVKKAP, EAVEKPQS, KALSEEL and KKMFETES. The hydrogen bonding was deemed to be the main interaction force with receptor T1R3, and domain binding sites were Ser146, His121 and Glu277. The result demonstrated the feasibility of machine learning assisted T1R1/T1R3 receptor for rapid screening umami peptides. The screening method would not only adapt to screen umami peptides from porcine bone but possibly applied for other sources. It also provided a reference for rapid screening of umami peptides. CONCLUSION The manuscript lays a rapid screening method in screening umami peptide, and nine umami peptides from porcine bone were screened and identified. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhu Liu
- Quality and Research Management Department, Zhejiang Institute for Food and Drug Control, Hangzhou, China
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Wenjing Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ying Zou
- The Second Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, China
| |
Collapse
|
59
|
Zhang J, Zhao X, Li L, Chen W, Zhao Q, Su G, Zhao M. Application of electronic tongue in umami detection and soy sauce refining process. Food Chem X 2023; 18:100652. [PMID: 37008723 PMCID: PMC10060585 DOI: 10.1016/j.fochx.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The article systematically investigated the response behaviors of lipid-film equipped umami taste sensor to various umami compounds, including typical umami substances (umami amino acids, GMP, IMP, disodium succinate) and novel umami chemicals (umami peptide and Amadori rearrangement product of umami amino acid). The umami taste sensor has great specificity to all umami substances. Relationships between output values and concentrations of umami substances in certain ranges were consistent with Weber-Fechner law. The umami synergistic effect detected by the sensor was in great agreement with human sensory results as well, fitting logarithm model. Moreover, the taste profile mixing model of raw soy sauce was established using five different taste sensors and principal component analysis, realizing the simplification of soy sauce blending and acceleration of the soy sauce refining process. Thus, flexible design of the experimental procedure and multi-analysis of the sensor data is essential.
Collapse
|
60
|
Ju Y, Sun L, Zhang X, Li W, Hou L. Fractionation, identification and umami characteristics of flavor peptides in natural brewed soy sauce. Food Chem 2023; 425:136501. [PMID: 37279620 DOI: 10.1016/j.foodchem.2023.136501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
To investigate the umami mechanisms and characteristics of soy sauce flavor peptides, four fractions from natural brewed soy sauce were separated using ultrafiltration and Sephadex G-15 gel filtration chromatography. Sensory and ligand-receptor interaction tests showed that the umami strengths of the fractions were related as follows: U1 > U2, G3 > G2, and G3 > U1. Peptide identification revealed that the < 550-Da peptides might be the major contributors to the umami taste of U1 and G3. The higher umami strength of G3 might be attributable to its higher content of umami peptides. G3's concentration-relative umami intensity curve was plotted using a two-alternative forced choice test. It was also revealed that less sourness, higher saltiness and cool (4 ℃) and hot (50 ℃) serving conditions were conductive to the umami perception of G3. The results could provide a reference for the application of soy-sauce flavor peptides in food.
Collapse
Affiliation(s)
- Yaojun Ju
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Liting Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Xiangdi Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Wanning Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Lihua Hou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
61
|
Zhang L, Pu D, Zhang J, Hao Z, Zhao X, Sun B, Zhang Y. Identification of Novel Umami Peptides in Chicken Breast Soup through a Sensory-Guided Approach and Molecular Docking to the T1R1/T1R3 Taste Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7803-7811. [PMID: 37189274 DOI: 10.1021/acs.jafc.3c01251] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultrafiltration combined with nanoliquid chromatography quadrupole time-of-flight mass spectrometry (nano-LC-QTOF-MS) and sensory evaluation was used to separate and identify umami peptides in chicken breast soup. Fifteen peptides with umami propensity scores of >588 were identified from the fraction (molecular weight ≤1 kDa) using nano-LC-QTOF-MS, and their concentrations ranged from 0.02 ± 0.01 to 6.94 ± 0.41 μg/L in chicken breast soup. AEEHVEAVN, PKESEKPN, VGNEFVTKG, GIQKELQF, FTERVQ, and AEINKILGN were considered as umami peptides according to sensory analysis results (detection threshold: 0.18-0.91 mmol/L). The measurement of point of subjective equality showed that these six umami peptides (2.00 g/L) were equivalent to 0.53-0.66 g/L of monosodium glutamate (MSG) in terms of umami intensity. Notably, the sensory evaluation results showed that the peptide of AEEHVEAVN significantly enhanced the umami intensity of the MSG solution and chicken soup models. The molecular docking results showed that the serine residues were the most frequently observed binding sites in T1R1/T1R3. The binding site Ser276 particularly contributed to the formation of the umami peptide-T1R1 complexes. The acidic glutamate residues observed in the umami peptides were also involved in their binding to the T1R1 and T1R3 subunits.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dandan Pu
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Jingcheng Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Zhilin Hao
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Xixuan Zhao
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
62
|
Chen D, Chen W, Li W, Wen X, Wu D, Zhang Z, Yang Y. Effects of continuous enzymolysis on the umami characteristics of Lentinula edodes and the flavor formation mechanism of umami peptides. Food Chem 2023; 420:136090. [PMID: 37080114 DOI: 10.1016/j.foodchem.2023.136090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
The purpose of this study was to explore the effect of continuous enzymolysis on the umami characteristics of Lentinula edodes and illuminate the umami mechanism of peptides. The results indicated that the continuous enzymolysis extracts (LFTE) of L.edodes had higher umami intensity and palatability than the water extracts (LWE). 1H NMR and LC-MS/MS were used to evaluate taste metabolites and peptide profiles. Among the identified peptides, LPGVAE, LDELEK, DVELSK, LPDEAR, and TTLPDK with high umami scores which threshold in the range of 0.091-0.371 mmol/L were screened by iUmami-SCM and BIOPEP-UWM, and further verified by sensory evaluation. The results of molecular docking suggested that Ser148, Asn150, Ser276, Ser278 of T1R1 and Asn68, Val277, Ala302, Ser306 of T1R3 played a key role in the umami peptides docking. The study revealed continuous enzymolysis of L.edodes could obtain more umami substances and umami peptides, which laid a foundation for researching flavor substances and developing flavor products from L.edodes.
Collapse
Affiliation(s)
- Daoyou Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China; Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Xinmeng Wen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| |
Collapse
|
63
|
Huang Z, Feng Y, Zeng J, Zhao M. Six categories of amino acid derivatives with potential taste contributions: a review of studies on soy sauce. Crit Rev Food Sci Nutr 2023; 64:7981-7992. [PMID: 37009850 DOI: 10.1080/10408398.2023.2194422] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
During the fermentation of soy sauce, the metabolism of microorganisms and the Maillard reaction produce a wide variety of metabolites that contribute to the unique and rich flavor characteristics of soy sauce, such as amino acids, organic acids and peptides. Amino acid derivatives, a relatively new taste compounds, formed by the reaction of enzymes or non-enzymes from sugars, amino acids, and organic acids released through metabolism by microorganisms during soy sauce fermentation, have begun to gain more and more attention in recent years. This review focused on our existing knowledge of the sources, taste characteristics and synthesis methods of the 6 categories of amino acid derivatives, including Amadori compounds, γ-glutamyl peptides, pyroglutamyl amino acids, N-lactoyl amino acids, N-acetyl amino acids and N-succinyl amino acids. Sixty-four amino acid derivatives were detected in soy sauce, of which 47 were confirmed to have potential contribution to the taste of soy sauce, especially umami and kokumi, and some of them also have the effect of reducing bitterness. Furthermore, some amino acid derivatives, like γ-glutamyl peptides and N-lactoyl amino acids, were found to be synthesized enzymatically in vitro, which laid the foundation for further study on their formation pathways in the future.
Collapse
Affiliation(s)
- Zikun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Jing Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| |
Collapse
|
64
|
Zhao J, Liao S, Han J, Xie Y, Tang J, Zhao J, Shao W, Wang Q, Lin H. Revealing the Secret of Umami Taste of Peptides Derived from Fermented Broad Bean Paste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4706-4716. [PMID: 36814172 DOI: 10.1021/acs.jafc.2c09178] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To understand the umami taste of fermented broad bean paste (FBBP) and explore the umami mechanism, eight peptides (PKALSAFK, NKHGSGK, SADETPR, EIKKAALDANEK, DALAHK, LDDGR, and GHENQR) were separated and identified via ultrafiltration, RP-HPLC, and UPLC-QTOF-MS/MS methods. Sensory experiments suggested that eight novel peptides showed umami/umami-enhancing and salt-enhancing functions. Significantly, the threshold of EIKKAALDANEK in aqueous solution exceeded that of most umami peptides reported in the past 5 years. The omission test further confirmed that umami peptides contributed to the umami taste of FBBP. Molecular docking results inferred that all peptides easily bind with Ser, Glu, His, and Asp residues in T1R3 through hydrogen bonds and electrostatic interactions. The aromatic interaction, hydrogen bond, hydrophilicity, and solvent-accessible surface (SAS) were the main interaction forces. This work may contribute to revealing the secret of the umami taste of FBBP and lay the groundwork for the efficient screening of umami peptides.
Collapse
Affiliation(s)
- Jianhua Zhao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Shiqi Liao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Jinlin Han
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Yuqing Xie
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Jie Zhao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Wenjie Shao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States of America
| | - Hongbin Lin
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| |
Collapse
|
65
|
Li C, Hua Y, Pan D, Qi L, Xiao C, Xiong Y, Lu W, Dang Y, Gao X, Zhao Y. A rapid selection strategy for umami peptide screening based on machine learning and molecular docking. Food Chem 2023; 404:134562. [DOI: 10.1016/j.foodchem.2022.134562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022]
|
66
|
Zhou T, Feng Y, Chen Y, Zhao M. Quantitative studies, taste recombination, and omission experiments on the key taste compounds in Chinese and Japanese soy sauce. Food Chem 2023; 403:134215. [DOI: 10.1016/j.foodchem.2022.134215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
|
67
|
Identification, taste characterization, and molecular docking study of a novel microbiota-derived umami peptide. Food Chem 2023; 404:134583. [DOI: 10.1016/j.foodchem.2022.134583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/31/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
68
|
Wang Y, Luan J, Tang X, Zhu W, Xu Y, Bu Y, Li J, Cui F, Li X. Identification of umami peptides based on virtual screening and molecular docking from Atlantic cod ( Gadus morhua). Food Funct 2023; 14:1510-1519. [PMID: 36651848 DOI: 10.1039/d2fo03776a] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Umami peptides have currently become the research focus in the food umami science field and the key direction for umami agent development. This is because umami peptides have good processing characteristics, umami and nutritional values. We here used virtual screening (including online enzymolysis through ExPASy PeptideCutter, bioactivity screening using the PeptideRanker, toxicity and physicochemical property prediction using Innovagen and ToxinPred software), molecular docking, and electronic tongue analysis to identify umami peptides generated from Atlantic cod myosin. Twenty-three putative umami peptides were screened from the myosin. Molecular docking results suggested that these 23 peptides could enter the binding pocket in the T1R3 cavity, wherein Glu128 and Asp196 were the main amino acid residues, and that hydrogen bonding and electrostatic interactions were the main binding forces. Twelve synthetic peptides tested on the electronic tongue exhibited umami taste and a synergistic effect with monosodium glutamate (MSG). Among them, GGR, AGCD, and SGDAW had higher umami intensities than the other peptides, while SGDAW and NDDGW exhibited stronger umami-enhancing capabilities in 0.1% MSG solution. This study offers a method for the rapid screening of umami peptides from marine protein resources and places the foundation for their application in the food industry.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China. .,School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Junjia Luan
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Xuhua Tang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Fangchao Cui
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China.
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| |
Collapse
|
69
|
Dong X, Wan C, Huang A, Xu H, Lei H. Novel Umami Peptides from Hypsizygus marmoreus and Interaction with Umami Receptor T1R1/T1R3. Foods 2023; 12:foods12040703. [PMID: 36832778 PMCID: PMC9955199 DOI: 10.3390/foods12040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Umami peptides are important taste components of foods. In this study, umami peptides from Hypsizygus marmoreus hydrolysate were purified through ultrafiltration, gel filtration chromatography, and RP-HPLC, and then identified using LC-MS/MS. The binding mechanism of umami peptides with the receptor, T1R1/T1R3, was investigated using computational simulations. Five novel umami peptides were obtained: VYPFPGPL, YIHGGS, SGSLGGGSG, SGLAEGSG, and VEAGP. Molecular docking results demonstrated that all five umami peptides could enter the active pocket in T1R1; Arg277, Tyr220, and Glu301 were key binding sites; and hydrogen bonding and hydrophobic interaction were critical interaction forces. VL-8 had the highest affinity for T1R3. Molecular dynamics simulations demonstrated that VYPFPGPL (VL-8) could be steadily packed inside the binding pocket of T1R1 and the electrostatic interaction was the dominant driving force of the complex (VL-8-T1R1/T1R3) formation. Arg residues (151, 277, 307, and 365) were important contributors to binding affinities. These findings provide valuable insights for the development of umami peptides in edible mushrooms.
Collapse
Affiliation(s)
| | | | | | | | - Hongjie Lei
- Correspondence: ; Tel./Fax: +86-029-87092486
| |
Collapse
|
70
|
Chang J, Li X, Liang Y, Feng T, Sun M, Song S, Yao L, Wang H, Hou F. Novel umami peptide from Hypsizygus marmoreus hydrolysate and molecular docking to the taste receptor T1R1/T1R3. Food Chem 2023; 401:134163. [DOI: 10.1016/j.foodchem.2022.134163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
|
71
|
Isolation, taste characterization and molecular docking study of novel umami peptides from Lactarius volemus (Fr.). Food Chem 2023; 401:134137. [DOI: 10.1016/j.foodchem.2022.134137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022]
|
72
|
Bioactive and Sensory Di- and Tripeptides Generated during Dry-Curing of Pork Meat. Int J Mol Sci 2023; 24:ijms24021574. [PMID: 36675084 PMCID: PMC9866438 DOI: 10.3390/ijms24021574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Dry-cured pork products, such as dry-cured ham, undergo an extensive proteolysis during manufacturing process which determines the organoleptic properties of the final product. As a result of endogenous pork muscle endo- and exopeptidases, many medium- and short-chain peptides are released from muscle proteins. Many of them have been isolated, identified, and characterized, and some peptides have been reported to exert relevant bioactivity with potential benefit for human health. However, little attention has been given to di- and tripeptides, which are far less known, although they have received increasing attention in recent years due to their high potential relevance in terms of bioactivity and role in taste development. This review gathers the current knowledge about di- and tripeptides, regarding their bioactivity and sensory properties and focusing on their generation during long-term processing such as dry-cured pork meats.
Collapse
|
73
|
Xiao H, Yong J, Xie Y, Zhou H. The molecular mechanisms of quality difference for Alpine Qingming green tea and Guyu green tea by integrating multi-omics. Front Nutr 2023; 9:1079325. [PMID: 36687681 PMCID: PMC9854344 DOI: 10.3389/fnut.2022.1079325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Harvest time represents one of the crucial factors concerning the quality of alpine green tea. At present, the mechanisms of the tea quality changing with harvest time have been unrevealed. Methods In the current study, fresh tea leaves (qmlc and gylc) and processed leaves (qmgc and gygc) picked during Qingming Festival and Guyu Festival were analyzed by means of sensory evaluation, metabolomics, transcriptomic analysis, and high-throughput sequencing, as well as their endophytic bacteria (qm16s and gy16s). Results The results indicated qmgc possessed higher sensory quality than gygc which reflected from higher relative contents of amino acids, and soluble sugars but lower relative contents of catechins, theaflavins, and flavonols. These differential metabolites created features of light green color, prominent freshness, sweet aftertaste, and mild bitterness for qmgc. Discussion Flavone and flavonol biosynthesis and phenylalanine metabolism were uncovered as the key pathways to differentiate the quality of qmgc and gygc. Endophytic bacteria in leaves further influence the quality by regulating the growth of tea trees and enhancing their disease resistance. Our findings threw some new clues on the tea leaves picking to pursue the balance when facing the conflicts of product quality and economic benefits.
Collapse
Affiliation(s)
- Hongshi Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,Agricultural and Rural Bureau of Hefeng County, Hefeng, China
| | - Jie Yong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yijie Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Haiyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,*Correspondence: Haiyan Zhou,
| |
Collapse
|
74
|
Mao J, Zhou Z, Yang H. Microbial succession and its effect on the formation of umami peptides during sufu fermentation. Front Microbiol 2023; 14:1181588. [PMID: 37138594 PMCID: PMC10149673 DOI: 10.3389/fmicb.2023.1181588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Sufu, a traditional Chinese fermented food, is famous for its unique flavor, especially umami. However, the formation mechanism of its umami peptides is still unclear. Here, we investigated the dynamic change of both umami peptides and microbial communities during sufu production. Based on peptidomic analysis, 9081 key differential peptides were identified, which mainly involved in amino acid transport and metabolism, peptidase activity and hydrolase activity. Twenty-six high-quality umami peptides with ascending trend were recognized by machine learning methods and Fuzzy c-means clustering. Then, through correlation analysis, five bacterial species (Enterococcus italicus, Leuconostoc citreum, L. mesenteroides, L. pseudomesenteroides, Tetragenococcus halophilus) and two fungi species (Cladosporium colombiae, Hannaella oryzae) were identified to be the core functional microorganisms for umami peptides formation. Functional annotation of five lactic acid bacteria indicated their important functions to be carbohydrate metabolism, amino acid metabolism and nucleotide metabolism, which proved their umami peptides production ability. Overall, our results enhanced the understanding of microbial communities and the formation mechanism of umami peptides in sufu, providing novel insights for quality control and flavor improvement of tofu products.
Collapse
Affiliation(s)
- Jieqi Mao
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, China
- *Correspondence: Hongshun Yang,
| |
Collapse
|
75
|
bi Y, Shan Q, Luo R, Bai S, ji C, Wang Y, Gao S, Guo J, Hu X, Dong F. Dynamic changes in water mobility and taste substances of cooked Tan lamb meat after chilled storage. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
76
|
Pallante L, Korfiati A, Androutsos L, Stojceski F, Bompotas A, Giannikos I, Raftopoulos C, Malavolta M, Grasso G, Mavroudi S, Kalogeras A, Martos V, Amoroso D, Piga D, Theofilatos K, Deriu MA. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Sci Rep 2022; 12:21735. [PMID: 36526644 PMCID: PMC9758219 DOI: 10.1038/s41598-022-25935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The umami taste is one of the five basic taste modalities normally linked to the protein content in food. The implementation of fast and cost-effective tools for the prediction of the umami taste of a molecule remains extremely interesting to understand the molecular basis of this taste and to effectively rationalise the production and consumption of specific foods and ingredients. However, the only examples of umami predictors available in the literature rely on the amino acid sequence of the analysed peptides, limiting the applicability of the models. In the present study, we developed a novel ML-based algorithm, named VirtuousUmami, able to predict the umami taste of a query compound starting from its SMILES representation, thus opening up the possibility of potentially using such a model on any database through a standard and more general molecular description. Herein, we have tested our model on five databases related to foods or natural compounds. The proposed tool will pave the way toward the rationalisation of the molecular features underlying the umami taste and toward the design of specific peptide-inspired compounds with specific taste properties.
Collapse
Affiliation(s)
- Lorenzo Pallante
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, PolitoBIOMedLab, 10129, Torino, Italy
| | | | | | - Filip Stojceski
- Department of Innovative Technologies, Dalle Molle Institute for Artificial Intelligence, 6962, Lugano-Viganello, Switzerland
| | - Agorakis Bompotas
- Industrial Systems Institute, Athena Research Center, 265 04, Patras, Greece
| | - Ioannis Giannikos
- Industrial Systems Institute, Athena Research Center, 265 04, Patras, Greece
| | | | - Marta Malavolta
- Faculty of Computer and Information Science, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Gianvito Grasso
- Department of Innovative Technologies, Dalle Molle Institute for Artificial Intelligence, 6962, Lugano-Viganello, Switzerland
| | - Seferina Mavroudi
- InSyBio PC, 265 04, Patras, Greece
- Department of Nursing, University of Patras, 265 04, Patras, Greece
| | | | - Vanessa Martos
- Department of Plant Physiology, Institute of Biotechnology, University of Granada, 18011, Granada, Spain
| | | | - Dario Piga
- Department of Innovative Technologies, Dalle Molle Institute for Artificial Intelligence, 6962, Lugano-Viganello, Switzerland
| | | | - Marco A Deriu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, PolitoBIOMedLab, 10129, Torino, Italy.
| |
Collapse
|
77
|
Morelli CF, Pappalardo V, Brockhoff A, Pieraccini S, Sironi M, Sangiorgio S, Scarabattoli L, Speranza G, Rabuffetti M. Purine 5’‐Ribonucleotide‐
l
‐Glutamate Hybrids As Potential Tools To Investigate The Mechanism Of
Umami
Taste Reception. ChemistrySelect 2022. [DOI: 10.1002/slct.202204123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
| | - Valeria Pappalardo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) Consiglio Nazionale delle Ricerche (CNR) Via Golgi 19 20133 Milan Italy
| | - Anne Brockhoff
- Department of Molecular Genetics German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE) Arthur-Scheunert-Allee 114–116 14558 Nuthetal Germany
| | | | | | | | | | | | | |
Collapse
|
78
|
IUP-BERT: Identification of Umami Peptides Based on BERT Features. Foods 2022; 11:foods11223742. [PMID: 36429332 PMCID: PMC9689418 DOI: 10.3390/foods11223742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Umami is an important widely-used taste component of food seasoning. Umami peptides are specific structural peptides endowing foods with a favorable umami taste. Laboratory approaches used to identify umami peptides are time-consuming and labor-intensive, which are not feasible for rapid screening. Here, we developed a novel peptide sequence-based umami peptide predictor, namely iUP-BERT, which was based on the deep learning pretrained neural network feature extraction method. After optimization, a single deep representation learning feature encoding method (BERT: bidirectional encoder representations from transformer) in conjugation with the synthetic minority over-sampling technique (SMOTE) and support vector machine (SVM) methods was adopted for model creation to generate predicted probabilistic scores of potential umami peptides. Further extensive empirical experiments on cross-validation and an independent test showed that iUP-BERT outperformed the existing methods with improvements, highlighting its effectiveness and robustness. Finally, an open-access iUP-BERT web server was built. To our knowledge, this is the first efficient sequence-based umami predictor created based on a single deep-learning pretrained neural network feature extraction method. By predicting umami peptides, iUP-BERT can help in further research to improve the palatability of dietary supplements in the future.
Collapse
|
79
|
Li W, Chen W, Ma H, Wang J, Li Z, Wang Q, Zhang Z, Wu D, Zhang J, Yang Y. Study on the relationship between structure and taste activity of the umami peptide of Stropharia rugosoannulata prepared by ultrasound. ULTRASONICS SONOCHEMISTRY 2022; 90:106206. [PMID: 36274418 PMCID: PMC9593856 DOI: 10.1016/j.ultsonch.2022.106206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 05/05/2023]
Abstract
Through virtual screening, electronic tongue verification, and molecular docking technology, the structure-taste activity relationship of 47 kinds of umami peptides (octapeptide - undecapeptide) from Stropharia rugosoannulata prepared by simultaneous ultrasonic-assisted directional enzymatic hydrolysis was analyzed. The umami peptides of S.rugosoannulata can form hydrogen bond interaction and electrostatic interaction with umami receptors T1R1/T1R3. The amino acid residues at the peptides' N-terminal and C-terminal play a vital role in binding with the receptors to form a stable complex. D, E, and R are the primary amino acids in the peptides that easily bind to T1R1/T1R3. The basic amino acid in the peptides is more easily bound to T1R1, and the acidic amino acid is more easily bound to T1R3. The active amino acid sites of the receptors to which the peptides bind account for 42%-65% of the total active amino acid residues in the receptors. ASP147 and ASP219 are the critical amino acid residues for T1R1 to recognize the umami peptides, and ARG64, GLU45, and GLU48 are the critical amino acid residues for T1R3 to recognize the umami peptides. The increase in the variety and quantity of umami peptides is the main reason for improving the umami taste of the substrate prepared by synchronous ultrasound-assisted directional enzymatic hydrolysis. This study provides a theoretical basis for understanding simultaneous ultrasound-assisted directional enzymatic hydrolysis for preparing umami peptides from S.rugosoannulata, enhancing the flavor of umami, and the relationship between peptide structure and taste activity.
Collapse
Affiliation(s)
- Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China; School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Wanchao Chen
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Qian Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Zhong Zhang
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Di Wu
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
80
|
Hu Y, Xiao N, Ye Y, Shi W. Fish proteins as potential precursors of taste-active compounds: an in silico study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6404-6413. [PMID: 35562847 DOI: 10.1002/jsfa.12006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fish protein is a good source of amino acids and peptides with sensory properties. Theoretically, the type of protein affects the taste quality of the protein hydrolysates. To better use fish protein in the food ingredients industry, an in silico approach was adopted to evaluate the potential of fish protein to release taste-active compounds. RESULTS Six types of protein from seven commercial fishes were screened from the Uniprot knowledge base. The results showed that a remarkable number of umami fragments presented in myosin and parvalbumin (PB), such as glutamic acid (Glu), aspartic acid (Asp), and Asp- and Glu- containing peptides, whereas sweet amino acids and bitter peptides (e.g., Pro- and Gly- containing peptides) were mainly found in collagen (CGI) in all fish samples. After the in silico proteolysis by papain, a difference in the profile of taste-active fragments was observed among the six types of proteins. Amino acids were the main hydrolysis products of these proteins, especially umami, sweet, and bitter amino acids, significantly contributing to the taste formation of protein hydrolysates. Besides, the myosin and CGI hydrolysates were abundant in taste active peptides both in types and quantities. CONCLUSION Myosin is a promising protein source for producing umami fragments, and CGI seems to be a good precursor of sweet and bitter fragments. Different types of protein have an essential effect on the taste of protein hydrolysates. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yiting Ye
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| |
Collapse
|
81
|
Lim SY, Dora R, Yatiman NH, Wong JE, Haron H, Poh BK. Umami detection threshold among children of different ethnicities and its correlation with various indices of obesity and blood pressure. Curr Res Food Sci 2022; 5:2204-2210. [PMID: 36387604 PMCID: PMC9663310 DOI: 10.1016/j.crfs.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Sensitivity to savory taste has been linked to high consumption of savory foods and increased risks of obesity and hypertension. However, there are limited studies that investigate whether obesity indices are correlated with the differences in umami taste perception, particularly in children. This study aimed to investigate the umami detection threshold among children of different ethnicities and the threshold's correlation with obesity indices and blood pressure. A total of 140 subjects were recruited and consisted of a nearly equal distribution of children from three main ethnicities (37.2% Malays, 31.4% Chinese, 31.4% Indians). Umami detection threshold was measured using the two-alternative, forced-choice staircase procedure. Body weight, height, waist circumference and blood pressure of children were measured. Body composition was assessed using bioelectrical impedance analysis (BIA). Mean umami detection threshold was 1.22 ± 1.04 mM and there were no observable differences attributable to the subjects' ethnicities. Body fat percentage was negatively correlated (r = −0.171, p < 0.05), while lean body mass percentage was positively correlated (r = 0.171, p < 0.05) with umami detection threshold. These findings revealed that umami taste perception correlated with children's body composition, but not other anthropometric indicators and blood pressure. Future studies should explore the correlation between umami taste perception and children's total dietary intake. The average umami detection threshold of Malaysian children was 1.22 ± 1.04 mM. No gender or ethnic differences in umami detection thresholds were observed. Umami taste perception was correlated only with children's body composition. It is worth to consider umami taste threshold in designing low-sodium food products.
Collapse
|
82
|
Zhang N, Cui Z, Li M, Fan Y, Liu J, Wang W, Zhang Y, Liu Y. Typical Umami Ligand-Induced Binding Interaction and Conformational Change of T1R1-VFT. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11652-11666. [PMID: 36098631 DOI: 10.1021/acs.jafc.2c05559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Umami taste receptor type 1 member 1/3 (T1R1/T1R3) heterodimer has multiple ligand-binding sites, most of which are located in T1R1-Venus flytrap domain (T1R1-VFT). However, the critical binding process of T1R1-VFT/umami ligands remains largely unknown. Herein, T1R1-VFT was prepared with a sufficient amount and functional activity, and its binding characteristics with typical umami molecules (monosodium l-glutamate, disodium succinate, beefy meaty peptide, and inosine-5'-monophosphate) were explored via multispectroscopic techniques and molecular dynamics simulation. The results showed that, driven mainly by hydrogen bond, van der Waals forces, and electrostatic interactions, T1R1-VFT bound to umami compound at 1:1 (stoichiometric interaction) and formed T1R1-VFT/ligand complex (static fluorescence quenching) with a weak binding affinity (Ka values: 252 ± 19 to 1169 ± 112 M-1). The binding process was spontaneous and exothermic (ΔG, -17.72 to -14.26 kJ mol-1; ΔH, -23.86 to -12.11 kJ mol-1) and induced conformational changes of T1R1-VFT, which was mainly reflected in slight unfolding of α-helix (Δα-helix < 0) and polypeptide chain backbone structure. Meanwhile, the binding of the four ligands stabilized the active conformation of the T1R1-VFT pocket. This work provides insight into the binding interaction between T1R1-VFT/umami ligands and improves understanding of how umami receptor recognizes specific ligand molecules.
Collapse
Affiliation(s)
- Ninglong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Mingyang Li
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuxia Fan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong Province, P. R. China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, P. R. China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
83
|
Liang L, Zhou C, Zhang J, Huang Y, Zhao J, Sun B, Zhang Y. Characteristics of umami peptides identified from porcine bone soup and molecular docking to the taste receptor T1R1/T1R3. Food Chem 2022; 387:132870. [PMID: 35398684 DOI: 10.1016/j.foodchem.2022.132870] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023]
Abstract
To study the umami peptides derived from porcine bone soup, ultrafiltration fractions with molecular weight less than 1 kDa were screened by sensory analysis which showed higher umami intensity. Four potential umami peptides were identified from the screened fractions by Nano-LC-Q-TOF-MS/MS, among which FSGLDGAK, FAGDDAPR and FSGLDGSK were proved to have dominant umami taste by sensory evaluation and electronic tongue. The threshold of the three peptides ranged from 0.1 mM to 0.89 mM. In addition, FSGLDGSK had the highest umami intensity and exhibited a significant umami-enhancing effect in a 0.35% monosodium glutamate solution. The results of molecular docking simulation showed that the key binding sites of taste receptor type 1 member 1 (His71, Asp108 and Glu301) and taste receptor type 1 member 3 (Glu48, Ser104 and His145) were crucial to the interaction with the umami peptides. Besides, electrostatic interaction and hydrogen bond mainly contributed to the mechanism of umami taste.
Collapse
Affiliation(s)
- Li Liang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chenchen Zhou
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jingcheng Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yan Huang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
84
|
Identification and virtual screening of novel umami peptides from chicken soup by molecular docking. Food Chem 2022; 404:134414. [DOI: 10.1016/j.foodchem.2022.134414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/18/2022]
|
85
|
Wan D, Liu Y, Guo X, Zhang J, Pan J. Intelligent Drug Delivery by Peptide-Based Dual-Function Micelles. Int J Mol Sci 2022; 23:ijms23179698. [PMID: 36077102 PMCID: PMC9456463 DOI: 10.3390/ijms23179698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
To endow the polymeric prodrug with smart properties through a safe and simple method, matrix metalloproteinase (MMPs) responsive peptide GPLGVRGDG was introduced into the block copolymer to prepare TPGS3350-GPLGVRGDG-DOX&DOX micelles, where TPGS3350 is D-α-tocopheryl polyethylene glycol 3350 succinate. During the doxorubicin delivery, the cleavage of the peptide chain triggers de-PEGylation, and the remaining VRGDG sequence was retained on the surface of the micelles, which can act as a ligand to facilitate cell uptake. Moreover, the cytotoxicity of TPGS3350-GPLGVRGDG-DOX&DOX micelles against 4T1 cells was significantly improved, compared with TPGS3350-GPLGVRG-DOX&DOX micelles and TPGS3350-DOX&DOX micelles. During in vivo studies, TPGS3350-GPLGVRGDG-DOX&DOX micelles exhibited good anticancer efficacy with long circulation in the body and more efficient accumulation at the tumor site. Therefore, TPGS3350-GPLGVRGDG-DOX&DOX micelles have improved antitumor activity and reduced toxic side effects. This work opens new potential for exploring the strategy of drug delivery in clinical applications.
Collapse
Affiliation(s)
- Dong Wan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Yujun Liu
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xinhao Guo
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Jianxin Zhang
- School of Chemistry, Tiangong University, Tianjin 300387, China
- Correspondence: (J.Z.); (J.P.)
| | - Jie Pan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- Correspondence: (J.Z.); (J.P.)
| |
Collapse
|
86
|
Dubovski N, Fierro F, Margulis E, Ben Shoshan-Galeczki Y, Peri L, Niv MY. Taste GPCRs and their ligands. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:177-193. [PMID: 36357077 DOI: 10.1016/bs.pmbts.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Taste GPCRs are expressed in taste buds on the tongue and play a key role in food choice and consumption. They are also expressed extra-orally, with various physiological roles that are currently under study. Unraveling the roles of these receptors relies on the knowledge of their ligands. Combining sensory, cell-based and computational approaches enabled the discovery of numerous agonists and several antagonists. Here we provide a short overview of taste receptor families, main recent methods for ligands discovery, and current sources of information about known ligands. The future directions that are likely to impact the taste GPCR field include focus on ligand interactions with naturally occurring polymorphisms, as well as harnessing the power of CryoEM and of multiple signaling readout techniques.
Collapse
Affiliation(s)
- Nitzan Dubovski
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Fabrizio Fierro
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eitan Margulis
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yaron Ben Shoshan-Galeczki
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
87
|
Zhang C, Miao Y, Feng Y, Wang J, Tian Z, Dong J, Gao B, Zhang L. Umami polypeptide detection system targeting the human T1R1 receptor and its taste-presenting mechanism. Biomaterials 2022; 287:121660. [PMID: 35792387 DOI: 10.1016/j.biomaterials.2022.121660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/24/2022] [Indexed: 01/30/2023]
Abstract
Umami is one of five basic tastes, the elucidation of its mechanism by the study of the interaction between umami polypeptides and hT1R1 umami receptors is of great significance. However, research on umami peptides targeting human T1R1 receptors is lacking, and the molecular mechanism remains elusive. Here, we successfully established a system to detect umami peptides targeting human T1R1 receptors by fluorescence spectroscopy, Surface Plasmon Resonance (SPR) and computational simulation. The sensory evaluation, calculated Kd value, and experimental affinity results between the four selected umami peptides (GRVSNCAA, KGDEESLA, KGGGGP, and TGDPEK) and glutamate were tested using this system, and all matched well. The maximum Ka value of GRVSNCAA was 479.55 M-1, and the minimum affinity of TGDPEK was 2.67 M-1. Computational simulations showed that the different peptide binding sites in the hT1R1 binding pocket occupied due to conformational changes are important factors for different taste thresholds, and that peptide hydrophobicity plays an important role in regulating affinity. Thus, our study enables rapid screening of high-intensity umami peptides and the development of T1R1 receptor-based umami detection sensors.
Collapse
Affiliation(s)
- Chuanxi Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China; School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai , 200240, China
| | - Yulu Miao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yinghui Feng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jiawei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China; School of Health Science and Engineering, University of Shanghai for Science and Tecchnology, Shanghai, 200093, China
| | - Zhuoli Tian
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi, 832000, China
| | - Bei Gao
- School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
| |
Collapse
|
88
|
Xiong Y, Gao X, Pan D, Zhang T, Qi L, Wang N, Zhao Y, Dang Y. A strategy for screening novel umami dipeptides based on common feature pharmacophore and molecular docking. Biomaterials 2022; 288:121697. [DOI: 10.1016/j.biomaterials.2022.121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
|
89
|
Identification of Novel Umami Peptides from Boletus edulis and its Mechanism via Sensory Analysis and Molecular Simulation Approaches. Food Chem 2022; 398:133835. [DOI: 10.1016/j.foodchem.2022.133835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/06/2023]
|
90
|
Li W, Chen W, Wu D, Zhang Z, Yang Y. Taste peptides derived from Stropharia rugosoannulata fermentation mycelium and molecular docking to the taste receptor T1R1/T1R3. Front Nutr 2022; 9:960218. [PMID: 35967776 PMCID: PMC9371610 DOI: 10.3389/fnut.2022.960218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
This study identified the peptides in the fermentation mycelia of Stropharia rugosoannulata. The molecular weight of the peptides was below 3,000 Da. Heptapeptides to decapeptides were the main peptides in the fermentation mycelia of S. rugosoannulata. More than 50% of the peptides had salty and umami taste characteristics, and the long-chain peptides (decapeptides to 24 peptides) also played an essential role in the pleasant taste characteristics of mycelium. In the salty and umami peptide of S. rugosoannulata, the distribution of non-polar hydrophobic amino acids and polar-uncharged amino acids accounted for a relatively high proportion, and the proportion of polar-uncharged amino acids further increased, with the extension of the peptide chain. P, F, I, l, V, G, S, T, and D were the amino acids with a high proportion in the peptides. The taste peptides can bind to more than 60% of the active amino acid residues in the cavity-binding domain of the T1R1/T1R3 receptors. Hydrogen bond interaction was the primary mode of interaction between the peptides and the receptor. The first and second amino acid residues (such as S, V, E, K, G, and A) at the C-terminal and N-terminal of the peptides were easy to bind to T1R1/T1R3 receptors. Asp108, Asn150, Asp147, Glu301, Asp219, Asp243, Glu70, Asp218 in T1R1, and Glu45, Glu148, Glu301, Glu48, and Ala46 in TIR3 were the key active amino acid sites of taste peptides binding to T1R1/T1R3 receptors.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
91
|
Xiu H, Liu Y, Yang H, Ren H, Luo B, Wang Z, Shao H, Wang F, Zhang J, Wang Y. Identification of novel umami molecules via QSAR models and molecular docking. Food Funct 2022; 13:7529-7539. [PMID: 35765918 DOI: 10.1039/d2fo00544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Umami substances can increase the overall taste of food and bring pleasure to people. However, it is still challenging to identify the umami molecules through virtual screening due to the crystal structure of the umami receptor being undefined. Herein, based on the hypothesis that the molecules with bitter and sweet taste characteristics may be umami molecules, this study proposed an in silico method to identify novel umami-tasting molecules in batch from SWEET-DB and BitterDB databases via the QSAR models, PCA, molecular docking and electronic tongue analysis. In total, 169 potential umami molecules were identified through QSAR modeling, PCA, and molecular docking. Of the 169 molecules, 18 were randomly selected, and all were identified as umami molecules via electronic tongue analysis. Among the 18 chosen molecules, 10 molecules could be traced back to their concentration range in food, and finally, 8 molecules were predicted to be nontoxic. This work provides a simple and efficient strategy to identify novel umami molecules, holding an excellent promise for demonstrating the crystal structure of umami receptors and taste-sensing mechanisms. Furthermore, this study opens the possibility for the practical application of new umami molecules in food.
Collapse
Affiliation(s)
- Hongxia Xiu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China. .,CangZhou Academy of Agriculture and Forestry Sciences, Cangzhou, 061001, PR China.
| | - Yajie Liu
- Department of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huihui Yang
- Department of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haibin Ren
- Department of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bowen Luo
- Department of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhipeng Wang
- Department of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hong Shao
- Department of Food Science, Northeast Agricultural University, Harbin, 150030, PR China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fengzhong Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China.
| | - Jingjian Zhang
- CangZhou Academy of Agriculture and Forestry Sciences, Cangzhou, 061001, PR China.
| | - Yutang Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China. .,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
92
|
Guha S, Majumder K. Comprehensive Review of γ-Glutamyl Peptides (γ-GPs) and Their Effect on Inflammation Concerning Cardiovascular Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7851-7870. [PMID: 35727887 DOI: 10.1021/acs.jafc.2c01712] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
γ-Glutamyl peptides (γ-GPs) are a group of peptides naturally found in various food sources. The unique γ-bond potentially enables them to resist gastrointestinal digestion and offers high stability in vivo with a longer half-life. In recent years, these peptides have caught researchers' attention due to their ability to impart kokumi taste and elicit various physiological functions via the allosteric activation of the calcium-sensing receptor (CaSR). This review discusses the various food sources of γ-glutamyl peptides, different synthesis modes, allosteric activation of CaSR for taste perception, and associated multiple biological functions they can exhibit, with a special emphasis on their role in modulating chronic inflammation concerning cardiovascular health.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
93
|
Zhang J, Su G, Zhao T, Fan J, Ho CT, Zhao M. Preparation, Sensory Characterization, and Umami-Enhancing Mechanism of Novel Peptide Glycoconjugates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8043-8051. [PMID: 35723436 DOI: 10.1021/acs.jafc.2c03084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Previous studies supposed that Amadori rearrangement products (ARPs) of peptides might have better umami-enhancing abilities. To confirm this, five ARPs (EP-ARP, AH-ARP, EE-ARP, β-AH-ARP, RFPHADF-ARP) were synthesized using a food-grade preparation method, and their chemical structures were clearly demonstrated by mass spectrometry and 1D/2D NMR. Sensory experiments showed that ARPs had better umami-enhancing abilities than the corresponding peptides in this research, though their enhancing performance varied. ARPs showed a synergistic effect with multiple umami substances (MSG and GMP), while their corresponding peptides did not. RFPHADF-ARP had good umami-enhancing capacity, despite that RFPHADF was a bitter peptide without any umami/umami-enhancing property. RFPHADF-ARP could bind to the T1R3, which is beneficial to the stability of the active conformation of the umami receptor. The introduction of glucose via the Maillard reaction increased the binding force of RFPHADF with the umami receptor by influencing the electron density distribution and offering more binding groups (hydroxide group).
Collapse
Affiliation(s)
- Jianan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
94
|
Bai W, Liang J, Zhao W, Qian M, Zeng X, Tu J, Yang J. Umami and umami‐enhancing peptides from myofibrillar protein hydrolysates in low‐sodium dry‐cured Spanish mackerel (
Scomberomorus niphonius
) under the action of
Lactobacillus plantarum. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weidong Bai
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food Ministry of Agriculture Beijing China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Jinxin Liang
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Wenhong Zhao
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food Ministry of Agriculture Beijing China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Min Qian
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food Ministry of Agriculture Beijing China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Xiaofang Zeng
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food Ministry of Agriculture Beijing China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Juncai Tu
- School of Science, RMIT University GPO Box 2474 Melbourne Vic 3001 Australia
| | - Juan Yang
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food Ministry of Agriculture Beijing China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|
95
|
Zhang L, Song C, Chang J, Wang Z, Meng X. Optimization of protein hydrolysates production from defatted peanut meal based on physicochemical characteristics and sensory analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
96
|
Identification and comparison of umami-peptides in commercially available dry-cured Spanish mackerels (Scomberomorus niphonius). Food Chem 2022; 380:132175. [DOI: 10.1016/j.foodchem.2022.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
|
97
|
Gao B, Hu X, Xue H, Li R, Liu H, Han T, Ruan D, Tu Y, Zhao Y. Isolation and screening of umami peptides from preserved egg yolk by nano-HPLC-MS/MS and molecular docking. Food Chem 2022; 377:131996. [PMID: 34998156 DOI: 10.1016/j.foodchem.2021.131996] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/27/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
The material basis leading to the rich umami flavor of preserved egg yolk is poorly understood. This study used nano-high-performance liquid chromatography - tandem mass spectrometry (nano-HPLC-MS/MS) to isolate, identify, and screen umami peptides from preserved egg yolk. Five novel umami peptides-AGFMPLP, APYSGY, PPMF, SLSSLMK, and VAMNPVDHPH-were identified. Molecular docking showed that Phe527 on the taste receptor T1R1/T1R3 (T1R1, taste receptor type 1 member 1; T1R3, taste receptor type 1 member 3) was the key interaction site. Hydrogen bonding, electrostatic interactions, and hydrophobic interactions were the main binding forces between T1R1/T1R3 and umami peptides. These results contribute to understanding the umami peptides in preserved egg yolk and the interaction mechanism between umami peptides and umami receptors.
Collapse
Affiliation(s)
- Binghong Gao
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hui Xue
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Ruiling Li
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Huilan Liu
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Tianfeng Han
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Dandan Ruan
- Hubei Shendan Health Food Co. Ltd, Xiaogan 430000, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
98
|
Malavolta M, Pallante L, Mavkov B, Stojceski F, Grasso G, Korfiati A, Mavroudi S, Kalogeras A, Alexakos C, Martos V, Amoroso D, Di Benedetto G, Piga D, Theofilatos K, Deriu MA. A survey on computational taste predictors. Eur Food Res Technol 2022; 248:2215-2235. [PMID: 35637881 PMCID: PMC9134981 DOI: 10.1007/s00217-022-04044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
Taste is a sensory modality crucial for nutrition and survival, since it allows the discrimination between healthy foods and toxic substances thanks to five tastes, i.e., sweet, bitter, umami, salty, and sour, associated with distinct nutritional or physiological needs. Today, taste prediction plays a key role in several fields, e.g., medical, industrial, or pharmaceutical, but the complexity of the taste perception process, its multidisciplinary nature, and the high number of potentially relevant players and features at the basis of the taste sensation make taste prediction a very complex task. In this context, the emerging capabilities of machine learning have provided fruitful insights in this field of research, allowing to consider and integrate a very large number of variables and identifying hidden correlations underlying the perception of a particular taste. This review aims at summarizing the latest advances in taste prediction, analyzing available food-related databases and taste prediction tools developed in recent years. Supplementary Information The online version contains supplementary material available at 10.1007/s00217-022-04044-5.
Collapse
Affiliation(s)
- Marta Malavolta
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Lorenzo Pallante
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Bojan Mavkov
- GIPSA-lab, F-38000, Université Grenoble Alpes, Grenoble, France
| | - Filip Stojceski
- Dalle Molle Institute for Artificial Intelligence (IDSIA-USI/SUPSI), Lugano-Viganello, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence (IDSIA-USI/SUPSI), Lugano-Viganello, Switzerland
| | | | - Seferina Mavroudi
- InSyBio PC, Patras, Greece
- Department of Nursing, School of Rehabilitation Sciences, University of Patras, Patras, Greece
| | | | - Christos Alexakos
- Athena Research Center, Industrial Systems Institute, Patras, Greece
| | - Vanessa Martos
- Department of Plant Physiology, Institute of Biotechnology, University of Granada, Granada, Spain
| | - Daria Amoroso
- Enginlife Engineering Solutions, Turin, Italy
- 7hc srl, Rome, Italy
| | | | - Dario Piga
- Dalle Molle Institute for Artificial Intelligence (IDSIA-USI/SUPSI), Lugano-Viganello, Switzerland
| | | | - Marco Agostino Deriu
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
99
|
Zhao W, He J, Yu Z, Wu S, Li J, Liu J, Liao X. In silico
identification of novel small molecule umami peptide from ovotransferrin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Wenzhu Zhao
- College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Jingbo He
- College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Zhipeng Yu
- College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Sijia Wu
- College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Jianrong Li
- College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Jingbo Liu
- Laboratory of Nutrition and Functional Food Jilin University Changchun 130062 China
| | - Xiaojun Liao
- College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083 China
| |
Collapse
|
100
|
Characterization of Peanut Protein Hydrolysate and Structural Identification of Umami-Enhancing Peptides. Molecules 2022; 27:molecules27092853. [PMID: 35566204 PMCID: PMC9102854 DOI: 10.3390/molecules27092853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Umami peptides are naturally found in various foods and have been proven to be essential components contributing to food taste. Defatted peanut powder hydrolysate produced by a multiprotease (Flavorzyme, Alcalase, and Protamex) was found to elicit an umami taste and umami-enhancing effect. The taste profiles, hydrolysis efficiency, amino acids, molecular weight distribution, Fourier transform infrared spectroscopy (FT-IR), and separation fractions obtained by ultrafiltration were evaluated. The results showed that peanut protein was extensively hydrolyzed to give mainly (up to 96.84%) free amino acids and peptides with low molecular weights (<1000 Da). Furthermore, β-sheets were the major secondary structure. Fractions of 1−3000 Da and <1000 Da prominently contributed to the umami taste and umami enhancement. To obtain umami-enhancing peptides, these two fractions were further purified by gel filtration chromatography, followed by sensory evaluation. These peptides were identified as ADSYRLP, DPLKY, EAFRVL, EFHNR, and SDLYVR by ultra-performance liquid chromatography (UPLC), and had estimated thresholds of 0.107, 0.164, 0.134, 0.148, and 0.132 mmol/L, respectively. According to the results of this work, defatted peanut powder hydrolysate had an umami taste and umami-enhancing effect, and is a potential excellent umami peptide precursor material for the food industry.
Collapse
|